
Theoretical Computer Science 363 (2006) 149–161
www.elsevier.com/locate/tcs

Deterministic catalytic systems are not universal

Oscar H. Ibarraa,∗,1, Hsu-Chun Yenb,2

aDepartment of Computer Science, University of California, Santa Barbara, CA 93106, USA
bDepartment of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC

Abstract

We look at a 1-membrane catalytic P system with evolution rules of the form Ca → Cv or a → v, where C is a catalyst, a is a
noncatalyst symbol, and v is a (possibly null) string representing a multiset of noncatalyst symbols. (Note that we are only interested
in the multiplicities of the symbols.) A catalytic system (CS) can be regarded as a language acceptor in the following sense. Given
an input alphabet � consisting of noncatalyst symbols, the system starts with an initial configuration wz, where w is a fixed string
of catalysts and noncatalysts not containing any symbol in z, and z = a

n1
1 · · · ank

k
for some nonnegative integers n1, . . . , nk , with

{a1, . . . , ak} ⊆ �. At each step, a maximal multiset of rules is nondeterministically selected and applied in parallel to the current
configuration to derive the next configuration (note that the next configuration is not unique, in general). The string z is accepted if
the system eventually halts.

It is known that a 1-membrane CS is universal in the sense that any unary recursively enumerable language can be accepted by a
1-membrane CS (even by purely CSs, i.e., when all rules are of the form Ca → Cv). A CS is said to be deterministic if at each step
there is a unique maximally parallel multiset of rules applicable. It has been an open problem whether deterministic systems of this
kind are universal. We answer this question negatively. We show that the membership problem for deterministic CSs is decidable. In
fact, we show that the Parikh map of the language (⊆ a∗

1 · · · a∗
k
) accepted by any deterministic CS is a simple semilinear set which

can be effectively constructed. Since nondeterministic 1-membrane CS acceptors (with two catalysts) are universal, our result gives
the first example of a variant of P systems for which the nondeterministic version is universal, but the deterministic version is not.

We also show that for a deterministic 1-membrane CS using only rules of type Ca → Cv, the set of reachable configurations from
a given initial configuration is an effective semilinear set. The application of rules of type a → v, however, is sufficient to render
the reachability set nonsemilinear. Our results generalize to multimembrane deterministic CSs. We also consider deterministic CSs
which allow rules to be prioritized and investigate three classes of such systems, depending on how priority in the application of
the rules is interpreted. For these three prioritized systems, we obtain contrasting results: two are universal and one only accepts
semilinear sets.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Membrane computing; Deterministic catalytic system; Deterministic versus nondeterministic; Symport/antiport system; Counter
machine; Semilinear set; Priority

∗ Corresponding author.
E-mail addresses: ibarra@cs.ucsb.edu (O.H. Ibarra), yen@cc.ee.ntu.edu.tw (H.-C. Yen).

1 Research supported in part by NSF Grants CCR-0208595, CCF-0430945, IIS-0451097 and CCF-0524136.
2 Research supported in part by NSC Grant 93-2213-E-002-003, Taiwan, ROC.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.07.029

http://www.elsevier.com/locate/tcs
mailto:ibarra@cs.ucsb.edu
mailto:yen@cc.ee.ntu.edu.tw


150 O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161

1. Introduction

There has been a great deal of research activities in the area of membrane computing (a branch of natural computing)
initiated by Păun [10] in a seminal paper over 6 years ago (see also [11]). Membrane computing identifies an unconven-
tional computing model, namely a P system, from natural phenomena of cell evolutions and chemical reactions. Due
to the built-in nature of maximal parallelism inherent in the model, P systems have a great potential for implementing
massively parallel systems in an efficient way that would allow us to solve currently intractable problems once future
biotechnology (or silicon technology) gives way to a practical biorealization (or chip realization).

A P system is a computing model, which abstracts from the way the living cells process chemical compounds in
their compartmental structure. Thus, regions defined by a membrane structure contain objects that evolve according to
given rules. The objects can be described by symbols or by strings of symbols, in such a way that multisets of objects
are placed in regions of the membrane structure. The membranes themselves are organized as a tree structure (this
can be represented by a Venn diagram) where one membrane may contain other membranes. By using the rules in a
nondeterministic, maximally parallel manner, transitions between the system configurations can be obtained.A sequence
of transitions shows how the system is evolving. Various ways of controlling the transfer of objects from a region to
another and applying the rules, as well as possibilities to dissolve, divide, or create membranes have been studied.
P systems were introduced with the goal to abstract a new computing model from the structure and the functioning of
the living cell (as a branch of the general effort of natural computing—to explore new models, ideas, paradigms from
the way nature computes). Membrane computing has been quite successful: many models have been introduced, most
of them Turing-complete and/or able to solve computationally intractable problems (NP-complete, PSPACE-complete)
in a feasible time (polynomial), by trading space for time. (See the P system website at http://psystems.disco.unimib.it
for a large collection of papers in the area, and in particular the monograph [12].)

In the standard semantics of P systems [11,12,14], each evolution step of a system P is a result of applying all the
rules in P in a maximally parallel manner. More precisely, starting from the initial configuration, w, the system goes
through a sequence of configurations, where each configuration is derived from the directly preceding configuration in
one step by the application of a multiset of rules, which are chosen nondeterministically. For example, a catalytic rule
Ca → Cv in membrane m is applicable if there is a catalyst C and an object (symbol) a in the preceding configuration
in membrane m. The result of applying this rule is the evolution of v from a. If there is another occurrence of C and
another occurrence of a, then the same rule or another rule with Ca on the left-hand side can be applied. Thus, in general,
the number of times a particular rule is applied at anyone step can be unbounded. We require that the application of
the rules is maximal: all objects, from all membranes, which can be the subject of local evolution rules have to evolve
simultaneously. Configuration z is reachable (from the starting configuration) if it appears in some execution sequence;
z is halting if no rule is applicable on z.

Two popular models of P systems are the catalytic system (CS) [11] and the symport/antiport system [9]. An interest-
ing subclass of the latter was studied in [6]—each system is deterministic in the sense that the computation path of the
system is unique, i.e., at each step of the computation, the maximal multiset of rules that is applicable is unique. 3 It was
shown in [6] that any recursively enumerable unary language L⊆o∗ can be accepted by a deterministic 1-membrane
symport/antiport system. Thus, for symport/antiport systems, the deterministic and nondeterministic versions are equiv-
alent and they are universal. It also follows from the construction in [15] that for another model of P systems, called
communicating P systems (CPs), the deterministic and nondeterministic versions are equivalent as both can accept any
unary recursively enumerable language. However, the deterministic-versus-nondeterministic question was left open in
[6] for the class of CSs (these systems have rules of the form Ca→Cv or a→v), where the proofs of universality involve
a high degree of parallelism [15,5]. For a discussion of this open question and its importance see [3,13]. We answer
this question negatively in this paper. Since nondeterministic CSs are universal, our result also gives the first example
of a variant of P systems for which the nondeterministic version is universal, but the deterministic version is not.

For a CS serving as a language acceptor, the system starts with an initial configuration wz, where w is a fixed
string of catalysts and noncatalysts not containing any symbol in z, and z = a

n1
1 · · · ank

k for some nonnegative integers
n1, . . . , nk , with {a1, . . . , ak} a distinguished subset of noncatalyst symbols (the input alphabet).At each step, a maximal

3 Deterministic P systems were originally defined in [11], referring to those having in each moment at most one possible transition. There is a
slightly different notion of ‘determinism’ reported in the literature [1] which does not require the maximally applicable multiset to be unique as long
as the next configuration is unique. In this paper, we only consider the original notion of determinism given in [11].



O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161 151

multiset of rules are nondeterministically selected and applied in parallel to the current configuration to derive the next
configuration (note that the next configuration is not unique, in general). The string z is accepted if the system eventually
halts. Unlike nondeterministic 1-membrane CS acceptors (with two catalysts) which are universal, we are able to show
using a graph-theoretic approach that the Parikh map of the language (⊆ a∗

1 · · · a∗
k ) accepted by any deterministic CS

is a simple semilinear set which can also be effectively constructed. For deterministic 1-membrane CSs using only
rules of type Ca → Cv, we show the set of reachable configurations from a given initial configuration to be effectively
semilinear. In contrast, the reachability set is no longer semilinear in general if rules of type a → v are also used. Our
result generalizes to multimembrane CSs.

We also consider deterministic CSs which allow rules to be prioritized. Three such systems, namely, statically
prioritized, strongly prioritized, and weakly prioritized CSs, are investigated. For statically prioritized systems, rules
are divided into different priority groups, and if a rule in a higher priority group is applicable, then no rules from a
lower priority group can be used. For both strongly prioritized and weakly prioritized systems, the underlying priority
relation is a strict partial order (i.e., irreflexive, asymmetric, and transitive). Under the semantics of strong priority, if
a rule with higher priority is used, then no rule of a lower priority can be used even if the two rules do not compete
for objects. This notion of strong priority coincides with the semantics of the priority relation used in [11]. For weakly
prioritized systems, a rule is applicable if it cannot be replaced by a higher priority one. For these three prioritized
systems, we obtain contrasting results by showing that deterministic strongly and weakly prioritized CSs are universal,
whereas statically prioritized systems only accept semilinear sets.

2. Nonuniversality of deterministic CSs

Consider a CS in which all rules are of the form: Ca → Cv or a → v, where C is a catalyst, a is a noncatalyst symbol,
and v is a (possibly null) string of noncatalyst symbols. Unless stated otherwise, we assume that CSs operate under the
maximally parallel mode, i.e., at each step the maximal multiset of rules is applied. A CS is said to be deterministic if
at each step, there is a unique maximally parallel multiset of rules applicable. A CS is referred to as a purely CS if only
rules of the form Ca → Cv are used.

A configuration of a CS is a string of catalytic and noncatalytic symbols. (Note that we are only interested in the

multiplicities of the symbols.) Given two configurations c and c′, we write c
S→ c′ to denote that applying the multiset

S at c yields c′, and S is a maximally applicable multiset of rules at c. We also write c
S1···Sk→ c′ to denote the reachability

of c′ from c through applying sequence S1 · · · Sk of multisets of rules (or c
∗→ c′ if the actual sequence is irrelevant).

Given a configuration c , we write #c to denote the Parikh map of c, and #c(x) the number of occurrences of symbol x in
c, where x is either a catalytic or a noncatalytic symbol. During the course of a computation, the number of occurrences
of each catalytic symbol remains the same.

Next we recall the definition of a semilinear set [7]. Let N be the set of nonnegative integers and k be a positive
integer. A subset R of Nk is a linear set if there exist vectors v0, v1, . . . , vt in Nk such that R = {v | v = v0 + m1v1 +
· · · + mtvt , mi ∈ N}. The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred to as the periods)
are called the generators of the linear set R. The set R ⊆ Nk is semilinear if it is a finite union of linear sets. The empty
set is a trivial semilinear set. Every finite subset of Nk is semilinear—it is a finite union of linear sets whose generators
are constant vectors. It is also clear that the semilinear sets are closed under (finite) union. It is also known that they
are closed under complementation and intersection.

2.1. Deterministic purely CSs

We first consider deterministic purely CSs, i.e., all rules are of the form Ca → Cv. Due to the nature of determinism
as well as the number of catalysts being bounded, an infinite computation of a deterministic purely CS is ‘periodic’ in
the sense stated in the following theorem.

Theorem 2.1. Given a deterministic purely CS P and an initial configuration c0, the following three statements are
equivalent:
(1) P does not halt,
(2) there exist c and c′ with #c′ �#c such that c0

∗→ c
∗→ c′,



152 O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161

(3) the computation of P is of the form c0
T1···Tr (S1···Sk)

�

→ , where T1,…, Tr , S1,…, Sk are multisets of rules. (That is,
following a finite prefix the computation is ‘periodic’ with S1 · · · Sk repeating forever.)

Proof. To proceed, we require the following claims.

Claim 1. Suppose c
H→ d , c′ H ′→ d ′, and H ⊆ H ′, where c, c′, d, d ′ are configurations and H and H ′ are two multisets

of rules. If rule Ca → Cv is in H ′ − H , then #c(a) < #c′(a).

Proof. The claim follows immediately from P being deterministic and operating under the maximally parallel
mode. �

Claim 2. Given a computation c1
H1→ c2

H2→ · · · ci−1
Hi−1→ ci and a configuration c′

1 with #c′
1
�#c1 , then there exist

multisets H ′
1, . . . , H

′
i−1 and configurations c′

2, . . . , c
′
i such that

(i) c′
1

H ′
1→ c′

2

H ′
2→ · · · c′

i−1

H ′
i−1→ c′

i ,
(ii) Hj ⊆ H ′

j , ∀j, 1�j � i − 1, and
(iii) #cj

�#c′
j
, ∀j, 1�j � i.

Proof. The proof is done by induction on i.
Basis: The i = 2 case trivially holds.
Induction hypothesis: Assume that the assertion holds for i = k.

Induction step: Consider c1
H1→ c2 · · · ck

Hk→ ck+1. Based on the induction hypothesis, there exist c′
2, . . . , c

′
k, H

′
1, . . . ,

H ′
k−1 such that c′

1

H ′
1→ c′

2

H ′
2→ · · · H ′

k−1→ c′
k satisfies (ii) and (iii) above. Since #c′

k
�#ck

, then all the rules in Hk are clearly
applicable at c′

k . Since P is deterministic and operates under the maximally parallel mode, Hk must also be applied in

its entirety in c′
k . Hence, c′

k

H ′
k→ c′

k+1 must have Hk ⊆ H ′
k . Following Claim 1, the existence of a rule Ca → Cv in

H ′
k − Hk implies #c′

k
(a) > #ck

(a), meaning that the application of this additional rule only consumes an extra copy of
symbol a in c′

k but not in ck . Hence, #ck+1 �#c′
k+1

. The assertion holds for i = k + 1. �

Claim 3. If c1
H1···Hk→ c2, #c2 �#c1 , and c2

H1···Hk→ c3, then it must be the case that c1
H1···Hk→ c2

H1···Hk→ c3 · · · H1···Hk→
ci · · ·, i.e., H1 · · · Hk repeats forever.

Proof. The proof is done by contradiction. Let i and d be the smallest indices such that c1
H1···Hk→ c2

H1···Hk→ c3 · · · H1···Hk→
ci

H1···H ′
d ···H ′

k→ ci+1 and H ′
d �= Hd , where i�3 and 1�d �k. Consider the three consecutive segments (ci−2

H1···Hd−1→
ei−2

Hd ···Hk→ ci−1), (ci−1
H1···Hd−1→ ei−1

Hd ···Hk→ ci), and (ci
H1···Hd−1→ ei

H ′
d ···H ′

k→ ci+1). From Claim 2, we have
Hd ⊆ H ′

d . (Note that c′
1 in Claim 2 is in this case c2.) This, together with the assumption that Hd �= H ′

d , im-
plies the existence of a rule Ca → Cv in H ′

d − Hd . Hence, #ei
(a) > #ei−1(a)—Claim 1. Now observe that the

same sequence of rule sets (i.e., Hd · · · HkH1 · · · Hd−1) is applied at both ei−2 and ei−1, it follows that #ei
(a) >

#ei−1(a) > #ei−2(a). The set Hd ∪ {Ca → Cv} is therefore applicable at ei−1 (since Hd was applied at ei−2)—a
contradiction. �

We are now in a position to prove our theorem. We first show (1) 	⇒ (2). Assume that P does not terminate. Let
c0 → c1 → · · · → cl → · · · (l ∈ N) be an infinite computation. According to Dickson’s lemma (see [4]), there exist
i < j such that #ci

�#cj
; hence, (2) holds.

Now we establish (2) 	⇒ (3). Let H1 · · · Hk be the sequence of rule sets such that ci
H1···Hk→ cj and #ci

�#cj
.

According to Claim 2, there are rule sets Ht
1, H

t
2 · · · Ht

k and configurations cjt , t �1, such that ci
H1···Hk→ cj

H 1
1 ···H 1

k→
cj1

H 2
1 ···H 2

k→ cj2 · · · Ht
1 ···Ht

k→ cjt · · ·. Furthermore, for all 1� l�k and 1� t , Ht
l ⊆ Ht+1

l and #cjt
�#cjt+1

. Since the number



O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161 153

of catalytic symbols (which bounds the degree of maximal parallelism) is a constant, for all 1� l�k there must be a
tl such that H

tl
l = H

tl+1
l = H

tl+2
l = · · ·. Choose t ′ to be the maximum among all tl , such that Ht ′

l = Ht ′+1
l for all

1� l�k. Now we have cjt ′
Ht ′

1 ···Ht ′
k→ cjt ′+1

· · · Ht ′
1 ···Ht ′

k→ cjt ′+2
. By letting Sl = Ht ′

l , 1� l�k, Claim 3 guarantees that
S1 · · · Sk repeat forever at cjt ′ . Therefore, (3) holds.

(3) 	⇒ (1) is trivial. This completes the proof of the theorem. �

From (3) of Theorem 2.1, we immediately have:

Corollary 2.2. Given a deterministic purely CS P and an initial configuration c0, the reachability set {#c | c0
∗→ c}

is semilinear.

Corollary 2.3. Given a deterministic purely CS P and an initial configuration c0, the problem of determining whether
P halts is decidable.

Proof. According to Theorem 2.1, the computation of P does not halt iff there exist c and c′ with #c′ �#c such that

c0
∗→ c

∗→ c′. By simulating the computation of P, either it halts, or eventually c and c′ are found (due to Dickson’s
lemma) which implies nontermination. Hence, the problem is decidable. �

Now consider the case when CSs serve as language acceptors. Consider a CS P with initial configuration wo
n1
1 · · · onk

k ,
where noncatalytic symbols o1, . . . , ok are distinguished input symbols not in w, and w is a fixed string (independent
of n1, . . . , nk) not containing any of the symbols o1, . . . , ok . The word o

n1
1 · · · onk

k is accepted if P halts. It is known
[15] that even for k = 1, any unary RE language can be accepted by the a purely CS operating in a nondeterministic
manner. Hence, nondeterministic purely CSs are universal. Surprisingly, however, deterministic purely CSs are not
universal as the following result indicates.

Theorem 2.4. Deterministic purely CSs are not universal.

Proof. Based on Corollary 2.3, there exists a decision procedure A such that given a deterministic CS P and an
input wo

n1
1 · · · onk

k , A can tell whether P halts on wo
n1
1 · · · onk

k or not. It is obvious that a decision procedure AP can
be constructed such that AP accepts o

n1
1 · · · onk

k iff A answers ‘yes’ on input (P, wo
n1
1 · · · onk

k ). Hence, the language
{o

n1
1 · · · onk

k | AP accepts o
n1
1 · · · onk

k } = {on1
1 · · · onk

k | P halts on wo
n1
1 · · · onk

k } is recursive. �

2.2. Deterministic CSs

Now we consider the full class of deterministic CSs, where the rules are of the form Ca → Cv or a → v. Intuitively,
what makes the reachability set of a deterministic purely CS ‘simpler’ is that any infinite computation of such a system
is periodic in the sense described in (3) of Theorem 2.1. Such a periodic behavior is partly due to the fact that the
maximum degree of parallelism during the course of the computation of a deterministic purely CS is bounded by
the number of catalytic symbols in the initial configuration. Note, however, that the degree of parallelism becomes
unbounded if the CS uses rules of type a → v. In fact, the semilinearity result no longer holds for the full class of
deterministic CSs as the following example indicates. It is interesting to note that the degree of parallelism in this
example is unbounded.

Example 2.5. Consider a CS with only one rule a1 → a1a1 and initial configuration a1. Then the Parikh map of the
set of all reachable configurations is {2n|n�1}, which is clearly not semilinear.

Although the reachability set of a deterministic (not necessarily purely) CS is not semilinear in general, being
deterministic does make the computational power of the model weaker than its nondeterministic counterpart. In what
follows, we propose a graph-theoretic approach for reasoning about the behaviors of deterministic CSs.

Consider a deterministic CS P, in which {C1, . . . , Ck} is the set of catalytic symbols, and � = {a1, . . . , am} is the set
of noncatalytic symbols. Let c0 be the initial configuration which contains (possibly multiple copies of) Ci , ∀1� i�k.



154 O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161

Two rules r1 and r2 are said to be in conflict if one of the following holds:
• r1 : Ciat → Ciw1, r2 : Cjat → Cjw2, and either w1 �= w2 or i �= j ,
• r1 : Ciat → Ciw1, r2 : at → w2,
• r1 : at → w1, r2 : at → w2, and w1 �= w2.
In each of the above, rules r1 and r2 compete for the same noncatalyst at . (In this case, at is said to be involved in two
conflicting rules.) At any point in time, a deterministic CS can never enable a rule that is in conflict with another rule.
Under the unprioritized mode, conflicting rules can be removed without affecting the computation of the CS, regardless
of the initial configuration. Note that rules C1a1 → C1w1 and C1a2 → C1w2 are not conflicting rules, and in fact, the
absence of a1 (resp., a2) makes C1a2 → C1w2 (resp., C1a1 → C1w1) applicable.

In what follows, we employ a graph-theoretic approach to reasoning about the behaviors of deterministic CSs. We
construct a directed labelled graph GP,c0 = (V , E), called the execution graph, such that V = � and E = {(ai, aj )r |
there exists a rule r of the form Ctai → Ctw or ai → w, such that aj is in w, and ai is not involved in any conflicting

rules}. (The subscript r is the label of edge (ai, aj ). We also write ai
r→ aj .) A careful examination of GP,c0 reveals

an important property: for each node ai , the outgoing edges of ai (if they exist) are of the same label.
To set the stage for the nonuniversality result of deterministic CSs, we require the following lemma.

Lemma 2.6. Consider a deterministic CS P with {C1, . . . , Ck} and {a1, . . . , am} as the sets of catalysts and noncata-
lysts, respectively. Let c0 be the initial configuration. Then:
(1) P does not halt on c0 iff there is a reachable loop from some node ai0 with #c0(ai0) > 0 in GP,c0 .
(2) Let c′

0 be a configuration such that (∀1� i�k, #c′
0
(Ci) = #c0(Ci)) and (∀1�j �m, (#c0(aj ) > 0 	⇒ #c′

0
(aj )

= 1) ∧ (#c0(aj ) = 0 	⇒ #c′
0
(aj ) = 0)). Then P halts on c0 iff P halts on c′

0.
(3) The problem of determining whether P halts on c0 is decidable in polynomial time.

Proof. We first show (1). The only-if part is obvious since without a reachable loop in GP,c0 , the computation is clearly

finite. For the if part, it suffices to show that for any path ai0

ri1→ ai1 · · · rih−1→ aih (#c0(ai0) > 0) in GP,c0 , the first h − 1

steps of the computation c0
H1→ c1 · · · Hh−1→ ch of P must have ∀0�j �h, #cj

(aij ) > 0 and ∀1�j < h, rij ∈ Hj . The
key to the above claim is that for each node aij (0�j < h) along the above path, aij ’s outgoing edges are uniquely
labelled with rij , meaning that rule rij is applicable when symbol aij is present in configuration cj of P. The if part
can then be easily shown by induction.

(2) clearly follows from (1). The following token game also provides an intuitive idea for both (1) and (2). With
the help of GP,c0 , a way to visualize the computation of P is to place #c0(ai) tokens in node ai of GP,c0 initially,
and during the course of P’s computation, if a token is in node ai and ‘Ctai → Ctaj1 · · · ajf

’ (or ‘ai → aj1 · · · ajf
’)

is a rule, then in the next step a token is deposited to each of nodes aj1 , . . . , ajf
while a token is removed from

ai . All the applicable movements of tokens are carried out in parallel. Since the outgoing edges of each node are
uniquely labelled, a loop can never become token-free once it contains a token. Clearly, the presence of a single copy
of token in node ai0 is sufficient to ‘activate’ the loop (mentioned in statement (1) of the lemma), making the CS
nonterminating.

For (3), deciding nontermination is tantamount to checking whether in GP,c0 , a reachable loop from some node ai0

exists, which is clearly doable in polynomial time. This completes the proof. �

Deterministic CSs also have the following monotonic property regarding nonterminating computations.

Lemma 2.7. Given a deterministic CS P, if P does not halt from configuration c, then P does not halt from any
configuration c′ such that #c′ �#c.

Proof. The proof is similar to the proof of Claim 2 in Theorem 2.1. �

Hence, we have the following result.

Theorem 2.8. For a deterministic CS P and a fixed string w, the set L = {on1
1 · · · onk

k | P halts on wo
n1
1 · · · onk

k } is
effective semilinear. In fact, L is either empty, or of the form o

n1
1 · · · onk

k , where ni = ∗ or 0, 1� i�k.



O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161 155

Proof. Let �, � ∈ {o1, . . . , ok}∗. It follows from Lemma 2.6 that P halts on w� and w� iff P halts on w��. As a
consequence, if P does not halt on w, then L = ∅; otherwise, L = {oi | P halts on woi}∗, which is clearly effectively
constructible. The result is proven. �

We immediately have the following, which strengthens Theorem 2.4.

Corollary 2.9. Deterministic CSs are not universal.

In contrast, it is known that nondeterministic 1-membrane CSs are universal [5] (see also [8]) even operating under
the 3-Max-Parallel mode. The universality result holds for either purely CSs with three catalysts, or CSs with two
catalysts. In fact, to simulate a Turing machine M the 1-membrane CS needs no more than k noncatalysts for some
fixed k, independent of M, as [8] shows.

It is also interesting to compare and contrast the model of deterministic CSs with that of the so-called deterministic
CPS with only one membrane (called the skin membrane) [15]. Consider the following example.

Example 2.10. For deterministic CPS with only one membrane, the rules are of the form:
(1) a → ax ,
(2) ab → axby ,
(3) ab → axbyccome,
where a, b, c are objects, x, y (which indicate the directions of movements of a and b) can only be here (i.e., the object
remains in the membrane) or out (i.e., the object is expelled into the environment). The third rule brings in an object
c from the environment into the skin membrane. It is known that deterministic 1-membrane CPS are universal [15].
Note also that the universality result holds even when a bound (more precisely, 3) is imposed on the size of maximally
parallel rules applicable at each step.

In spite of the similarity between rules of type (2) (also (3)) in CPS and rules of type Ca → Cw in CS, deterministic
CS are less powerful than deterministic CPS, as our preceding discussion reveals. The disparity between CS and CPS
rules lies in the fact that for an applicable rule Ca → Cw in CS, the catalytic symbol C is always present throughout
the computation, whereas for a rule of type either ab → axby or ab → axbyccome in CPS, symbols a and b (with one
seemingly playing the role of a catalytic symbol, to a certain degree) come in and out of the skin membrane. To get a
better idea for the difference between deterministic CS and CPS, suppose we have the following rules in a CPS:

ab → ahereboutdcome;
yd → youtdout;
dx → doutxout;
...

Now consider the following computation, where a, b, d, x, y are symbols, and w1, w2, w3, w4 are strings of symbols:
(1) abw → adw1 → adw2 → · · · → aydw3 → aw4 → · · · → abxw.

From abxw, the computation continues in the following way:
(2) abxw → adxw1 → aw2 → · · ·.
In the second step of (2), dx will be thrown away; but in (1) d remains until later on when y is brought in. Hence, the
monotonic property stated in Claim 2 in the proof of Theorem 2.1 no longer holds, as #aw2 in (2) �#adw2 in (1) at
the end of the second step of the computation, although (2) starts with abxw which is greater than abw (the starting
configuration of (1)). This is because the x (playing the role of a catalyst symbol, in some sense) that is going to couple
with d is brought in later in the computation in (1). However, if x were a catalyst symbol in a CS, then x would have
been in existence throughout the computation. Hence, the sequence of rules applied in (1) cannot be repeated in spite
of having an extra symbol x in the end.

Consider the following extension of CS:
• Multimembrane CSs, where each rule in a membrane looks like: Ca → Cv or a → v, where the symbols in v

have designated target membranes specifying where they are to be moved. The catalyst C remains in the membrane
containing the rule. In this case w represents the configurations w1, . . . , wm in the m membranes.

It turns out that our results obtained thus far can be extended to multimembrane CSs.



156 O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161

Theorem 2.11. Deterministic multimembrane CSs are not universal.

Theorem 2.1 and Corollary 2.2 (characterizing semilinear reachability sets) also hold for deterministic purely mul-
timembrane CSs (i.e., without a → v type of rules). Using a reduction by encoding regions in objects, the proofs of
the above are similar to that for the 1-membrane case.

3. Prioritized deterministic CSs

Now let us look at CSs which allow rules to be prioritized according to the following two types of priority relations.
Let R be the set of rules of a CS. For a priority relation � over R, we write �(r1) < �(r2) (or simply r1 < r2, if � is
understood) to denote that (r1, r2) ∈ �, meaning that r2 takes precedence over r1. � is said to be of
• Type A: If � is irreflexive, asymmetric, transitive, and the complement of the symmetric closure of �, i.e., �̄ = {(r, r ′) |

¬((r, r ′) ∈ �) ∧ ¬((r ′, r) ∈ �)}, is an equivalence relation. Clearly, �̄ induces equivalence classes �1, �2, . . . ,�k ,
for some k, such that ∀1� i < j �k, ∀r ∈ �i , r

′ ∈ �j , �(r) < �(r ′). The subscript i of �i can be thought of as
the priority level of rules in �i . For r ∈ �i , we also write �̄(r) = i. (The interested reader is referred to [2] for an
example of applying this notion of a priority relation to reasoning about concurrent systems.)

• Type B: If � is an irreflexive, asymmetric, and transitive relation. That is, � is a strict partial order.

Example 3.1. Consider a strict partial order � over R = {r1, . . . , r6}: (r5 > r3 > r2 > r1); (r6 > r4 > r2 > r1);
(r5 > r4); and (r6 > r3). Then �̄ = {(r5, r6), (r6, r5), (r3, r4), (r4, r3)} ∪ {(ri, ri) | 1� i�6}, which is an equivalence
relation. Hence, � is of type A. Furthermore, �̄ partitions R into the following equivalence classes �1 = {r1}, �2 =
{r2}, �3 = {r3, r4}, �4 = {r5, r6}, such that for 1� i < j �4, rules in �i have a lower priority than those in �j .

3.1. Systems under type A priority relation

Let P be a deterministic CS, c and c′ be two configurations, and H be a multiset of rules. With respect to a priority
relation � of type A (with �̄ inducing equivalence classes �1, �2, . . . ,�k):
(1) (Static priority): c′ is said to follow c through the application of H under the statically prioritized mode, written as

c
H→t c′, if H is the maximal multiset satisfying the following:

(i) ∀ ri, rj ∈ H , �̄(ri) = �̄(rj ) (i.e., ri and rj are in the same �l , for some l),
(ii) ¬ ∃ r, r /∈ H , r is applicable in c and �̄(r) > �̄(r ′) for some rule r ′ ∈ H .
In words, H is the maximal multiset of rules such that if a rule in a higher priority group is applicable, then no rules
from a lower priority group can be used.

We first show the following result which characterizes the computations of nonhalting CSs.

Lemma 3.2. Given a deterministic purely CS P operating under the statically prioritized mode, and an initial config-

uration c0, P does not halt iff there exist c and c′ with #c′ �#c such that c0
∗→t c

∗→t c′.

Proof. Let � be the underlying priority relation of type A. The only-if part follows from Dickson’s lemma. It suffices
to show the if part.

Consider a computation c0
∗→t c

H1→t c1
H2→t c2 · · · Hk→t c′ with #c′ �#c. Suppose H ′

1 is the multiset applied at c′. Let
�̄(H ′

1) and �̄(H1) denote the priority levels of rules in H ′
1 and H1, respectively. (Note that all the rules in H ′

1 (as well
as H1) have the same priority level.) Clearly �̄(H1)� �̄(H ′

1). Consider the following two cases:

(1) �̄(H1) = �̄(H ′
1): In this case, we have c′ H ′

1→t c′
1, for some c′

1, with H1 ⊆ H ′
1 and #c′

1
�#c1 (from Claim 2 in the

proof of Theorem 2.1).
(2) �̄(H1) < �̄(H ′

1): Let c′ = cw, for some string w of noncatalysts. It is fairly easy to observe that if Ca → Cv

is a rule in H ′
1, then a cannot be in c; otherwise, Ca → Cv were applicable in c, violating the assumption

that �̄(H1) < �̄(H ′
1). Hence, the presence of rule Ca → Cv in H ′

1 implies a in w, suggesting that the resulting

configuration is of the form cw1, for some string w1 of noncatalysts (i.e., c′ H ′
1→t cw1). There are two cases regarding



O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161 157

the computation emanating from cw1:

(a) c′ H ′
1→t cw1

G2→t cw2 · · · Gi→t cwi
Gi+1→ t · · ·, and ∀i�2, �̄(Gi) > �̄(H1). That is, only multisets of priority higher

than �̄(H1) are applied along the computation from cw1. Then P is nonterminating. The theorem is proven.

(b) c′ H ′
1→t cw1

G2→t cw2 · · · Gm→t cwm

H ′′
1→t c′′

1, for some m such that ∀2� i�m, �̄(Gi) > �̄(H1) and �̄(H ′′
1) = �̄(H1).

That is, eventually a multiset of priority equal to �̄(H1) becomes applicable along the computation. Again based
on Claim 2 in the proof of Theorem 2.1, we have H1 ⊆ H ′′

1 and #c′′
1
�#c1 .

In view of the above, either P is nonhalting (in the case of 2(a)), or c0
∗→t c

H1→t c1
H2→t c2 · · · Hk→t c′ ∗→t c̄1 and #c̄1 �#c1

(in either Case 1 or Case 2(b)). By inductively applying the above argument to the segments in which H2 · · · Hk are

applied, we immediately have c′ ∗→s c′′, for some c′′ such that #c′′ �#c′ . Repeatedly applying the above reasoning to

c′ ∗→t c′′ and onwards, P is nonterminating. �

At this point, we do not know whether the reachability set of a deterministic statically prioritized purely CS is
semilinear or not. Lemma 3.2, in conjunction with Dickson’s lemma, is sufficient to yield the decidability of the halting
problem for such prioritized CSs. Hence, we have the following, whose proof parallels that of Theorem 2.4.

Theorem 3.3. Deterministic purely CSs under the statically prioritized mode are not universal.

We now consider the full class of deterministic statically prioritized CSs with both catalytic and noncatalytic rules.
It turns out that the graph-theoretic approach employed in Section 2.2 remains valid for this new class
of CSs.

Let � be the underlying priority relation of type A. Given a deterministic statically prioritized CS P and an initial
configuration c0, we construct a directed labelled graph Gt

P,c0
= (V , E), where V is the set of noncatalytic symbols,

and E = {(ai, aj )r | there exists a rule r of the form Ctai → Ctw or ai → w, such that aj is in w, and no rule r ′
of equal or higher priority level (i.e., �̄(r ′)� �̄(r)) is in conflict with r}. It is important to explain why E constructed
above does not leave out edges corresponding to applicable rules. Suppose r is a rule in conflict with another rule
of equal priority level in �. P being deterministic prohibits r from being enabled; hence, r can be dropped without
affecting the computation of P. Similarly, if r is in conflict with a rule r ′ of higher priority level, then r can never be
applied since r and r ′ become enabled simultaneously, and only the one of the higher priority level prevails. Again,
r plays no role in P’s computation in this case. It is therefore clear that like the execution graph in the unprioritized
case, Gt

P,c0
also enjoys the property that for each node in V the outgoing edges of the node are uniquely labelled. What

makes this property critical is that if a noncatalyst ai is in the current configuration of P, the only way to prevent the
unique rule associated with ai (in the execution graph) from being applied indefinitely is for P to apply rules of higher
priority level forever, implying P to be nonhalting. Therefore, it becomes fairly easy to see that P is nonhalting iff Gt

P,c0
has a reachable loop from some node whose corresponding symbol appears in c0. In view of this key observation,
Lemmas 2.6, 2.7, and Theorem 2.8 also hold for deterministic statically prioritized CSs. Hence, we have:

Theorem 3.4. For a deterministic statically prioritized CS P and a fixed string w, the set L = {on1
1 · · · onk

k |
P halts on wo

n1
1 · · · onk

k } is effective semilinear. In fact, L is either empty, or of the form o
n1
1 · · · onk

k , where ni = ∗ or
0, 1� i�k.

3.2. Systems under type B priority relation

Again, let P be a deterministic CS, c and c′ be two configurations, and H be a multiset of rules. With respect to a
priority relation � of type B, the following two notions of priority are considered.
(1) (Strong priority): c′ is said to follow c through the application of H under the strongly prioritized mode, written as

c
H→s c′, if H is the maximal multiset satisfying the following:

(a) ∀r1 ∈ H , ¬∃r2 /∈ H such that �(r1) < �(r2) and (H − {r1}) ∪ {r2} is still applicable,
(b) ∀r1, r2 ∈ H , ¬(�(r1) < �(r2)).
In words, if a rule with higher priority is used, then no rule of a lower priority can be used, even if the two rules do
not compete for objects. Note that this priority notion coincides with the one used in [11].



158 O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161

(2) (Weak priority): c′ is said to follow c through the application of H under the weakly prioritized mode, written as

c
H→w c′, if H is the maximal multiset satisfying the following:

∀r1 ∈ H , ¬∃r2 /∈ H such that �(r1) < �(r2) and (H − {r1}) ∪ {r2} is still applicable.
In words, none of the rules in H can be replaced by a higher priority one.
Note that P is deterministic if at any time the applied multiset is always unique. We use the following simple
example to illustrate the difference between the above two notions of priority.

Example 3.5. Consider a deterministic CS P with the following rules:

Rule r1 : Cb1 → Cb2; Rule r2 : Ca1 → Ca2; Rule r3 : Da1 → Da3;
Rule r4 : Ec1 → Ec2; Rule r5 : Fc1 → Fc3; Rule r6 : Gd1 → Dd2.

(Priority relation): �(r1) > �(r2) > �(r3); �(r4) > �(r5).
Then

CDEFGa1b1c1d1
{r1,r4,r6}→ s CDEFGa1b2c2d2

CDEFGa1b1c1d1
{r1,r3,r4,r6}→ w CDEFGa3b2c2d2.

Note that under the weak priority semantics, the application of r1 makes r3 applicable, since r2 (competing for the
catalyst C with r1) is ‘disabled’ by r1. Under the strong priority semantics, however, the application of r1 disables r3
(since �(r3) < �(r1)) even though these two rules do not compete for objects.

In contrast to Theorem 2.4 (also Theorem 2.8) that deterministic unprioritized CSs are not universal, allowing strongly
or weakly prioritized rules boosts the computational power as the following result shows.

Theorem 3.6. Deterministic purely CSs under the weakly prioritized (or strongly prioritized) mode are universal.

Proof. The proof involves the construction of a purely CS that simulates a given deterministic k-counter machine
which starts with one counter having value n and the other counters empty. We only consider the case k = 2, the
generalization for any k being straightforward.

Let M be a deterministic two-counter machine. Each of M’s transitions is of one of the following forms:
• (Increment) s: c + +, goto s′ (on state s, increment counter c by one and move to state s′).
• (Test-for-zero/decrement) s: If c = 0, goto s1 else c − −, goto s2 (on state s, if counter c is zero, go to state s1;

otherwise, decrement counter c by one and move to state s2.
We show how to construct a deterministic purely CS P under either the strongly or the weakly prioritized mode such
that starting with one counter empty and the other counter having value n, M halts iff P halts on the initial configuration
w(o1)

n, where w is a string of catalytic and noncatalytic symbols not including the symbol o1. Let the two counters of
M be c1 and c2.

At any point in time, the configuration of P is of the form C1C2D1D2s(o1)
n1(o2)

n2 t , where C1, D1 (resp., C2, D2)
are catalysts associated with the simulation of M’s transitions operating on counter c1 (resp., c2), s represents the current
state of M, n1 and n2 keep track of the values of counters c1 and c2, respectively, and t is a noncatalyst whose purpose
will be explained later.

We are now in a position to see how the two types of M’s transitions are simulated. Without loss of gener-
ality, we assume the operations to be simulated operate on counter c1; the cases on counter c2 are similar. Let
C1C2D1D2s(o1)

n1(o2)
n2 t2 be the current configuration.

• Transition s: c1 + +, goto s′ (assuming that from s′, the next transition operates on counter c1).
P utilizes the following rules:

r1 : C1s → C1qso1; r2 : C1qs → C1q
′
s; r3 : C1q

′
s → C1s

′t2;
h′

1 : C2t2 → C2t
′
2; h′

2 : C2t
′
2 → C2t

′′
2; h′

3 : C2t
′′
2 → C2.

Note that symmetrically we also have rules h1 : C1t1 → C1t
′
1; h2 : C1t

′
1 → C1t

′′
1; h3 : C1t

′′
1 → C1. If the next

transition to be executed on state s′ operates on counter c2, then rule r3 becomes C1q
′
s → C1s

′t1.



O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161 159

Using the above rules, incrementing counter c1 is simulated through the following sequence:
C1C2D1D2s(o1)

n1(o2)
n2 t2

{r1,h
′
1}→ w C1C2D1D2qs(o1)

n1+1(o2)
n2 t ′2

{r2,h
′
2}→ w C1C2D1D2q

′
s(o1)

n1+1(o2)
n2 t ′′2,

{r3,h
′
3}→ w C1C2D1D2s

′(o1)
n1+1(o2)

n2 t2.
It will be seen later that the length of the above sequence (i.e., three steps) is exactly the same as that of simulating
a test-for-zero/decrement.

• Transition s: If c1 = 0, goto s1 else c1 − −, goto s2.

P has the following rules, in addition to the h′
1, h

′
2, and h′

3 defined above. Assume that from s1 and s2, M’s transitions
operate on counter c1; the other cases are similar.

f1 : C1s → C1qs2b; f2 : C1o1 → C1; f3 : C1qs2 → C1qs1; f4 : D1qs1 → D1s1 t2;

f5 : D1qs2 → D1s2 t2; f6 : D1b → D1d; f7 : C1d → C1.

The priority relation has

f1 > f2 > f3; {h1, h2, h3} > f2; f7 > f2 > f3; f6 > {f4, f5}; {r1, r2, r3} > f2.

Care has to be taken regarding f2, which decrements counter c1. The {r1, r2, r3} > f2 is to prevent f2 from being
falsely applied when simulating an ‘increment’. Note that f3 and f5 are conflicting rules. The simulation involves
the following sequence:

C1C2D1D2s(o1)
n1(o2)

n2 t2
{f1,h

′
1}→ w C1C2D1D2qs2b(o1)

n1(o2)
n2 t ′2,

{f2,f6,h
′
2}→ w C1C2D1D2qs2d(o1)

n1−1(o2)
n2 t ′′2,

{f5,f7,h
′
3}→ w C1C2D1D2s2(o1)

n1−1(o2)
n2 t2 provided n1 > 0,

or
{f3,f6,h

′
2}→ w C1C2D1D2qs1d(o2)

n2 t ′′2,
{f4,f7,h

′
3}→ w C1C2D1D2s1(o2)

n2 t2 provided n1 = 0.
In the second step of the above sequence, the application of f6 disables f5, allowing f3 to be applied if counter c1 is
zero. In the third step, the use of f7 disables both f2 and f3, while allowing either f4 or f5 to be applied.

Now we explain the role played by noncatalyst t2 and rules h′
1, h

′
2, and h′

3. Like f2, there is a rule C2o2 → C2
in existence in P for simulating the operation of decrementing counter c2. To prevent such a rule from being falsely
applied in the course of simulating a transition operating on counter c1 (such as the two cases detailed above), rules
h′

1, h
′
2, and h′

3, which take precedence over C2o2 → C2, are designed to prevent C2o2 → C2 from being applied.
Likewise, there is a noncatalyst t1, along with rules h1, h2, h3, associated with the simulation of a transition operating
on counter c2.

Clearly, M halts iff P terminates. It is also obvious that P is deterministic. It is easy to observe that the above argument
also works for deterministic purely CSs under the strongly prioritized mode. �

A careful examination of the proof of Theorem 3.6 reveals that the constructed relation � is not of type A, assuming
the computation involved in the simulation to be under the static priority semantics. If otherwise, f2 (or f3) and h′

2,
which are applied simultaneously, must be in the same equivalence class, so are f ′

2 (or f ′
3) and h2, where f ′

2 and f ′
3

are the analogies of f2 and f3, respectively, used in simulating an operation on counter 2. But in our priority relation
�, f3 < f2 < {h1, h2, h3} and f ′

3 < f ′
2 < {h′

1, h
′
2, h

′
3}, we immediately have a contradiction since �̄(f2) = �̄(h′

2) (or
�̄(f3) = �̄(h′

2)), �̄(f ′
2) = �̄(h2) (or �̄(f ′

3) = �̄(h2)), �̄(h2) > �̄(f2), and �̄(h′
2) > �̄(f ′

2).
Finally, we use the following example to explain in an intuitive fashion why strongly and weakly prioritized deter-

ministic CSs are more powerful than statically prioritized ones.



160 O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161

Example 3.7. Consider the following CS P:

Rule r1 : Cb1 → Cb2; Rule r2 : Ca1 → Ca2; Rule r3 : Da1 → Da3; Rule r4 : Ec1 → Ec2;
Rule r5 : Fc1 → Fc3; Rule r6 : Ed1 → Ed2; Rule r7 : Fe1 → Fe2.

(Priority relation): �(r1) > �(r2) > �(r3); �(r6) > �(r4); �(r7) > �(r5).
First consider r1, r2, and r3 under the weakly prioritized mode. With the presence of a noncatalyst a1, the applicability

of r2 or r3 depends on whether r1 is applied. Hence, neither r2 nor r3 can be removed at node a1 in constructing the
execution graph of P. (Note that under the strongly prioritized mode, the application of r1 blocks rules r2 and r3.) For
rules r4.r6 under the strongly prioritized mode, as long as exactly one of d1 and e1 exists in the configuration, either r4
or r5 becomes applicable depending on whether r7 or r6 is used. Again, both labels r4 and r5 have to be kept at node
c1 in the execution graph of P.

Unlike the unique labelling property under the semantics of static priority, the presence of mixed labels in both
the strongly and weakly prioritized cases, in some sense, introduces ‘nondeterminism’ (in an implicit fashion) to the
computation of the CS, which seems to be one of the reasons behind which weakly and strongly prioritized CSs are
more powerful than statically prioritized ones. Another reason is that under either strong or weak priority, it is possible
to apply {r5, r6} (and {r4, r7}) in parallel. If this is also the case for static priority, however, it becomes impossible to
assign priority levels (as in the case of a type A relation) to r4, r5, r6, r7 while respecting the semantics of static priority.
In this regard, both strong and weak priorities allow the priority of a rule to be dynamic, whereas in the static priority
case, the priority of a rule is static (set in the beginning). We feel that such a disparity between dynamic and static
priority assignments also plays a key role in the difference in power between the three prioritized systems.

4. Conclusion

It has been an open problem whether deterministic CSs are universal or not. We answered this question negatively
in this paper. Our result gives the first example of a variant of P systems for which the nondeterministic version is
universal, but the deterministic version is not. For deterministic purely CSs, we were able to establish semilinearity
of their reachability sets. Finding a bound for the size of such a semilinear representation remains an interesting open
question. We also considered deterministic CSs which allow rules to be prioritized under three notions of priority
relations, namely, static priority, strong priority, and weak priority. We obtained contrasting results by showing that
deterministic strongly and weakly prioritized CSs are universal, whereas statically prioritized systems only accept
semilinear sets.

In view of the somewhat surprising result that deterministic CSs are weaker than their nondeterministic counterparts,
it is of importance and interest to investigate in the future the computational powers of deterministic versions of other
variants of P systems.

Acknowledgments

The authors thank the anonymous referees for their comments and suggestions, which improved the presentation of
this paper.

References

[1] A. Alhazov, On the power of deterministic EC P systems, Second Brainstorming Week on Membrane Computing 2004, Sevilla, Spain, February
2–7, 2004.

[2] F. Bause, On the analysis of Petri nets with static priorities, Acta Inform. 33 (7) (1996) 669–685.
[3] C. Calude, G. Păun, Computing with Cells and Atoms: After Five Years (new text added to Russian edition of the book with the same title first

published by Taylor and Francis Publishers, London, 2001), Pushchino Publishing House, submitted for publication.
[4] L. Dickson, Finiteness of the odd perfect and primitive abundant numbers with distinct factors, Amer. J. Math. 35 (4) (1913) 413–422.
[5] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems without priorities: two catalysts are sufficient, Theoret. Comput.

Sci. 330 (2) (2005) 251–266.
[6] R. Freund, G. Păun, On deterministic P systems. See P systems web page at: 〈http://psystems.disco.unimib.it〉.
[7] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.

http://psystems.disco.unimib.it


O.H. Ibarra, H.-C. Yen / Theoretical Computer Science 363 (2006) 149 –161 161

[8] O. Ibarra, H. Yen, Z. Dang, The power of maximal parallelism in P systems, in: Proc. Eighth Internat. Conf. on Developments in Language
Theory (DLT’04), Lecture Notes in Computer Science, Vol. 3340, Springer, Berlin, 2004, pp. 212–224.

[9] A. Păun, G. Păun, The power of communication: P systems with symport/antiport, New Generation Comput. 20 (3) (2002) 295–306.
[10] G. Păun, Computing with membranes, Research Report No. 208, Turku University of Computer Science, 1998.
[11] G. Păun, Computing with membranes, J. Comput. System Sci. 61 (1) (2000) 108–143.
[12] G. Păun, Membrane Computing: an Introduction, Springer, Berlin, 2002.
[13] G. Păun, Further twenty six open problems in membrane computing, Written for the Third Brainstorming Week on Membrane Computing,

Sevilla, Spain. See P systems web page at: 〈http://psystems.disco.unimib.it〉, 2005.
[14] G. Păun, G. Rozenberg, A guide to membrane computing, Theoret. Comput. Sci. 287 (1) (2002) 73–100.
[15] P. Sosik, P systems versus register machines: two universality proofs, in: Pre-Proc. of Workshop on Membrane Computing (WMC-CdeA2002),

Curtea de Argeş, Romania, 2002, pp. 371–382.

http://psystems.disco.unimib.it

