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Abstract

For trees, we define the notion of the so-cakgohmetry number to measure the size of the maximum subtree that exhibits
anaxial symmetry in graph drawing. For unrooted unordered trees, we are able to demonstrate a polynomial time algorithm for
computing the symmetry numbér.2001 Elsevier Science B.V. All rights reserved.
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1. Introduction Recently, another aesthetic criterion, namsgfyn-
metry, has received increasing attention in the graph

Graphs are known to be useful for modeling vari- drawing community [2,4,6,7]. In particular, in [2] sev-
ous scientific/engineering problems in the real world. eral types of symmetries (includingflectional and
Because of the popularity of graphgaph drawing rotational symmetries) have been characterized in a
has emerged as a research topic of great importanceunified way using geometric automorphism groups.
in graph theory. In many cases, a ‘pretty drawing’ of- As a symmetric graph can be ‘decomposed’ into a
ten offers more insights into the nature of a graph. number of isomorphic subgraphs, only a portion of
A natural question arises: How to define ‘pretty draw- the graph, together with the symmetric information,
ings?’ Aesthetic guidelines suggested in the literature is sufficient to define the original graph. In this way,
(see, e.g., [1,8]) for drawing pretty graphs include min- symmetric graphs can often be represented in a more
imizing the number of edge crossings, minimizing the succinct fashion than their asymmetric counterparts.
variance of edge lengths, minimizing the number of Moreover, to draw a graph nicely, a good starting point
bends, as well as drawing edges orthogonally or using might be to draw its symmetric subgraph as large as
straight-line segments. Such criteria are by no means possible first, and then add the remaining nodes and
comprehensive in spite of the fact that they are widely edges to the drawing. Unfortunately, like many of the
recognized as the most frequently used guidelines in graph drawing problems, deciding whether a graph has
graph drawing in general. From the viewpoint of com- an axial (reflectional) or rotational symmetry is com-
putational complexity, many of the graph drawing re- putationally intractable [7].

lated problems are intractable. In this paper, we define a new quantitative measure
of symmetry (calledymmetry number) for trees. More
* Corresponding author. precisely, thesymmetry number of a tree is the size
E-mail address: yen@cc.ee.ntu.edu.tw (H.-C. Yen). (number of nodes) of the maximum subtree which
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exhibits axial symmetry. (A tree is said to havessial
symmetry if we can draw (in the fashion of upward

as a line segment connecting(x) and D(v). We
require that the drawings of two distinct line segments

drawing) the tree together with an axis such that each do not intersect at more than one point. Figs. 1(a)
node (and edge) has a unique corresponding imageand (b) display the symmetric drawings of two of the

on the opposite side of axis.) Thgmmetry number
problem is that of, given a tree&s and a numbek,
deciding whether the symmetry numbe®fs greater
than or equal ta. For unrooted unordered trees, we
are able to come up with a polynomial time algorithm
to solve the symmetry number problem.

2. Graphs, graph drawing and symmetry

An unordered unrooted tree is a connected, undi-

rected, and acyclic graph without a specific root.

A subtree of an unordered unrooted tre& is sim-
ply a connected subgraph 6f. The main concern in

subtrees of an unordered unrooted tree. The top level
of a drawing can be either a node or an edge as Fig. 1
indicates. In our subsequent discussiorgted trees
refer to trees whose top level (either a node or an edge)
is fixed, and the top level is called thmeot. A rooted
tree is said to have asxial symmetry if we can draw

the tree (in the fashion of upward drawing) together
with a straight line (called thgymmetry axis) such that
each node (and edge) is either on the symmetry axis
or has a unique corresponding image on the opposite
side of the axis. (That is, the drawing is symmetric
with respect to the axis.) Unless stated otherwise, we
simply use ‘'symmetry’ to denote ‘axial symmetry’ and
trees are assumed to be unordered throughout the rest

this research is to decide, given an unordered unrootedof this paper. (The reader is referred to [2,7] for more

tree G, G’'s maximum subtree that exhibits axial
symmetric in the fashion of straight-line upward draw-
ing [1].

A drawing of a graphG on the plane is a mapping
D from the nodes of; to R?, whereR is the set of
real numbers. That is, each nodés placed at point
D(v) on the plane, and each ed@e v) is displayed

about symmetry in graph drawing and other types of
symmetries such astational symmetry.)

Given a rooted tred” and a vertexw, we write T,
to denote the rooted tree (with root whose vertices
are all descendants of andC, to represent the set of
v's children (C, = @ if v is a leaf node)T, is called
a subtree of T. An r-subtree of T is a rooted tree

Symmetry axis

(@)

Symmetry axis

(b)

Fig. 1. Subtrees of an unrooted tree and their symmetric drawings.
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rooted tree

J

an r-subtree

subtree Ty

Sﬁ-b‘ﬁee T

Fig. 2. Subtree and-subtree of a rooted tree.

generated fronT by cutting off some of'’s subtrees.
(See Fig. 2 for an example of ansubtree by cutting
off subtreesr: and 7».) Notice that7 and any of its
nonemptyr-subtrees share the same root.

The symmetry number of an unrooted trees is
defined to be the maximum number rddes among

G’s subtrees that have an axial symmetry. (Recall that

75

Fig. 3. An instance of the weighted matching problem.

is that of given a graplG = (V, E) with a weight
function w: E — N, finding a matching such that
> ecy w(e) is maximum. Take Fig. 3 for example. It
is reasonably easy to see that edges (A, F), (B, E) and
(C, D) constitute a maximum matching whose total
weight is 42. It is known that the weighted matching
problem for graphs is solvable in(@) time, where
n is the number of nodes (see [5]). Fermnode m-
edge bipartite graphs with integral edge weights, the
problem can be solved in@Qn * m x log(nW)) time,
whereW is the maximum weight (see [3]).

We are now in a position to describe our algorithm

a subtree of an unrooted tree is simply a connected for finding the symmetry number for unrooted trees. It

subgraph.) Thesymmetry number problem is the
problem of, given an unordered unrooted téeand an
integerk, determining whether the symmetry number
of G is greater than or equal fo

Even though in this paper we mainly focus on trees,
we feel that the notion of ‘drawing the maximum
symmetric subgraph’ of a general graph is likely to
play an interesting role in graph drawing. To draw
a graph nicely, a good starting point might be to

draw its symmetric subgraph as large as possible first,

should be noted that our algorithm is not responsible
for doing the actual drawing of the maximum sym-
metric subtree, although displaying such a symmetric
drawing is interesting and deserves further investiga-
tion.

Theorem 3.1. The symmetry number problem for
unrooted unordered trees is solvable in polynomial
time.

and then add the remaining nodes and edges to theproof. First consider ani-node rooted treel’ =

drawing. Following a result in [7], for general graphs
the symmetry number problem is NP-complete.

3. Deciding the symmetry number for trees

In this section, we design a polynomial time algo-
rithm to calculate the symmetry number for unrooted
unordered trees. Our algorithm utilizes the solution of
the weighted matching problem which is defined as
follows.

A matching M on a graphG = (V, E) is a subset
of E (i.e., M C E) such that any two edges M have
no common vertex. Thaveighted matching problem

(V, E), and without loss of generality, we lat =
{vy, v2,...,v,}. We define two functionsA(v;) and
B(v;,v;), wherev;, v; € V, as follows.

e FunctionA(v;) returns the number of nodes in the
maximum symmetrie-subtree off;, subjectto the
constraint thab; being on the symmetry axis. (For
the rooted tree displayed in Fig. 4(a)(3) = 5. See
Fig. 4(b).)

e FunctionB(v;, v;) returns the number of nodes in
the maximunr-subtree off,, that is isomorphic to
anr-subtree ofij. In words, B(v;, v;) is the size
of the maximum common-subtree off,, and Ty, .
(Notice that B(v;, v;) = B(vi,v;).) As Fig. 4(c)
indicates, for the tree in Fig. 4(@B(3,4) = 4.
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(e) Max. symmetric r-subtree

Fig. 4. The use of maximum weighted matching to find the maximum symmesibtree.

(Intuitively, B(v;,v;) is to capture the following

idea: shouldv; be mapped ta; in a symmetric

drawing, B(v;, v;) is the maximum amount that

each of v; and v; (with their r-subtrees) can

contribute to the symmetric drawing.)

A(v;) and B(v;,vj) are computed recursively by
proceduresd(v;) andB(v;, v;) as follows.

Procedure A(v;)
if v; is a leaf nodghen A(v;) =1
else
construct a weighted complete gragh, = (V/, E')
with weight functionw, such that

V' ={v;}UCy, (Cy; =the set ofy;’s children
w(vi, vp) = A(vp), Yy € Cy,
w(vp, vg) =2Bp, vg), Yvp, v € Cy;

return 1+ (weight of maximum matching o, )

Procedure B(v;, vj)
if v; orv; is a leaf nodehen B(v;, v;) =1
ese
construct a weighted complete
bipartite graphGy, v; = (V; U V;, E)
with weight functionw, such that
Vi=Cy, ande = Cvj
w(vp, vg) = Bvp, vg), Yvp € Vi, vg €V
return 1+ (weight of maximum matching (If;vi,u_,)



K.-W. Chin, H.-C. Yen/ Information Processing Letters 79 (2001) 73-79

@

1

Fig. 5. Symmetric drawing vs. maximum matching.

To give the reader a better feeling for the above
argument, consider the trée(with root 1) depicted in
Fig. 4(a). Clearly, the size of the maximum symmetric
r-subtree rooted at node 2 isA4(2) is 4. B(2,3) =4
since the size of the maximum isomorphisubtrees
rooted at nodes 2 and 3 is 4. Similarly, it is easy
to see thatA(3) =5, A4 =3, B(2,4) =3, and
B(3,4) = 4. Fig. 4(d) displays the complete gragh
during the computation ofi(1) with respect to the
tree in Fig. 4(a). The maximum weighted matching
with respect taG1 contains the edgg4, 2) and(3, 4)
with total weight 12. Thus, the number of nodes in the
maximum symmetrie-subtree off" is 13. A drawing
of the corresponding maximum symmetriesubtree
of T is shown in Fig. 4(e). (The display is merely
for the illustrating purpose; our algorithm does not
produce such a drawing.) Notice that node 2 is on
the symmetry axis, for edg€, 2) is included in the
maximum matching 06 .

We now prove the correctness of procedurds;)
andB(v;, v;). First consider procedui(v;, v;). The
proof of the correctness of procedugv;, v;) (i.e.,
showingB(v;, v;) = B(v;, v;)) is done by induction
on the height in the shorter off;, and Ty;. (Recall
that theheight of a rooted tree is the length of a longest
path from the root to a leaf.) The cake-= 0 is trivial.
Assuming that the assertion holds forkk < I, we
considetk =14 1. To proveB(v;, v;) = B(v;, vj), we
proceed by showing botB(v;, v;) < B(v;,v;) and
B(vi,vj) < B(vi,v;). Let f be a mapping (between

r-subtrees off;,, and ij) which witnesses3(v;, v;).
Notice that f(v;) = v; and supposef(v;,) = vj,
(Vr, 1< r < m, for somem), where{v;,,...,v;,} €
Cy, and {vj,,...,vj,} € Cy;. See Fig. 5(a). Then
according to the induction hypothesis,

Vr, 1<r<m,
B, ,v;,) = B, vj,).

Hence,

m m
Bi.vj) =14 B(v,.v;)=1+> B.v;).
r=1 r=1
which is less than or equal to one plus the maximum
matching of Gy, ., (becausd J;_1{(v;,,v;)} forms
a matching onG,, ;). Hence,B(v;, v;) < B(vi, vj).

Conversely, suppos@’r’il{(vi;, v;)} (for somem’)
is a matching on graply,, ;. Since for every-, v/
(respectivelyp;/) is a child of v; (respectivelyu;),
by the induction hypothesiB(vi/, vj/) = B(vi, vjr).
A common r-subtree betweerT,, and 7,, can be
found by mapping); to v;, and ther-subtrees off},,,
and T,,j; witnessingB(v;:, vj) to each other, X r g
m'’. By doing so, we immediately have thav;, v;) <
B(vi,vj). In view of the above, we conclude that
B(vi,vj) = B(v;, vj), which completes the proof of
the induction step for procedul&v;, v;).

The proof of the correctness of procedufév;)
is carried out by induction on the heightof T,,,
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in conjunction with the correctness of procedue
proven above. Again the case= 0 is trivial. Assum-
ing that the assertion (i.e., procedufév;) correctly
returnsA(v;)) holds for 0< k < I, we consider the
case wherk =1 + 1. In what follows, we show both
Avi) < A(vi) andA(vi) < A(vy).

SupposeM is a matching onG,,. Consider two
cases:
(1) v; isinvolvedin M. That s,

M = {(i,v)}U (U{(vﬂ,v,o})

for somel andm’. By the induction hypothesis, a
symmetricr-subtree ofT,, with .A(v;) nodes can
be found. By placing the isomorphicsubtrees
(of size B(vir, vjr), guaranteed by the correctness
of procedureB) of Tv, and Tv / @aA<r<m’)on
the two sides of the symmetry axis, a symmetric
drawing of 14+ A(v) + Z;-":l 2B(vj, vj;) nodes
can be found. See Fig. 5(b).

v; isnotinvolvedin M. That s,

/

M= J{wy. v},

r=1

2

for somen’. By placing the isomorphie-subtrees
(of sizeB(vir, vj;), guaranteed by the correctness
of procedureB) of TU, and Tv / A<r<m’)on
the two sides of the symmetry axis, a symmetric
drawing of 1+ Z,zl 2B(vj, vjr) nodes can be
found.

Either (1) or (2) above indicates that arsubtree

of T(v;) with at least.A(v;) nodes can be drawn

symmetrically. Henced(v;) < A(v;).

Conversely, consider an-subtreeD of T,, that
exhibits a symmetric drawing. Depending on whether
anodeinC,, lies onthe symmetry axis or not, we have
the following two cases:

(i) A v ison the axis. In this case, the size df,’s
symmetricr-subtree inD is bounded byA (v;)
(= A(vy), by the induction hypothesis). (Recall
thatA (v;) defines the maximum size of symmetric
r-subtrees off,,.) This, in conjunction with the
correctness of procedul suggests that the size
of D is bounded by

1+ A@w) + ) 2B, vj,),
r=1

K.-W. Chin, H.-C. Yen/ Information Processing Letters 79 (2001) 73-79

where{v;,, ..., v,,vj,...,vj,} is the set ofy;’s
children participated irD, and the corresponding
image ofv;, in the symmetric drawing is;, .

None of v;’s children is on the axis. By the cor-
rectness of procedui® the size of the symmetric
drawing D is bounded by

(ii)

1+ ZZB(UU’ vj,.),
r=1

where{v;,, ..., v,,vj,...,vj,} is the set ofy;’s

children participated iD, and the corresponding

image ofy;, in the symmetric drawing is;, .
By the definition of procedured, we immediately
have that the size ab is bounded by the maximum
matching onG,,. Hence A (v;) < A(v;).

For rooted treel’ of n nodes, letime(A(v;)) and
time(B(v;, vj)) be the times needed for procedures
A(v;) andB(v;, v;), respectively. Lek; = |C,,;| and

nj = |Cyl, i.e., the numbers of children af; and

vj, respectively. It is easy to observe that for each
pair of nodesv; and vj, B(v;,v;) is computed at
most once, since there is exactly one path from the
root to any node inT. In procedureB(v;, v;), the
time needed to construct the bipartite gra@h, .,
(which has Qn; xn ;) edges) is bounded by(@; n ),
giventhatvv, € Cy,, Yy, € Cy;, B(vp, vy) are already
computed. Recall that for-node m-edge bipartite
graphs with integral edge weights, the maximum
matching problem can be solved in(@n * m *
log(nW)) time, whereW is the maximum weight [3].
The complexity of computing3(v;, v;) is therefore
bounded by

O(ninj +/ni +njninjlog((n; +nj) * n))
= O(n,-nj(l—i— \/n,-Tnj) |Ogn)
< O(ninjﬁlogn).

Hence,

Z tin’E(B(U[, vj))

vi,v;eV

= ZZO(n,-nj\/ﬁlogn)

i=1j=1

(%) (oo

= O(n *n x /nlogn) = O(n*°logn).
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Once all theB(v;, vj), 1< i, j < n, are calculated,

computing.4(v;) requires first building a weighted
graph G,; of n; + 1 nodes and then solving the

weighted maximum matching problem fér,,. The
former is doable in Qn; + 1)) time, and the latter
can be done in Qn; + 1)3) [5]. Hence,

> (time(A)))

v;eV

=Y (O((ni + D* + O((ni + 1)?))

Sownel(52))
_o@) )

time.

The above derivation is under the assumption that
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