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In conventional channel coding, all the information symbols of a message are regarded
equally significant, and hence codes are devised to provide equal protection for each
information symbol against channel errors. However, in some circumstances, some information
symbols in a message are more significant than the other symbols. As a result, it is desirable to
devise codes with muiti-ievel error-correcting capabiiities. in this paper, we investigate biock
codes with multi-level error-correcting capabilities, which are also known as unequal error
protection (UEP) codes. Several classes of UEP codes are constructed. One class of codes
satisfies the Hamming bound on the number of parity-check symbols for systematic linear UEP
codes and hence is optimal.

1. Introduction

In conventional channel coding, all the information symbols of a message are
regarded equally significant, and hence redundant (or parity-check) symbols are
added to provide equal protection for each information symbol against channel
errors. However, in some occasions, some information symbols in a message are
more significant than the other information symbols in the same message.
Therefore, it is desirable to devise coding schemes which provide higher
protection for the more significant information symbols. Suppose a message from
an information source consists of m parts, each has a different level of significance
and requires a different level of protection against channel errors. An obvious
way to accomplish this is to use a separate code for each message part and then
time share the codes. The redundant symbols of each code are designed to
provide an appropriate level of error-correcting capability for the corresponding
message part. This encoding scheme requires a separate encoder and decoder pair
for each code. A more efficient way is to devise a single code for all the message
parts. The redundant symbols are designed to provide m levels of error protection
for m parts of a message. It has been proved that a single code with m levels of
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error-correcting capability usually requires less redundant symbols than that
required by time-sharing m separate codes with the same m levels of error-
correcting capability [1-8]. Moreover, a single code requires only one encoder
and one decoder. This may be desirable in many situations. A code with
multi-levels of error-correcting capabilities is known as an unequal error
protection (UEP) code. UEP codes were first studied by Masnick and Wolf [9],
than by other coding theorists [5, 6, 10-20].

In this paper, we investigate codes with multi-level error-correcting capabilities.
Two classes of multi-level UEP codes are presented. Each code in the first class is
obtained by combining codes of shorter lengths. We find that a subclass of such
codes meets the Hamming bound on the parity-check symbols for systematic
linear UEP codes. Each of the second class of codes is achieved by taking direct
sums of product codes. The minimum distances of such codes are greater than
those for the simple product codes of comparable dimensions, besides, some
message bits have extra error protection.

2. Cloud structure and the separation vector of a block code

Let {0, 1}" denote the vector space of all n-tuples over the binary field GF(2).
Let V and W be two subsets of {0, 1}". Let v and w denote two vectors from V
and W respectively. We define the separation between V and W, denoted
d(V, W), as follows:

d(V, W) 2 min{d(v, w):v eV and w e W}, 1)

where d(v, w) denotes the Hamming distance between v and w. Clearly the
separation d(V, W) between V and W is simply a measure of distance between
the two sets, V and W. Let r be a vector in {0, 1}". Then it is easy to show that
the separations between {r}, V and W satisfy the following triangle inequality,

d[{r}, V]+d[{r}, W]=d(V, W). 2)
Consider a message space M which is the product of m component message
spaces, M;, M,, ..., M,. For 1<i<m, let x; denote a message from the

message space M;. Then the product space M consists of the following set of
m-tuples,
M={(x;, %, ..., %,):X; €M for 1<i<mj. 3)

Let C be a binary block code of length n for the product message space M. Let
v(x;, X5, . . . , X,,) denote the codeword for the message (x1, x5, ..., x,) from
M. Let a be a specific message in M,. Consider the following subset of codewords
in C,

OQa)={v(xy, ..., Xii1, @ Xis1, ..., X)X, eMforl<sj=m and j#i}. (4)

This set Q.(a) is called an i-cloud of C corresponding to the message a in M,.
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There are |M;| i-clouds in C corresponding to |M;| messages in M;. These i-clouds
form a partition of C. For two distinct i-clouds, Q,(a) and Q,(b), the separation
between them is d(Q;(a), Q;(b)). Then we define the minimum separation among
the i-clouds of C as follows:

s; 2 min{dQy(a), Q:(b)):a, b € M, and a # b}. ®)
It follows from (1), (4) and (5) that

s;=min{d[v(ey, ..., X, ..., X)), V(¥ ..., X, X))
x, x; e M forl<l<smandx;#x])}.

Geometrically, we may view that the code C consists of |M;| i-clouds, where any
two i-clouds are separated by a distance at least s;. This distance structure of
i-clouds determines the level of error protection for component message x;. The
m-tuple,

sé(sl, 8§25+« s Sm)s

is called the separation vector of the block code C for the product space
M=M XM,X---xXM,. This separation vector determines the levels of error
protection for the m component messages, x;, X3, . . ., X,,. We readily see that
the minimum Hamming distance of C is d;, = min{s;: 1 <i<m}.

Now we are ready to show that the minimum separation s; of the i-clouds of a
block code C determines the level of error protection (or error correction) for the
ith component message x; from M,. To do this we devise a nearest cloud decoding
algorithm for which each component message is decoded independently. Suppose
a codeword v is transmitted and a vector r is received. To decode the ith
component message, we compute the separation between {r} and every i-cloud.
Let Q.(a) be the i-cloud such that

d[{r}, Qi(a)] <d[{r}, Qi(x))]

for any x; € M; and x; #a. Then the ith component message is decoded into a.
The ith component message contained in r will be decoded correctly provided
that there are |(s; —1)/2| or fewer transmission errors in r. To see this, let
v=v(x, X,,...,x%,) be the transmitted codeword. For x; #x;, it follows from
(2) that

d[{r}, Qi(x)] + d[{r}, Qx))] = d[Qi(x;), Qi(x})]. (6)
Since d[Q;(x;), O:(x/)] =s; and d(r, v) =d[{r}, Q.(x;)], we have
d[{r}, Qi(x))]=s; —d(r, v). (7)

If there are ¢, = |(s; — 1)/2] or fewer transmission errors in r, then d(r, v) <t It
follows from (6) and (7) that d[{r}, Qix)]=<¢ and d[{r}, Q:(x))]>¢. Hence,
d[{r}, Q:(x)] <d[{r}, Qi(x/)] for x; #x,. Thus, the decoding algorithm described
above results in the correct i-cloud, Q;(x;), and hence the correct component
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message x;. However, if there are more than ¢ errors in the received vector r, the
inequality d[{r}, Q;(x))] <d[{r}, Q:i(x;)] for x; # x] may not hold. As a result, the
ith component message is decoded incorrectly into some x; #x,. Theorem 1
characterizes the multi-level error-correcting capabilities of a block code.

Theorem 1. Let C be a block code for the product of m message spaces,
M, M, ..., M,. Lets=(sy, 52, ...,S,) be the separation vector of C. Then, for
1=<i=m, the ith component message contained in a received vector can be
correctly decoded provided that the number of transmission errors in the received
vector is |(s; — 1)/2] or less.

A code C with a separation vector s=(si,85,...,5,,) is called a
(t1, ta, - . . , L,y )-error-correcting code where ;= |(s; — 1)/2]| for 1<<i<m and is
the error correcting capability of the code for the ith component message x;. If
t, ty, ..., t, are all distinct, then C provides m levels of error-correcting
capabilities, one for each component message. In this case, C is called a m-level
error-correcting code or a m-level UEP code. Without loss of generality, we
assume that s, =s, = - - - =5, throughout of this paper.

The concept of separation vector was first introduced by Dunning and Robbins
[13]. The separation vector defined in this paper is a generalization of Dunning
and Robbins’, which applies for either linear or nonlinear codes. Note that the
minimum separation s; for the i-clouds depends on how a code is partitioned into
the i-clouds. Different encoding (or mapping) of M onto C yields different
partitions of C. As a result, the separation vector of C depends on the encoding

mapping.

3. Direct-sum codes for unequal error protection

An approach for constructing multi-level UEP codes is to take direct-sums of
linear component codes. For 1 <i<m, let C; be a binary (n, k;) linear block code
for the message space M, = {0, 1}*. For i #j, we require that C;N C; contains
only the all-zero n-tuple 0. Let v(x;) denote the codeword in C; for the message
x; €M, Let C be the direct-sum of C,,C,,...,C,, denoted C=C, D C,D
-+ C,,. Then C is an (n, k) linear code for the product message space
M=MxM,x---xM, where k=k, +k,+---+k,. For any message

(x,, x5, ..., X,) in M, the corresponding codeword is
(X, X, L, X) =0() U)oU) (8)
Let {j,, j», .-, J;} be asubset of {1, 2, ..., m}. Consider the direct-sum,

C(jr,far---»i)=C,®C, B0 ---BC,
Then C(j,, j, - - ., ;) is a subcode of C. An i-cloud of C for the component
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message x; from M, is simply the following set:
Qix)=vx)DCA,...,i—-1,i+1,...,m).

The vector v(x;) is in the i-cloud Q;(x;) and is called the center of Q,(x;). A
vector in Q,(x;,) is of the form w(x;)+w, where weC(,...,i—1,i+
1,...,m).

Let w(v) denote the Hamming weight of the vector v. Since d(v, u)=
w(v + u), the minimum separation of the i-clouds of C is

s;=min{w[v(x,, ..., x;, ..., x,)]:x #0} 9)

Theorem 2. Consider an (n, k) linear code C which is the direct sum of codes
C,C,,...,C,, where C; is an (n, k;) linear code for the component message
space M;={0, 1}* for 1<i<m. If the minimum weight of codewords in
C—-C(+1,i+2,...,m) is at least d; and d,=d,=---=d,,, then C is an
m-level error-correcting code for the product message space M = M; X M, X

--M,, with separation vector s=(s|, 85, ...,5,), Wwhere s;=d; for i=
1,2,...,m

Proof. Note that for each codeword in C(i +1,i +2, ..., m), the corresponding
component message X, X,,...,X%; are all zero. Each codeword of C,
v(x,...,X,...,%X,) withx;#0,isnotin C(i+1,i+2,..., m) and hence has
weight at least d;. The proof then follows from (9). O

Theorem 2 describes a method of constructing multi-level UEP codes by taking
direct sums of linear component codes. With this method, we are able to
construct two classes of UEP codes.

4, Construction of linear multi-level UEP codes by combining shorter codes

Let H,, and H,=[HLH}]" be the parity-check matrices of an (n,, k, +r)
linear code C,, and an' (n,, k,) linear code C, respectively, where H,, is an
(n, — k, — r) X n, matrix, H,, is a r X n, matrix, H, is an (n, — k,) X n, matrix and
T denotes the transpose operation. Let H,, and H, =[H;,H},|" be the
parity-check matrices of an (n,, k, +r) linear code C,, and an (n,, k;) linear
code C, respectively, where H,, is an (n, — k, —r) X n, matrix, H,, is a r X n,
matrix and H, is an (n, — k,) X n, matrix. Consider the (n, +n,, k, + k, +r)
linear code C with the following parity-check matrix,

H, 0

H= Hab Hba » (10)
0 H,
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where 0 represents a zero matrix of proper dimension. Let C, be the (n, + n,, k,)
subcode of C such that each codeword in C, is the concatenation of a codeword in
C, and the all-zero n,-tuple. Let C, be the (n, + n,, k,) subcode of C such that
every codeword in Cj is the concatenation of the all-zero n,-tuple and a codeword
in C,. Since C, ® C3=C(2, 3) is an (n, + n,, k, + k) subcode of C, there must
exist r linear independent codewords in C — C(2, 3). These r linear independent
codewords span an (n, + n,, r) linear subcode C, of C. We readily see that C is
the direct sum of C;, C,, and C;, i.e. C=C, D C, P C;.

Let d,,, dy, d, and d, be the minimum distances of C,,, Cp,, C, and C,
respectively. Suppose d,,, + dp, = d, = d,. Now we examine the distance structure
of C. Any codeword v in C can be expressed as v = (v,, v,) where v, is an
ng-tuple and v, is an n,-tuple. Then (v,, v,) - H" =0. This implies that v, - HY, =
0 and v, - H}, =0. Thus, v, is a codeword in C,, and v, is a codeword in C,,.
Consider a codeword (v,, v,) in C — C(2, 3). Then, v, #0 and v, #0. Hence, the
weight of any codeword v in C — C(2, 3) is at least d,, + d,,. For any codeword
(v,, v,) in C — (5, either it is in C,, or both v, and v, are not zero. For the
former case, the weight of the codeword is at least d,. For the latter case, the
weight of the codeword is at least d,,, + dp,. Since d,, + dp, = d,, the minimum
weight of codewords in C ~ Cs is d,. Since d,, + d,, =d, = d,, we can easily see
that the minimum weight of C is d,. It follows from Theorem 2 that, for
d,, +d,, =d,=d,, the code C with the parity-check matrix H of (10) is a linear
block code for the product message space M = {0, 1}" x {0, 1}*x {0, 1}** with
separation vector s = (51, §,, §3) where s, =d,, + dy,, $2=d, and 53 = d,,.

A generator matrix for the code C with a parity-check matrix of the form given
by (10) can be formed easily. Let G, and G, be the generator matrices for the
(1., k,) code C, and (n,, k,) code C, respectively. Let [GTGL,]" and [GFGT,]" be
generator matrices for the (n,, k, +r) code C,, and the (n;, k; +r) code C,,
respectively. Then the following (k, + k;, +7) X (n, + n,) matrix,

Gaa be
G=|G, 0 |, (1)
0 G,

is a generator matrix for C where [G,,G,;], [G,0] and [0G,] generate the
(n, + n,, r) code C,, the (n,+n,, k,) code C, and the (n,+ n,, k;) code C;
respectively.

In the following, we present two special classes of linear UEP codes with
parity-check matrices of the form given by (10). Let « be a primitive element in
GF(2™). Every nonzero element in GF(2™) can be expressed as a power of o and
can be represented by a nonzero m-tuple over GF(2) (in column form). For any
nonnegative integer I, let B, B,, ..., Bymr_pm represent all the (m + [)-tuples
over GF(2) (in column form) for which the last / components are not all zero.
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Consider the binary code C associated with the following parity-check matrix:

1 « o -+ &% 10,0, - 0,
H=|1 o a° --- @2 ... i, ) (12)
0 0 0 -- 0, DB Ba o Bamriom

where each power of « is represented by an m-tuple in column form, 0, is a
column of [ zeros and 0, is a column of m zeros. The matrix H consists of 2m + {
rows and 2" —1 columns, and hence the code C associated with H is a
(2m*'—1, 2"*' = 2m — 1 — 1) linear code over GF(2). Note that the H matrix has
the form given by (10) where

[H,, 1 3., 2m—2
H,= ] = [ 0(3 as (:(2'"—2)]

LH,, 1 & o - «

‘H,,
H, = —H:b] =[B1 B, -+ B
H,=[1 a & --- a*"77

H,, = some [ X (2™*'—2™) matrix which has no zero column.

The codes, C,, and C,, generated by parity-check matrices H,, and H, are
simply the Hamming and double-error-correcting BCH codes of length 2" —1
respectively. Hence, d,, =3 and d,=35. The code C, generated by the parity-
check matrix H, is a shortened Hamming code with minimum distance d, =3,
and the code C,, generated by the parity-check matrix H,, has minimum distance
dy, =2. As aresult, Cis a code for the product message space M = M, X M, X M,
where M, = {0, 1}, M, = {0, 1}*"72"~! and M;= {0, 1}>""~2"~™~!_ The separa-
tion vector of C is s=(sy, s, §3) where s,=d,, +dy,, =5, s,=d,=5, and
s3=d, =3. For this code, the first 2” —m —1 message bits of a message are
protected against up to 2 random errors while the next 2”*/ — 2" — m — [ message
bits against any single error. Hence, it is a (2, 1)-error-correcting code.

For m =0, C becomes a conventional single-error-correcting Hamming code of
length 2/ — 1. For [ =0, C reduces to a primitive double-error-correcting BCH
code of length 2™ —1. For m =1, C is equivalent to Boyarinov—Katsman UEP
code [16]. The code C can be transformed into systematic form with identical
two-level error-correcting capability.

A lower bound (equivalent to the Hamming bound for single-level error-
correcting codes) on the number of parity-check bits for systematic linear UEP
codes has been derived by Masnick and Wolf [9], and van Gils [20]. It follows
from Theorem 2 of [9] that, for a two-level (¢,, ¢,)-error-correcting code of length
n, the number of parity-check bits satisfies the following inequality:

2"-">1+§tz‘,<'_1>+ tE i(n_.kl)< k‘>. (13)

i=1 \1 j=t+1 i=0 L j—i
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Consider a two-level UEP code with the following parameters: n=2"*"'—~1,
k;=2"—-m—1, t; =2, t, = 1. Tt follows from the Hamming bound given by (13)
that

2n k=27 (22— (2m) - 2" — (27— 2m + 1) - 27— (m? ~ m) +2)
=271 {22+ 4 AY, (14)

where A=2""2"'—2m)+ 22" - 1)+ 2m —2)- 2"+ 2" —m* + m + 2).
For either m =3 and / =3, or m =4 and / = 1, the number A is greater than zero.
Hence, it follows from (14) that n — k >2m + [ — 1. This is to say that the number
of parity-check symbols required for a two-level linear systematic UEP code with
parameters, n = 2"t 1, ky,=2"—-m—1,t,=2and t,=1is at least 2m + [. The
two-level UEP code given by the parity-check matrix H of (12) has exactly 2m + 1/
parity-check symbols. Hence, under the condition that m =3, /[ =3, or m =4 and
1=1, the code meets the Hamming bound of (13) and hence is optimal. A list of
codes with lengths 63 and 127 is given in Table 1 for various m and I, where
ky=2"—-m—1and k,=2"""~2"—m —1 and k =k, + k,. For example, there
is a (63, 52) code which provides protection for the first 26 message bits against up
to 2 random errors and protection for the next 26 message bits against any single
error.

The second class of linear UEP codes with parity-check matrices of the form
given by (10) is specified by the following submatrices:

11 1 - 1]
0, 1 a --- a?"?
H,=1]0, 1 a’ <. ()"
LO. 1 az;—s . (012'_.3)2'""2
Hab — [Om 1 a® ' ... (a21—1)2'"—2] (15)
Hy,=[1 o™ o (@777
1 a3 ... (a® 32
H,, = 1 a;s L. (az)‘zm—z
1 o e a/Z"‘—Z

where s <t. Note that H,, and H, =[H,,H},]" are parity-check matrices of an
extended (¢t — 1)-error-correcting and an extended t-error-correcting primitive
BCH codes of length 2™ respectively. Also note that H,, and H, = [H},H},|" are
parity-check matrices of an (s — 1)-error-correcting and an s-error-correcting
primitive BCH codes of length 2™ — 1 respectively. We require that H,;, and H,,
have the same dimension, i.e. @*~' and o' from the same subfield of GF(2™).
The submatrices of (15) arranged in the form of (10) generate a linear UEP code
with a separation vector s = (sq, 52, §3) where s;=2(t+s)—1, 5,=2t+2 and
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Table 1. A list of (2, 1)-error-correcting codes.
Codes of length 63

Codes of length 127

m 1k k k m 1l ok ki k
0 6 57 0 57 0 7 120 0 120
2 4 55 1 54 2 4 1u8 1 117
3 3 54 4 50 3 4 117 4 113
4 2 53 11 42 4 3 116 11 105
5 1 52 26 26 5 2 115 26 89
6 0 51 51 0 6 1 114 57 57

7 0 113 113 0

309

s3=2s+1. The code has at most m(t+s—1)+ 1 parity-check symbols. It
protects the first k; = m message bits against s +¢— 1 or fewer errors, the next
k,=2" — mt — 1 message bits against ¢ or fewer errors, and the other message
bits against s or fewer errors.

Example 1. Let m=35 and t=s5s=2. Let « be a primitive element in GF(2).
Consider the code generated by the following parity-check matrix:

1 1 1 1 A 1 01 01 01 01
He 0s 1 a « a* 05 05 O 05
05 1 o o a”® 1 & of a®
05 0, 05 05 --- O 1 a a® --- a¥

It is a (63, 47) UEP code for the message space M = {0, 1}° x {0, 1}*' x {0, 1}**
with separation vector at least (7, 6, 5). Note that there is a (63, 45) triple-error-
correcting BCH code and a (63, 51) double-error-correcting BCH code.

5. Direct sums of product codes

Let V be an (N, K) linear code with minimum distance D, and W be an (n, k)
linear code with minimum distance d. Let V & W denote the product of V and W
[21]. Then, V ® W is an (Nn, Nk) linear code with minimum distance Dd. A
codeword in V @ W can be arranged as an n X N array in which every row is a
codeword in V and every column is a codeword in W. For a nonzero code array in
V & W, there are at least D nonzero columns and each nonzero column has at
least d nonzero components. Hence, the weight of any nonzero code array in
V ® W is at least Dd. Product codes are capable of correcting both random and
burst errors [21]. Now, we consider direct sums of certain binary product codes
which provide burst error protection in addition to the two-level random error
protection.
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Let V| and V, be (N, K;) and (N, K,) binary linear codes with minimum
distances D, and D, respectively. The intersection of V; and V,, denote V, N V,, is
a linear subcode of both V; and V,. Let D be the minimum distance of vinv, It
is clear that D=D, and D = D,. Let V; +V, denote the following set,

Vi+ Vo2 {viv=v,+v, with v, € V, and v, e V).

Clearly V; + V, is linear and a supercode of both V; and V;. If V; NV, = {0}, then
Vi + V, is the direct sum of V] and V,. Let D be the minimum distance of V; + V,.

Let W, and W, be an (n, k,) and an (n, k,) binary linear codes with minimum
distances d, and d, respectively. We assume that W; N W, = {0}. Then, the direct
sum of W, and W,, denoted W = W, @ W,, is an (n, k, + k,) linear code. Let d be
the minimum distance of W.

For i =1, 2, the product V,® W, is an (Nn, K;k;) linear code with minimum
distance D.d;. Since W, @ W, = {0}, V; ® W, and V, ® W, have only the zero code
array in common. Let C be the direct sum of V; ® W, and V, @ W,. Then C is an
(Nn, K k, + K,k,) linear code. A code array ¢ in C is sum of a code array ¢; in
V: ® W, and a code array ¢, in V,® W;, i.e. ¢ =¢; + ¢,. Each row in array c is a
codeword in V, + V,, and each column in ¢ is a codeword in W; @ W,.

Now we consider the weight of a nonzero code array cin C=V,Q W, DV, ®
W,. If ce V;® W;, then w(e)=D,d,. If ce V,® W,, then w(c)=D,d,. If ¢ is
neither in V; ® W, nor in V, ® W, then c is the sum of a nonzero code array c; in
Vi ® W, and a nonzero code array ¢, in V, @ W,. To determine the weight of
¢ = ¢, + ¢;, there are four cases to be considered.

Case 1. Suppose all the nonzero rows in ¢; and ¢, are alike and identical to a
certain vector v. Then v must be a codeword in V;NV,. Thus, w(v) = D. This
implies that there are at least D nonzero columns in array ¢. Since each of these
columns has weight at least d. As a result, w(c) = Dd.

Case II. Suppose that all the nonzero rows in ¢; are identical to some
codeword v, in V; and all the nonzero rows in ¢, are identical to some codeword
v, in V,, where v; #v,. Then v; + v, is a nonzero codeword in V; + V, and has
weight at least D. Note that w(v,) = D; and w(v,) = D,. There are two types of
nonzero columns in ¢. The first type is that each column is either the sum of a
zero column in ¢; and a nonzero column in ¢, or the sum of a nonzero column in
¢, and a zero column in ¢,. Such a column is either a nonzero codeword in W, or
a nonzero codeword in W,. Therefore, a nonzero column of the first type in ¢ has
weight at least min{d,, d,}. The second type of nonzero columns in ¢ is that each
column is the sum of a nonzero column in ¢, and a nonzero column in ¢,. Such a
column is a nonzero codeword in W; @ W, and has weight at least d. The fact that
w(v, + v,) = D implies that there are at least D type-1 nonzero columns in C. Let
f be the number of type-1 nonzero columns in ¢ where f = D. Then there are at
least [(D; + D, — f)/2] type-2 nonzero columns in ¢. Hence a lower bound on the
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weight of ¢ is

;gig{f -min{d,, d>} + [(D1+ D. - f)/2] - d}
=D -min{d,, d,} + [(D1 + D, —£)/2] - d.

Case I1l. Suppose that there are two nonzero rows v; and v; in ¢; such that
v, #v}. Then there are at least D; + [D,/2] nonzero columns in ¢,. This implies
that there are at least D; + [D,/2] nonzero columns in ¢. Each of these nonzero
columns is a nonzero codeword in W, @ W, and has weight at least d. Thus the
weight of c is at least {D, + [D;/2]} - d.

Case IV. Suppose that there are two nonzero rows, v, and v, in ¢, such that
v, #v,. It follows the same argument as that in Case III that w(c)={D,+
[Dz/ 2]} -d.

Denote D - min{d,, d,} + [(D, + D,— D)/2] -d by A, {D,+ [D,/2]} -d by A,
and {D,+ [D,/2]}-d by A,. Summarizing the above results, we have the
following weight structure of a nonzero code array ¢cin C=V,Q W, @V, Q@ W,:

(1) Force V;®W,, w(c)=Dyd,.

(2) For ce V, ® W,, w(c) = D,d,.

(3) Forc¢ Vi@ W, and c ¢ V, ® W,, w(c) =min{Dd, A, A, A,}.

From the above weight distribution, we see that the weight of a nonzero code
array cin V@ W, © V, ® W, is at least min{D;d,, D,d,, Dd, A, Ay, A}. Suppose
min{D;d,, Dd, A, A, A} = D,d,. Then we have the following weight structure of
a nonzero code array ¢in V@ W, O V, ® W,:

(1) Force V, @ W;, w(c) = D,d,.

(2) Force V,@W, ®V,@W,— V, @ W,, w(c) =min{D,d,, Dd, A, A, A,}.

It follows from Theorem 2 that C =V, ® W, @ V, ® W, is a linear block code with
a separation vector s = (s, s,), where

51 = min{D1d1, ljd: )‘" A’l) A’Z})
S22D2d2.

The message space for Cis M = {0, 1}5*1 x {0, 1}%*=,

(16)

Example 2. Let V; and V, be two equivalent (7, 4) Hamming codes. Let W, and
W, be the (7,1) and (7, 3) BCH codes over GF(2) respectively. Then, W, @ W, is
a (7,4) Hamming code. The minimum distances of V; and V, are D, =3
and D, =73 respectively. The minimum distances of W;, W,, and W, ® W, are
d,=7, d,=4 and d =3 respectively. Note that V;NV, is the (7,1) binary
code with minimum distance D =7 while V, + V, is the (7, 7) binary code with
minimum distance D =1. Thus, A=13, A, =15, A,=15, Dd=21, D,d,=21
and D,d,=12. Note that N=7, K,=K,=4, n=7, k=1, k,=3. Since
min{D,d,, Dd, A, A, A,} =13= D,d, =12, we see that V,Q W, DV, Q W, is a
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two-level UEP (49, 16) binary code for the message space M = M,; X M, with
separation vector s = (s;, 5,), where M; = {0,1}*, M, = {0, 1}'?, 5,=13, 5,=12.
We may compare this code with the product code of two (7, 4) BCH codes with
minimum distance 3, which is a (49, 16) single-level binary code with minimum
distance only 9.

Direct sums of product codes for unequal error protection was first studied by
Boyarinov and Katsman [16]. The lower bound on the separation vector given by
(16) is better than the bound derived by Boyarinov and Katsman.

Nnow wa nrecant a enecial clace of direct ciuime of nraduct codee T at &~ and R ha
ANOW WC PITSCIIL d S5pLCiar Ciasds O GIFCEL SUIS O ProGult COGLS. L.OU & aliG o ot

two different primitive Nth roots of unity. Let V; be an (N, K;) binary cyclic code
which has «, &, ..., @* and their conjugates as zeros. Let V, be an (N, K3)
binary cyclic code which has B, 8% ..., B* and their conjugates as zeros.
Clearly, V, and V, are equivalent codes. Hence, K, =K, =K and D, =D, =
2t + 1, where D, is the minimum distance of V; and D, is the minimum distance
of V,. If the set {(f)*":i=1,2,...,2t, m is an integer} contains
{a®*1, a®*2, ..., a®*®} as a subset, then V; NV, includes a, o2, ..., a®** as
zeros. Thus, either the minimum distance D of V; NV, is at least 2t +2s + 1 or
Vi NV, = {0} which is the case that V; N V, contains all the &'’s as zeros. If the set
{(&')*":i=1,2,...,2t and m is an integer} contains {B, B> ..., B>} as a
subset, then V,+ V, contains B, B2 ..., B* as zeros. Thus, D, the minimum
distance of V;+V, is at least 2u + 1. With the above codes V| and V,, if
min{(2t + 1)d,, 2t +2s+1)d, A, A, A,} = (2t + 1)d,, the direct sum V; @ W, ®
V, @ W, is an (Nn, K(k, + k,)) code with separation vector s = (s, 5,) where

sy =min{(2t + 1)d,, 2t +2s + 1)d, A, A, A,),
5, = (2t + 1)d,,

A=(2u+1)-min{d,, d,} + (2t —u + 1)d,
M=2=Ct+2)d.

Example 3. Let a be a primitive element in GF(2%). Let V, be a (31,21) BCH
code with minimum distance D, =5, which contains @, a® and their conjugates as
zeros. Let V, be a (31,21) BCH code with minimum distance D, =35, which
contains a’, (a)’, and their conjugates as zeros. Since o’ is a conjugate of &,
V, NV, includes &, a’, &°, and their conjugates as zeros. Since V; NV, # {0}, the
minimum distance D of V, NV, is at least 7. Furthermore, the minimum distance
D of V, + V, is at least 3, since a” is a zero for both V| and V,. Let W; and W, be
(7,1) and (7,3) BCH code over GF(2). Thus, the minimum distance of W, is
d; =7 and the minimum distance of W, is d, = 4. Furthermore, W, ® W, is a (7, 4)
BCH code over GF(2) with minimum distance d =3. Thus, t=2, s=1, u=1,
A=24, A, =A,=24, Dd=21, D,d,=35, and D,d,=20. Note that N =31,
n=7, k=1, k,=3, K,=K,=21. Since min{D\d,, Dd, A, A, ,} =21=
D,d,=20, VW, ®&V,®W, is a (217,84) binary two-level UEP for the
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Table 2. Some direct sums of product codes for unequal error protection

N K, D, D D n ki ky d, d; d Nn Kk, K;k, s, s, tg
15 10 4 2 6 17 1 8 17 6 5 255 10 8 27 24 30
1510 4 2 6 7 1 3 7 4 3 105 10 30 17 16 15
1510 4 2 6 15 1 10 15 4 3 225 10 100 17 16 15
15 10 4 2 6 15 1 6 15 6 5 225 10 60 27 24 30
15 10 4 2 6 15 2 5 10 7 5 225 20 50 29 28 30
3121 5 3 7 15 1 10 15 4 3 465 21 210 21 20 31
31 2105 3 7 15 1 6 15 6 5 465 21 126 35 30 62
31215 3 7 2 510 7 5

15 465 42 105 35 35 62

message space M =M, X M, with separation vector s=(s,,s,) where M,=
{0, 1}*, M,= {0, 1}%, 5, =21, and s, = 20. Note that the product code of a (7, 4)
Hamming code with minimum distance 3 and a (31, 21} BCH code with minimum
distance 5 is a (217, 84) linear code with minimum distance 15 which is inferior to
the (217, 84) direct-sum code.

Suppose we transmit each code array in V, ® W, @ V, ® W, row by row. By a
proof similar to that for simple product codes [21], it can be shown that the code
V,®@ W, @ V,®W, can correct any error-burst of length up to N - |(d —1)/2] in
addition to the random-error-correcting capabilities represented by its separation
vector. Consider the (217, 84) binary code illustrated in Example 3. For this code
21 message bits of a message are protected against up to 10 random errors and
any error burst of length up to 31, while the other 63 message bits of the same
message are protected against up to 9 random errors and any error of length up to
31.

Some direct-sums of product codes are listed in Table 2 where ¢z denotes the
maximum length of correctable burst errors. Let & and 8 be primitive elements in
GF(2*) and GF(2°) respectively. For N =15, V; and V, are binary BCH codes
with {1, a, &7, a*, a®} and {1, &', &', &, a''} as zeros respectively. For
N =31, V, and V, are binary BCH codes with {8, 8%, g% B% B¢, B, B B'%

B, B} and {B°, B°, B, B*, BY, B°, B8, B°, B', B*°} as zeros respectively.
All W, and W, are binary BCH codes.
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