URL: http://www.elsevier.nl/loca{:e/entcs/volume31.htxﬁl 15 pages

An w-Automata Approach to the Compression
of Bi-Level Images

Yim-Kar Lin and Hsu-Crun YEN1

Dept. of Electrical Engineering, National Taiwan University
Taipei, Taiwan 106, R.0.C.
yen@cc.ee.ntu.edu.tw

Abstract

We use w—finite automata as a device for compressing bi-level images. One of the
advantages of our approach, as opposed to using the conventional finite automata,
lies in that w—finite automata are capable of representing image objects of zero size,
such as lines and points. To demonstrate the feasibility of our strategy, we also
show how a number of image processing operations, including shift, flip, rotation,
complement, boundary, difference, union, intersection, and size, can effectively be
carried out in the framework of w-finite automata.

1 Introduction

As a modeling tool, finite automata have played an important role in various
areas of computer science and the related disciplines. Aside from their useful-
ness in formal languages and complexity theory, it has recently been shown
that finite automata can also play a constructive role in the compression of
digital images. (See, e.g., [5-8].) By exploiting self-similarities within images,
evidence has suggested that finite automata, serving as an image compression
tool, are capable of significantly reducing the amount of memory needed to
encode bi-level (i.e., black-and-white) images. More recently, a generalized
model called weighted finite automata [5] has been proposed to encode and
process gray-tone images. The idea of using finite automata to encode bi-level
images is the following. By recursively subdividing an image area into four
quadrants, a subimage can be addressed by a string xy,...,x,, where each
x; belongs to an alphabet of four letters (representing the four quadrants),
and n represents the granularity of the subdivision. The subdivision proce-
dure continues until quadrants are either entirely black or entirely white. In
this setting, an image can then be associated with a language L in such a

1 To whom all correspondence should be sent.

(©2000 Published by Elsevier Science B. V.

LN 4 LN

way that a string x is in L iff the corresponding subimage addressed by z is
‘black.” To support the applicability of such a strategy, it has been shown in
[7] that various image processing applications can effectively be performed in
the framework of finite automata.

An alternative approach is to use w-finite transducer [4] to process bi-level
images. In a language accepted by a conventional finite automaton, a string
is of finite length, meaning that the corresponding image area has non-zero
size. It seems that finite automata are not appropriate for representing image
objects of zero size, such as ‘points’ and ‘lines.” To overcome such a deficiency
in image representation, in w-automata (i.e., automata on infinite strings)
a string of infinite length is used to capture the essence of a ’'pixel.” The
coordinates of a point in the plane can be treated as a 2 -dimensional vector
of real numbers in Euclidean space. Since any real number can be represented
by an infinite string over an appropriate alphabet, it becomes possible to use
w-automata to represent zero-sized images, as well as images with scattered
‘noises’ of zero size.

Motivated by the work of [4] (also [8]), in this paper we focus on those
bi-level images representable by Biichi automata [3], a model that has been
extensively studied in the literature (see, e.g., [3,13]). Taking advantage of
several known results as well as results derived in this paper concerning Biichi
automata, we are able to show how a variety of image processing operations
(including several that were not studied in [4]) are carried out in a unified
framework based upon w-finite automata. Among the new results is the mea-
surement of sizes of images represented by deterministic Biichi automata. To
this end, we reduce the computation of image sizes to the probabilistic reach-
ability problem in the theory of Markov chains, which, in turn, leads to an
effective procedure for measuring the sizes of images encoded by deterministic
Biichi automata. We also show the relationship between image representation
schemes based on finite automata and Biichi automata.

The remainder of the paper is organized as follows. In Section 2, the
definition of Biichi automata as well as their connection to bi-level images
are introduced. Several basic results concerning Biichi automata are given in
Section 3, using which a number of image processing operations can effectively
be carried out in the framework of w-automata (Section 4).

2 Preliminaries

Given an alphabet (i.e., a finite set of symbols) X, ¥* and ¥* denote the sets
of finite words and w-words, respectively, over ¥. (An w-word over ¥ is an
infinite string written in the form wjws,... where w; € X.) Let R (resp., @
and Z) denote the set of real numbers (resp, rational numbers and integers),
and R* (resp., Q* and Z*) the set of vectors of k real numbers (resp., rational
numbers and integers).

Even though we mainly focus on two-dimensional digital images and num-

2

LN 4 LN

bers in base 2, our results can easily be extended to higher dimensions and
other bases. In our setting, the locations of image pixels are referred to by their
quadtree addresses in the following way. The address of a node in a quadtree
is a string w over the alphabet ¥ = {0,1}* (i.e., {(0,0),(0,1),(1,0), (1,1)}).
Given a square area, the empty string ¢ is chosen as the address of the whole
square. The four quadrants of the square addressed by w have w - (0,0),
w - (0,1), w- (1,0), and w - (1,1) as their addresses, where ‘-’ denotes the
string concatenation operation. The example shown in Figure 1 illustrates
the addresses of several subsquares and the corresponding quadtree.

0,1) 11)

(1,0)(0,1) (1,0)(1,1

(0,0)

(1,0)(0,0) (1,0)(1,0

@ (b)
Fig. 1. (a) The addresses of some subsquares; (b) the corresponding quadtree.

The use of finite automata to encode (and compress) images is not new.
Results along this line of research can be found in [5-8|. The encoding is done
is such a way that the set {0,1}? is treated as the input alphabet of a finite
automaton, and a string z,xy -1 (z; € {0,1}?) is accepted iff the corre-
sponding square represented by 125 - - -z (in terms of the quadtree address)
is ‘black.” Figure 2 demonstrates a picture of diminishing triangles (given in
[8]) together with the corresponding finite automaton. Figure 3 illustrates
the finite automaton ‘approximating’ a line, and clearly, more states are re-
quired in order to get an approximation of higher resolution. The inability
to faithfully encode a line (which has zero size) is exactly the pitfall that a
finite automaton only accepts strings of finite length, and each of such strings
represents a square of non-zero size. To overcome such a shortcoming, in this
paper we use w-finite automata (which accept strings of infinite length) to
encode bi-level images. Related results can be found in [4].

(0,0),
) ©.) 00
(1,1) (1.0) (1,1)

»8 (0,0) »8 (0,0) »8

Fig. 2. The diminishing triangles and the corresponding FA.

3

LN 4 LN

(0,0),(0,2),
(1,0),(1,1)

0,0, (0,0), 0,0, (0,0,

< ‘/\ (1,920 (l,OLO (1,02 () (1,02

Fig. 3. The approximation of a slope line and the corresponding FA.

Without loss of generality, two-dimensional square images are assumed to
be normalized in the sense that the ranges of the x and y coordinates are in
[0,1]. The transformation between the real coordinates and the associated
quadtree addresses of a pixel is rather straightforward. Let ¥ = {0,1}. Given
apoint p = (z =212 1+ 202 2+ 232 3+, .y = 12 L2 24 y3273 4.0)) €
0, 1]2, the corresponding quadtree address is (z1,y1)(z2, y2)(z3,¥y3) . .., where
(z;,y;) € 32, For example, point (%, %) can be mapped into (0,0)(1,1)(0,0)
(1,1)(0,0)(1,1)... . In this setting, images with infinite resolution can be
represented as sets of w-words over ¥?. Throughout the rest of this paper, we
are interested in those images which can be characterized by Bichi automata,
which define the so-called w regular languages. Since a real number might
have two possible encodings (e.g., “0.1000000...” and “0.0111111...” both
represent 1/2 in binary), we restrict ourselves to languages which include either
both the encodings of a real number or none of them:.

A nondeterministic Biichi automaton is a 5—tuple B=(%, S, ¢, so, F'), where
¥ is a finite set of input symbols, S is a finite set of states, sy (€ S) is the
initial state, 6 (C S x ¥ x S) defines the transition relation, and F' (C S) is
the set of final states. A deterministic Bichi automaton is a Biichi automaton
whose transition relation is restricted to a function 6 : S x ¥ — S. Notice
that nondeterministic Biichi automata are strictly more powerful than their
deterministic counterparts. Let B = (3, S, d, so, F) be a Biichi automaton and
0 = WjWwsy ... be an w—word over . A run of B on ¢ = wjwy... is an infinite
sequence of states 7 = rory ... such that ro = so and (r;, w;1,7i41) € 6, for
i > 0. A run is said to be successful (or accepting) if there exist infinitely
many ¢ > 0 such that r; € F. B accepts w—word o if B has a successful run
on 0. The set L(B) = {0 € ¥ | B accepts o} If there is a Biichi automaton
B such that L = L(B), L is said to be Biichi recognizable. A generalized
Biichi automaton is a 5-tuple (3, S, d, so, F'), where ¥, S, § and s, are identical
to that of a Biichi automaton, and F' = {Fj, ..., F;} (for some k) such that
F;, € S,1<i<k. A runis successful (accepting) if for each 1 < i < k, some
state in F; appears infinitely often in the run. It is known that the classes
of languages recognized by generalized Biichi automata and Biichi automata
are identical [13]. Unless stated otherwise, Biichi automata are assumed to be
nondeterministic throughout this paper.

4

LN 4 LN

In our subsequent discussion, Biichi automata are also viewed as directed
graphs, in which nodes and edges represent states and transitions, respectively.
The initial state is annotated by an incoming arrow, whereas the final state
is highlighted by a double circle. Given two nodes u and v in a directed
graph G, we write u < v to denote the existence of a path from u to v in
G. A directed graph (V, E) is strongly connected if for every pair of nodes u
and v, u — v and v < u. A strongly connected component G' of a directed
graph G is a strongly connected subgraph which is maximal (i.e., no other
strongly connected subgraph in G properly contains G'). A subgraph (V' E")
of a directed graph (V, E) is an end component if the subgraph is strongly
connected and if v € V' and (u,v) € E, then v € V' as well. (Notice that a
node without any outgoing edges is considered an end component.)

3 Bi-level images and Biichi automata

In this section, we focus on those bi-level images that can be charactered by
Biichi automata, as well as on how conventional operations in image process-
ing can be carried out in the framework of formal languages. To give the
reader a better feel for how Biichi automata can be used to ‘compress’ images,
consider an example illustrated by Figures 4 and 5, in which a line y = %x
(which contains infinitely many points) is ‘encoded’ in a succinct fashion by a
Biichi automaton B (which consists of only two states). Notice that the point
[ooo1tot110t0101..) 18 in L(B) (i.e., on the line), but [~} is not. In fact, it
is easy to see that for a point to be on the line, the first component x equals
the left shift of the second component y (because z = 2y).

Fig. 4. A line y = 1z,

In view of the above example, a natural question to ask is whether a more
general form of lines can be encoded using Biichi automata. A recent result
([2]) answers the above in the affirmative. More precisely, we have

Theorem 3.1 (/2]) For arbitrary @ € Z* and b € Q, the set of strings T (over
¥ = {0,1}?) satisfying @ - T = b is recognizable by a Biichi automaton.

The interested reader is referred to [2] for the details of the proof.
5

LN 4 LN

©.1)

Fig. 5. A Biichi automaton B representing the line y = %x

For an encoding scheme to be useful, it must be able to support various
image processing operations effectively. To this end, our subsequent discussion
will reveal the applicability of our w-finite automata scheme to those basic
image processing operations summarized in Figure 6.

name notation | definition meaning
x /b
shift sh sh : Image x Q* — Image e >
X 2 b
resize IS rs: Image x 2% — I'mage b E
| P
flip fl fl: Image — I'mage
. W F
rotation ro ro : Image — Image
complement | comp comp : Image — I'mage
b — [
boundary bn bn : Image x) — I'mage
difference diff dif f . Image X I'mage — I'mage [E E.
union un un : I'mage X I'mage — Image e & *
intersection | inter inter : Image x I'mage — Image e E =
— 14
size size size : Image — R

Fig. 6. List of basic operations in image processing. (The rational number in the
definition of boundary specifies the ‘thickness’ of the boundary. The size operation
applies to images representable by deterministic Biichi automata only.)

6

LN 4 LN

In order to deal with image processing operations in the framework of w-
automata, we require a few results concerning the closure properties of the
languages accepted by Biichi automata. The first one is a well known result.
See [3] (also [13]).

Theorem 3.2 The class of languages recognized by Biichi automata is closed
under union, intersection, difference, and complement.

Note, however, that the class of languages recognized by deterministic
Biichi automata is not closed under complement.

Given two infinite strings w and w’ over the alphabet {0,1}? we write
w~+w' to denote the string encoding the sum of the numbers represented by w
and w’. We also write L+ L' (L, L' C ¥¥) to denote {w+w' |w € L,w" € L'}.
In what follows, we show that the ‘sum’ of two Biichi recognizable images
remains Biichi recognizable.

Theorem 3.3 Given two Biichi automata B' = ({0,1},5',8', s, F') and B"
=({0,1},8",8", sy, F"), a generalized Biichi automaton B can be constructed
to recognize L = {w'+w" | w' € L(B'), w" € L(B')}, i.e., L = L(B') + L(B").

Proof: (Sketch) To a certain extent, our construction is a modification
of the so-called ‘product automata’ approach which has many applications in
automata theory (See [10]). A state in the constructed automaton B is a three-
tuple (11,79, 73), where 1 and 7y represent states of B’ and B”, respectively,
and r3(€ {0,1}) is a flag used for recording the ‘carry bit’ of the summation
up to the position associated with state pair (r,7r2). A transition between
two states simulates an addition of two digits. To give the reader a better
feel for how the construction functions, consider Figure 7 in which the sum
of 010111... and 011111... (i.e., the real numbers 0.010111... and 0.011111...
respectively which represented by fragments of automata shown in Figures
7(a)) is performed. The corresponding fragment of the constructed automaton
is depicted in Figure 7(b). Take the transition (¢, w, 1) N (d, z,1) for example
(see Figure 7(c)). What it means is that if the summation up to state pair
(d,z) has a carry, then adding the two bits associated with transitions ¢ — d

and w — x, together with the carry-in bit, will result in a carry-out (to the
left), while the resulting bit is 0.

Now we are in a position to describe the automaton B which accepts L.
B=({0,1}, S,0,s0, F'), where

’ "

(1) So = (5078070)7

(ii) S ={(r1,ra,r3) |1 €S, 10 € S"andrs € {0,1}},

(iii) The transition relation ¢ is defined as follows: For each (ry,rq,73) €
S, §'(ry,d") € S, §"(re,a") € S”, we have (&'(ry,d’),0"(re,a"),r5) €
d((r1,72,73),a), provided that r3 = (a' + a” + 1) mod 2 and a is the
remainder of (a' + a” + r}) divided by 2, and

(iv) F={F'x S8",S" x F"}.

LN 4 LN

The correctness of the construction is reasonably straightforward. O
Even though the above theorem deals with the alphabet {0,1}, it is str-
aightforward to generalize the result to the alphabet {0,1}2. Hence we have

Corollary 3.4 The sum of two Bichi recognizable images remains Buichi rec-
ognizable.

Corollary 3.5 Given a Biichi automaton B = ({0,1}2, 5,9, s0, F) and & €
Q?, we can construct a Biichi automaton B, to accept L = {l+w |l € L(B)},
where w encodes .

Proof: Clearly, w (which encodes Z) can be accepted by a Biichi automaton,
our result then follows immediately from Corollary 3.4. O

As we shall see later, the shift operation is carried out based upon the
result of Corollary 3.5. The reader is referred to [4] for a similar result based
on the theory of affine transformation.

In some image processing applications, the ability to calculate certain geo-
metric properties, such as area (i.e., size), is important. Given a deterministic
Biichi automaton which represents an image, we now propose a method to
calculate the size of the image area. To this end, we use the theory of Markov
chains to capture the essence of image sizes.

A Markov chain M is a 4-tuple (S, P, s1, F'), where S is the set of states, s;
(€ S) is the initial state, P : S x S — [0, 1] defines the transition probability
function satisfying the condition that for a given state, the sum of its outgoing
probabilities equals one, and F' is the set of accepting states. The probability
measure of a sequence of states o = sy, ..., S, denoted by Pr (o), is P(sy, s2) X

- X P(sk_1,8¢). Such a probability measure can be extended to the set
ACCEPT(M)={o | o is an infinite computation from s, which visits some
state in F' infinitely many times} using the theory of Markov chains in a
standard way. We define Pr(M) = the probability measure of ACCEPT(M).
The reader is referred to [11] for more background on probability theory and
Markov chains.

The idea of using Markov chains to capture the sizes of images (encoded
by deterministic Biichi automata) is illustrated in Figure 8, in which an image
(Figure 8(a)) is represented by a deterministic Biichi automaton (Figure 8(b)).
Now a Markov chain, as illustrated in Figure 8(c), is constructed in such a way
that the ‘probability’ along a transition of the Markov chain reflects the ratio
of the image sizes before and after the transition is taken. For example, the

1
transition a - b in Figure 8(c) has probability i, for the associated transition

a ™ bin Figure 8(b) refers to the lower left-hand sub-image, whose size

is one quarter of the original image. The transformation of a deterministic
Biichi automaton to the corresponding Markov chain is straightforward, and
the details are left to the reader. Now the size of an image is defined to be the
accepting probability of the corresponding Markov chain which models the

8

LN 4 LN

image. (Recall that in this paper we only consider images in the unit square
area [0,1] x [0, 1].)

For ease of expression, an ordering is given to the set of states S, i.e.,
S = {s1,59,..., Sm}. The one-step transition probability is organized into a
one—step transition matrix

P11 P12 " Pim
D21 P22 - Pom

H
Il

_pml Pm2 *** Pmm

in which p;; = P(si,s;),1 < 4,7 < m. Notice that for each row 1, ZT:1 pij = 1.
A Markov chain is #rreducible if none of its subsets of states also forms a
Markov chain (i.e., none of its subgraphs is an end component). States that
are members of an irreducible set are called recurrent, and the remaining
states are transient. We let T be the set of transient states and R be the set
of recurrent states. Take Figure 8 for example. In Figure 8(c), states ¢ and d
are recurrent, while the rest are transient.

To compute the accepting probability of a Markov chain, we require the
following lemma.

Lemma 3.6 Given a Markov chain M = (S, sy, P, F') and an end component
S'"(C S) with S"NF # 0, then for each r € S', Pr{o | run o = rrirg---,
encounters some state in F' infinitely often}=1. (That is, the set of ‘accepting’
computations from r has probability 1.)

Proof: (Sketch) Suppose, to the contrary, that there were an r € S’ such
that the probability measure of the set of accepting computations from r is less
than 1. Given a D C S’, let Cp be the set of infinite computations from r such
that along each of such computations, the set of states that appear infinitely
many times is exactly D. Since there are only finitely many Ds, a D' C S’ with
D'NF = and Pr(Cp) (i.e., the probability measure of Cp/) > 0 must exist.
Clearly, nodes in D’ (together with their incident edges) must form a strongly
connected component. We claim that D' is also an end component. If this
is not the case, there must be an edge leaving D’, and hence, the probability
for the computation to stay in D’ forever is zero (a known result which is
relatively easy to show). As a result, D' must be identical to S" (otherwise,
it is impossible for both D’ and S’ to be end components) — contradicting the
assumption that D' N F = (). This completes the proof. O

With the help of Lemma 3.6, in order to find Pr(M) for a given Markov
chain M, it suffices to compute the probability of reaching those end compo-
nents that contain some accepting states. Such a problem is known as the
probabilistic reachability problem in the theory of Markov chains. Given two
states 7 and j, let fi(,?) be the probability of reaching j from ¢ in no more than

9

LN 4 LN

n steps. Let f-(*-) = lim, 00 fi(,?)' Using a known result concerning Markov

chain [11], %5 = (fi(,’;))ieT,jen can be computed as follows:

Fir = (I-Prr) 'Prg,
where P77 stands for the one—step transition probabilities between states in
T and P7x represents the one—step transition probabilities from states in 7
to states in R.
Using Lemma 3.6, we have

Theorem 3.7 Given a Markov chain M = (S, P, sy, F),

()
Z fslaj ’
jeU?:l I’f
where {I,, Ty, ..., Iy} is the set of all irreducible sets (i.e., end components)
such that TN EF # 0, for all1 <i < k.

With the above theorem, in conjunction with the close connection between
deterministic Biichi automata (encoding bi-level images) and Markov chains,
the size of a deterministic Biichi recognizable image can effectively be mea-
sured.

For example, consider the image shown in Figure 8(a) for which the tran-
sition matrix of the corresponding Markov chain is the following:

0
0
00
0001_

In this example, T = {a,b}, Ry = {c¢}, Ry = {d}. Since R, is the only
irreducible set which contains an accepting state, the size of the image equals

féjz, which can be computed in the following way:

M

Il
N
— e
O B o

Jui
FTR2 = (*)
fb,d
=(I — Pry)” ' Prg,
-1
1 0 0 0
101 0 i

1
4
1
2
[0

10

LN 4 LN

]|
2] |

;

Thus, the size of the black area in Figure 8(a) equals féig =

o

1
|

e}

=

N[—= o=

1
5

4 Implementations of image operations

In this section, we show how each of the image processing operations defined
in Figure 6 can be performed in the framework of Biichi automata. Even
though operations such as shift, resize, flip, rotation and union, were initially
studied in [4], they are also listed below for the sake of completeness.)

Theorem 4.1 The set of operations listed in Figure 6 can be implemented
effectively. (Notice that the size operation applies to images representable by
deterministic Biichi automata only.)

Proof:
e shift: image xQ* — image
Given an image (represented by a Biichi automaton B) and a vector ¥ € Q?,
Corollary 3.5 shows the feasibility of shifting the image encoded by B by vector
7.
e resize: image x2% — image, k € Z
Let B = ({0,1}%, 5,6, s9, F) be an automaton accepting the input image. It
suffices to show the cases for k=1 and -1. First consider £ = 1 (i.e., enlarging
the image by a ratio of 2 along both = and y axes). Suppose sy =
{0,1}2 (i.e., s,,7 € {0,1}2, represent the four immediate successors of sg). It
is not hard to observe that By = ({0,1}% 5,0, s0,0), F') encodes an image
which is the enlargement of the (0, 0)-subimage by a ratio of 2 x 2. See Figure
9. Then it is reasonably easy to see that resize(B,2) = Bo). (Notice that
the enlargements of the remaining (0, 1), (1, 0), (1, 1)-subimages are beyond the
boundary of the [0, 1] x [0, 1] area.) Now consider k = —1 (i.e., shrinking the
image by a ratio of 2 along both = and y axes). We define By = ({0,1}* S U

{s4},0', s, F') such that ' = 6 U {s, 9 so}. (That is, B, is obtained from B

by adding a new initial state s; together with transition s 9

So-) By clearly
encodes resize(B, 3).

e flip: image — image

By interchanging the symbol (0,0) with symbol (0,1) and symbol (1,0) with
symbol (1,1) in the w-automaton encoding the input image M, the resulting
automaton encodes flip(M) along the z-axis. Flipping along the y-axis is

done similarly.

11

LN 4 LN

e rotate: image x{90°,180°,270°} — image
It suffices to consider rotating the input image 90° in the clockwise fashion.
Like the flipping case, 90° rotation can be achieved by interchanging the four
input symbols in a circular fashion (0,0) — (0,1) — (1,1) — (1,0) — (0,0).
e complement, difference, union, intersection
According to Theorem 3.2, the class of languages accepted by Biichi automata
is closed under complement, difference, union, intersection, implying the fea-
sibility of the associated image processing operations.
e boundary: image XQQ — image
(Recall that the rational number in the operation specifies the ‘thickness’ of
the boundary.) Let F' be a Biichi automaton accepting the image [0, b] x [0, b],
for a desired thickness b € () Given an image B’, we extend B’ by con-
structing a Biichi automaton B that recognizes ext(B) = L(B') + L(F)
(guaranteed by Corollary 3.5). See Figure 10(a)-(c). By repeatedly rotat-
ing the image and then performing the above shift operation, the boundary
of B' can be computed as dif f(B,un(un(un(ext(B), ext(flip(ro(ro(B))))),
ext(flip(B))), ext(ro(ro(B))))). See Figure 10 for a series of such operations
and how the boundary of an image (with the desired thickness) is extracted.
e size: image — R
The size of a deterministic Biichi recognizable image can easily be computed
as the consequence of Theorem 3.7. O

Two given images F' and F' are said to be similar within error bound e
if area(diff(F,F’)) < e. In this case, we write F' ~. F'. In what follows, we
show the connection between the image compression approaches based upon
the conventional finite automata and the w- finite automata.

Theorem 4.2 Given a finite automaton A, an w-finite automaton B can be
constructed such that Img(A) ~o Img(B), where Imag(A) and Img(B) are
the images represented by A and B, respectively. (That is, the two images are
identical.)

Proof: Let A= (X,5",0", 50, F'). B is constructed as (X, S, 0, sg, F'), where
d = 6 U{(s,a,s)|s € F} (i.e., for each of the final state s, a self loop is
attached for every input symbol a). The correctness of the construction is
rather obvious. O

By unwinding the computation of an w-finite automaton to the desired
depth specified by the error bound, the following result is relatively easy to
obtain. Due to space limitations, the details are omitted.

Theorem 4.3 Given an w-finite automaton A and an error bound €, a fi-
nite automaton B can be constructed such that Img(A) ~c Img(B), where
Imag(A) and Img(B) are the images represented by A and B, respectively.

12

LN 4 LN

References

[1] Luca de Alfaro, Formal Verification of Probabilistic Systems, Ph.D.Dissertation,
Department of Computer Science Stanford University, December 1997.

[2] B. Boigelot, S. Rassart and P. wolper, On the Expressiveness of Real and Integer
Arithmetic Automata, Proc. 25th International Colloguium on Automata,
Languages and Programming, Lecture Notes in Computer Science, Vol. 1443,
Springer-Verlag, pp. 152-163, 1998.

[3] J. R. Biichi, On a Decision Method in Restricted Second Order Arithmetic,
Proc. of the International Congress on Logic, Method, and Philosophy of
Science, pp. 1-12, Stanford University Press, Stanford, CA, USA, 1962.

[4] K. Culik and S. Dube, Rational and Affine Expressions for Image Description,
Discrete Applied Mathematics, Vol. 41, pp. 85-120, 1993.

[5] K. Culik and J. Kari, Image Compression Using Weighted Finite Automata,
Computers and Graphics, Vol. 17, No. 3, pp. 305-313, 1993.

[6] K. Culik and J. Karhumaki, Finite Automata Computing Real Functions, STAM
J. on Computing, Vol. 23, No. 4, pp. 789-814, 1994.

[7] K. Culik and J. Kari, Finite-State Transformations of Images, Computer and
Graphics. Vol. 34, pp. 151-166, 1997.

[8] K. Culik and V. Valenta, Finite Automata Based Compression of Bi-Level and
Simple Color Images, Computer and Graphics, Vol. 21, pp. 61-68, 1997.

[9] H. Freeman, Computer Processing of Line-Drawing Images, ACM Computing
Surveys, Vol. 6, No. 1, pp. 57-97, 1974.

[10] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[11] B. Nelson, Stochastic Modeling: Analysis and Simulation, McGraw-Hill, 1995.
[12] H. Samet, Applications of Spatial Data Structures, Addison-Wesley, 1993.

[13] W. Thomas, Automata on Infinite Objects, in Handbook of Theoretical
Computer Science, Edited by J. van Leeuwen, Elsevier Science Publisher B.V.,
1990.

13

A4 LN AN LS L LN

0 1 0 1
+> 0 1 1 1
R/ KR_/
carry carry
+
0
(b) (©

Fig. 7. The addition of two real numbers.

(@)
(0,2), (0,0),(0,),
(1,0) (1,0),(1,1)

0,0 (0,0) Q
2aC
(O'l
(L0),
@y o)

(0,0),(0,1),
(1,0),(1,1)

©

Fig. 8. (a) triangle, (b) w-FA, (c) Markov chain.

14

LN 4 LN

-

b

(a)imageB

o

(d)ext(flip(ro(ro(B))))

L

(g)union of (b), (c),
(d), (e) and (f)

@

Fig. 9. The procedure of resize.

(b)fixed image F

(c)ext (B)

- pm

(e)ext(flip(B))

N

N

(fyext(ro(ro(B)))

b

(h)diff((9), (2))

()boundary

Fig. 10. Computing the boundary of an image.

15

