
Discrete Mathematics 83 (1990) 301-314 

North-Holland 

301 

CODES WITH MULTI-LEVEL ERROR-CORRECTING 
CAPABILITIES* 

Mao-Chao LIN 
National Taiwan University, Taipei, Taiwan, ROC 

Shu LIN 
University of Hawaii, Honolulu, Hawaii 96822, USA 

Received 29 December 1987 

Revised 29 August 1988 

In conventional channel coding, all the information symbols of a message are regarded 

equally significant, and hence codes are devised to provide equal protection for each 

information symbol against channel errors. However, in some circumstances, some information 

symbols in a message are more significant than the other symbols. As a result, it is desirable to 

devise codes with multi-level error-correcting capabilities. In this paper, we investigate block 

codes with multi-level error-correcting capabilities, which are also known as unequal error 

protection (UEP) codes. Several classes of UEP codes are constructed. One class of codes 

satisfies the Hamming bound on the number of parity-check symbols for systematic linear UEP 

codes and hence is optimal. 

1. Introduction 

In conventional channel coding, all the information symbols of a message are 
regarded equally significant, and hence redundant (or parity-check) symbols are 
added to provide equal protection for each information symbol against channel 
errors. However, in some occasions, some information symbols in a message are 
more significant than the other information symbols in the same message. 
Therefore, it is desirable to devise coding schemes which provide higher 
protection for the more significant information symbols. Suppose a message from 
an information source consists of m parts, each has a different level of significance 
and requires a different level of protection against channel errors. An obvious 
way to accomplish this is to use a separate code for each message part and then 
time share the codes. The redundant symbols of each code are designed to 
provide an appropriate level of error-correcting capability for the corresponding 
message part. This encoding scheme requires a separate encoder and decoder pair 
for each code. A more efficient way is to devise a single code for all the message 
parts. The redundant symbols are designed to provide m levels of error protection 
for m parts of a message. It has been proved that a single code with m levels of 
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error-correcting capability usually requires less redundant symbols than that 
required by time-sharing m separate codes with the same m levels of error- 
correcting capability [l-8]. Moreover, a single code requires only one encoder 
and one decoder. This may be desirable in many situations. A code with 
multi-levels of error-correcting capabilities is known as an unequal error 
protection (UEP) code. UEP codes were first studied by Masnick and Wolf [9], 
than by other coding theorists [5,6, 10-201. 

In this paper, we investigate codes with multi-level error-correcting capabilities. 
Two classes of multi-level UEP codes are presented. Each code in the first class is 
obtained by combining codes of shorter lengths. We find that a subclass of such 
codes meets the Hamming bound on the parity-check symbols for systematic 
linear UEP codes. Each of the second class of codes is achieved by taking direct 
sums of product codes. The minimum distances of such codes are greater than 
those for the simple product codes of comparable dimensions, besides, some 
message bits have extra error protection. 

2. Cloud structure and the separation vector of a block code 

Let (0, l}” denote the vector space of all n-tuples over the binary field GF(2). 
Let V and W be two subsets of (0, l}“. Let u and w denote two vectors from V 

and W respectively. We define the separation between V and W, denoted 
d(V, W), as follows: 

d(V, W) p min{d(v, w): u E V and w E W}, (1) 

where d(v, w) denotes the Hamming distance between v and w. Clearly the 
separation d(V, W) between V and W is simply a measure of distance between 
the two sets, V and W. Let r be a vector in (0, l}“. Then it is easy to show that 
the separations between {r}, V and W satisfy the following triangle inequality, 

d[{r}, V] + d[{r], WI 3 d(V, W). (2) 

Consider a message space A4 which is the product of m component message 
spaces, Ml, M,, . . . , M,,,. For 1 s i =S m, let xi denote a message from the 
message space Mi. Then the product space M consists of the following set of 
m-tuples, 

M = {(xl, xz> . . . , n,,J:xiEMifor lSi<m}. (3) 

Let C be a binary block code of length IZ for the product message space M. Let 

u(x1, x2, . . * , x,,J denote the codeword for the message (x1, x2, . . . , x,) from 
M. Let u be a specific message in M,. Consider the following subset of codewords 

in C, 

Q,(a)= (~(~17.. . ,xi-1, a,xi+~j.. . 7 x,,J:x,~M~for 1SjSm andj#i}. (4) 

This set Q,(a) is called an i-cloud of C corresponding to the message a in Mi. 
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There are lMil i-clouds in C corresponding to ]Mil messages in Mi. These i-clouds 
form a partition of C. For two distinct i-clouds, Qi(U) and Qi(b), the separation 
between them is d(Qi(a), Qi(6)). Then we define the minimum separation among 
the i-clouds of C as follows: 

si A min{dQi(a), Qi(b)) : U, b E Mi and u f b}. 

It follows from (l), (4) and (5) that 

(5) 

Si = min{d[u(xl, . . . , Xi, . . . , X,), U(X;, . . . , Xl, . . . , XL)] : 

q,x;EMIforl~Z~mandxi#xl}. 

Geometrically, we may view that the code C consists of [Mil i-clouds, where any 
two i-clouds are separated by a distance at least si. This distance structure of 
i-clouds determines the level of error protection for component message Xi. The 
m-tuple, 

sp (Sl, 32, . . . ? L), 

is called the separation vector of the block code C for the product space 
M=M,xM,x.. * x Mm. This separation vector determines the levels of error 
protection for the m component messages, x1, x2, . . . , x,. We readily see that 
the minimum Hamming distance of C is dmin = min{s, : 1s i G m}. 

Now we are ready to show that the minimum separation Si of the i-clouds of a 
block code C determines the level of error protection (or error correction) for the 
ith component message Xi from Mi. To do this we devise a nearest cloud decoding 
algorithm for which each component message is decoded independently. Suppose 
a codeword u is transmitted and a vector r is received. To decode the ith 
component message, we compute the separation between {r} and every i-cloud. 
Let Q,(u) be the i-cloud such that 

for any q E Mi and Xi #a. Then the ith component message is decoded into a. 
The ith component message contained in r will be decoded correctly provided 
that there are ](si - 1)/2] or fewer transmission errors in r. To see this, let 
21 = v(q, x2, . . . ) x,) be the transmitted codeword. For xl #xi, it follows from 

(2) that 

d[{r}, Qi(xi)l + d[{rIl, Qi(xr)] 2 d[Qi(xi), Qi(r,>]. (6) 

Since d[Qi(xi)t Qi(xi>] 2 Si and d(r, V) 3 d[{r}, Qi(Xi)], we have 

d[{r}, Qi(xi)] 2 si - d(rt v)* (7) 

If there are tj = ](Si - 1)/2] or fewer transmission errors in r, then d(r, u) c ti. It 
follows from (6) and (7) that d[{r}, Qi(x)] s ti and d[{r}, Qi(xl)] > ti. Hence, 

d[{r>, Qi(xi>] < d[{r), Qi(xzf)] f or q #xi. Thus, the decoding algorithm described 
above results in the correct i-cloud, Qi(Xi), and hence the correct component 
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message xi. However, if there are more than fi errors in the received vector r, the 

inequality 4(r), Qi(xi)] < 4(r), Qi(xi)] f or xi #xf may not hold. As a result, the 
ith component message is decoded incorrectly into some xi #xi. Theorem 1 
characterizes the multi-level error-correcting capabilities of a block code. 

Theorem 1. Let C be a block code for the product of m message spaces, 

MI, M,, . . . , M,,,. Lets = (s,, s2, . . . , s,,,) be the separation vector of C. Then, for 
1 s i urn, the ith component message contained in a received vector can be 
correctly decoded provided that the number of transmission errors in the received 
vector is l(Si - 1)/2] or less. 

A code C with a separation vector s = (sl, s2, . . . , s,) is called a 

(t1, fz, . . . , t,)-error-correcting code where ti = L(si - 1)/2] for 16 i s m and is 
the error correcting capability of the code for the ith component message xi. If 

t1, t2, . . * , t, are all distinct, then C provides m levels of error-correcting 
capabilities, one for each component message. In this case, C is called a m-level 
error-correcting code or a m-level UEP code. Without loss of generality, we 
assume that s1 > s2 2 . . * 2 s, throughout of this paper. 

The concept of separation vector was first introduced by Dunning and Robbins 
[13]. The separation vector defined in this paper is a generalization of Dunning 
and Robbins’, which applies for either linear or nonlinear codes. Note that the 
minimum separation si for the i-clouds depends on how a code is partitioned into 
the i-clouds. Different encoding (or mapping) of M onto C yields different 
partitions of C. As a result, the separation vector of C depends on the encoding 
mapping. 

3. Direct-sum codes for unequal error protection 

An approach for constructing multi-level UEP codes is to take direct-sums of 
linear component codes. For 1 G i s m, let Ci be a binary (n, ki) linear block code 
for the message space Mi = (0, l}“‘. For i Zj, we require that Ci n Cj contains 
only the all-zero n-tuple 0. Let V(Xi) denote the codeword in C, for the message 
xi E Mi. Let C be the direct-sum of Ci, CZ, . . . , C,, denoted C = C, @ C2 @ 
. . . @ C,. Then C is an (n, k) linear code for the product message space 
M=M,xM,x-.-xM,,, where k=k,+k,+-.-+k,. For any message 

( Xl, x2, . . . 7 x,) in M, the corresponding codeword is 

n(x,, x2, . . . ) x,) = V(X,) + u(x2) + * * . + u&J. (8) 

Let {j1, j2, . . . , jr} be a subset of (1, 2, . . . , m}. Consider the direct-sum, 

C(j1, j2, . . . f jl) = Cj, @ Cj, @ ’ * . @ Cj,. 

Then C(ji, j2, . . . , jl) is a subcode of C. An i-cloud of C for the component 
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message x, from Mj is simply the following set: 

Q(xJ = u (xi) G.3 C(l, . . . , i - 1, i + 1, . . . , m). 

The vector v(q) is in the i-cloud Q,(q) and is called the center of Q&q). A 
vector in Qi(xi) is of the form v(q) + w, where w E C(l, . . . , i - 1, i + 

1 > . . . 9 ml. 
Let w(u) denote the Hamming weight of the vector V. Since d(u, u) = 

W(V + u), the minimum separation of the i-clouds of C is 

Si = min{w[u(x,, . . . , Xi, . . . , X,)] :Xi ZO}. (9) 

Theorem 2. Consider an (n, k) linear code C which is the direct sum of codes 

CI, C*, . . . 7 C,,,, where Ci is an (n, kj) linear code for the component message 
space Mi = (0, l}“’ for 1 =Z i S m. If the minimum weight of codewords in 

C-C(i+l,i+2,. . . , m) is at least di and d, 3 d2 2 * . .S d,,,, then C is an 
m-level error-correcting code for the product message space M = M, X M2 X 

. . .M, with separation vector s = (sl, s2, . . . , s,), where si sdi for i = 

1,2, . . . , m. 

Proof. Note that for each codeword in C(i + 1, i + 2, . . . , m), the corresponding 
component message x1, x2, . . . , xi are all zero. Each codeword of C, 

U(XI, . . . ) xi, . . . , x,) with xi # 0, is not in C(i + 1, i + 2, . . . , m) and hence has 
weight at least di. The proof then follows from (9). 0 

Theorem 2 describes a method of constructing multi-level UEP codes by taking 
direct sums of linear component codes. With this method, we are able to 
construct two classes of UEP codes. 

4. Construction of linear multi-level UEP codes by combining shorter codes 

Let H,, and Ho = [Hz&tTblT be the parity-check matrices of an (n,, k, + r) 
linear code C,, and an (n,, k,) linear code C, respectively, where Ha, is an 
(n, - k, - r) x n, matrix, Hob is a r x n, matrix, Ha is an (n, - k,) x n, matrix and 
T denotes the transpose operation. Let Hbb and H, = [H&H&IT be the 
parity-check matrices of an (nb, kb + r) linear code C,, and an (nb, kb) linear 
code C, respectively, where H bb is an (nb - kb - r) X nb matrix, Hbo is a r x nb 
matrix and Hb is an (nb - kb) X nb matrix. Consider the (n, + nb, k, + kb + r) 
linear code C with the following parity-check matrix, N,, 0 H= Ha, &a , 

[ 1 0 &b (10) 



306 M.-C. Lin, S. Lin 

where 0 represents a zero matrix of proper dimension. Let C2 be the (n, + rrb, k,) 
subcode of C such that each codeword in C2 is the concatenation of a codeword in 
C, and the all-zero nb-tuple. Let C3 be the (n, + nb, kb) subcode of C such that 
every codeword in C3 is the concatenation of the all-zero n,-tuple and a codeword 
in Cb. Since C2 @ C3 = C(2, 3) is an (n, + q,, k, + kb) subcode of C, there must 
exist r linear independent codewords in C - C(2, 3). These r linear independent 
codewords span an (n, + nb, r) linear subcode C, of C. We readily see that C is 
the direct sum of C,, C2, and C,, i.e. C = C, @ C2 @ C3. 

Let da,, dbb, d, and db be the minimum distances of C,,, Cbb, C, and C, 
respectively. Suppose da, + dbb 2 da 2 db. Now we examine the distance structure 
of C. Any codeword v in C can be expressed as v = (v,, vb) where v, is an 
n,-tuple and vb is an nb-tuple. Then (v,, vb) * HT = 0. This if@ieS that v, * H;f, = 
0 and v, . H&, = 0. Thus, v, is a codeword in C,, and vb is a codeword in Cbb. 
Consider a codeword (v,, vb) in C - C(2, 3). Then, v, f 0 and vb f 0. Hence, the 
weight of any codeword v in C - C(2, 3) is at least da, + dbb. For any codeword 
(v,, 2)b) in C - C3, either it is in C2, or both v, and v, are not zero. For the 
former case, the weight of the codeword is at least da. For the latter case, the 
weight of the codeword is at least da, + dbh. Since d,, + dbb 2 d,, the minimum 
weight of codewords in C - C3 is d,. Since da, + dbb 3 d, Zz db, we can easily see 
that the minimum weight of C is db. It follows from Theorem 2 that, for 
da, + dbb 2 da 2 db, the code C with the parity-check matrix H of (10) is a linear 
block code for the product message space M = (0, 1}’ X (0, l}“a X (0, l}“” with 
separation vector s = (si, s2, sg) where s1 3 d,, + dbb, s2 2 d, and s3 = db. 

A generator matrix for the code C with a parity-check matrix of the form given 
by (10) can be formed easily. Let G, and Gb be the generator matrices for the 
(IZ,, k,) code C, and (&, kb) code Cb respectively. Let [G;fG;fhlT and [GEG;f,lT be 
generator matrices for the (IZ,, k, + r) code C,, and the (&,, kb + r) code Cbb 
respectively. Then the following (k, + kb + r) X (n, + rtb) matrix, 

(11) 

is a generator matrix for C where [G,,Gbb], [G,O] and [OGb] generate the 
(n, + $,, r) code Ci, the (n, + ltb, k,) code C2 and the (n, + Itb, kb) code C3 
respectively. 

In the following, we present two special classes of linear UEP codes with 
parity-check matrices of the form given by (10). Let LY be a primitive element in 
GF(2m). Every nonzero element in GF(2m) can be expressed as a power of (Y and 
can be represented by a nonzero m-tuple over GF(2) (in column form). For any 
nonnegative integer 1, let pi, p2, . . . , &p+l_p represent all the (m + l)-tuples 
over GF(2) (in column form) for which the last 1 components are not all zero. 
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Consider the binary code C associated with the following parity-check matrix: 

1 & a* . . . (y*m-* : 0, 0, * *. 0, 
Hz 

[ 

1 (y3 (y6 . . . &*“‘-2) ;. . . . . . . . . . . . . . . . . . . . , (12) 0, 0, 0, ' * * 0, i p1 p* * *. /3p+'-*m 1 
where each power of a is represented by an m-tuple in column form, OI is a 
column of 1 zeros and 0, is a column of m zeros. The matrix H consists of 2m + I 
rows and 2”+’ - 1 columns, and hence the code C associated with H is a 
(2m+l- I, 2m+-r - 2m - 1 - 1) linear code over GF(2). Note that the H matrix has 
the form given by (10) where 

Ha = 
H,, 

[ I[ 1 (Y a3 **a (y2m-2 

= &b 1 a3 a6 . . . a3w-2) 
I 

& = = [PI P2 . . * P2m+r-2ml 

H,,=[l LY a3 . . . a2m-2] 

Hbb = SOme 1 x (??+I - 2”) matrix which has no zero column. 

The codes, C,, and C,, generated by parity-check matrices Ha, and H, are 
simply the Hamming and double-error-correcting BCH codes of length 2” - 1 
respectively. Hence, d,, = 3 and da = 5. The code Cb generated by the parity- 
check matrix H, is a shortened Hamming code with minimum distance db = 3, 
and the code Cbb generated by the parity-check matrix &, has minimum distance 
dbb = 2. As a result, C is a code for the product message space M = h4, X Al2 X M3 

where M1 = (0, l}“, M2 = (0, 1}2m-*-1 and M3 = (0, 1}2m+‘-2m--m--[. The separa- 
tion vector of C is s =(sl, s2, s3) where slbd,, +dbb =5, s2Sd, =5, and 
s3 = db = 3. For this code, the first 2” - m - 1 message bits of a message are 
protected against up to 2 random errors while the next 2m+’ - 2” - m - I message 
bits against any single error. Hence, it is a (2,1)-error-correcting code. 

For m = 0, C becomes a conventional single-error-correcting Hamming code of 
length 2’ - 1. For I= 0, C reduces to a primitive double-error-correcting BCH 
code of length 2” - 1. For m = 1, C is equivalent to Boyarinov-Katsman UEP 
code [16]. The code C can be transformed into systematic form with identical 
two-level error-correcting capability. 

A lower bound (equivalent to the Hamming bound for single-level error- 
correcting codes) on the number of parity-check bits for systematic linear UEP 
codes has been derived by Masnick and Wolf [9], and van Gils [20]. It follows 
from Theorem 2 of [9] that, for a two-level (tl, t,)-error-correcting code of length 
IZ, the number of parity-check bits satisfies the following inequality: 

(13) 
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Consider a two-level UEP code with the following parameters: 
k1 = 2” - m - 1, t, = 2, t2 = 1. It follows from the Hamming bound 
that 

n=y+l-l, 

given by (13) 

2”-k Z 2-l * {22m+‘+1 - (2m) . 2m+1 - (2” - 2m + 1) .2” - (m’ - m) + 2) 

= 2-l . {22m+l + A}, (14) 

where A = 2m+‘(2m-’ - 2m) + 22m(2’-’ - 1) + (2m - 2) .2” + (2” - m2 + m + 2). 
For either m = 3 and I = 3, or m 3 4 and 13 1, the number A is greater than zero. 
Hence, it follows from (14) that n - k > 2m + I - 1. This is to say that the number 
of parity-check symbols required for a two-level linear systematic UEP code with 
parameters, n = 2m+1 - 1, kI = 2” - m - 1, ti = 2 and t2 = 1 is at least 2m + 1. The 
two-level UEP code given by the parity-check matrix H of (12) has exactly 2m + 1 

parity-check symbols. Hence, under the condition that m = 3, I = 3, or m 2 4 and 
12 1, the code meets the Hamming bound of (13) and hence is optimal. A list of 
codes with lengths 63 and 127 is given in Table 1 for various m and 1, where 
k,=2”-m-1 and kz=2”‘+‘- 2” - m - 1 and k = kI + kz. For example, there 
is a (63,52) code which provides protection for the first 26 message bits against up 
to 2 random errors and protection for the next 26 message bits against any single 
error. 

The second class of linear UEP codes with parity-check matrices of the form 
given by (10) is specified by the following submatrices: 

1 1 1 *** 1 - 

& = [(), 1 $-l . . . (,t-1)2m-2] 

Hba = [l (u2.‘-’ . . . ((Y~-~)~“-‘] 

(15) 

1 (y~-3 . , . (g9-3)2=2 

. . 

& = ’ ’ 
1 a3 . . . 

1 (y . . . (y2m-2 

where s s t. Note that H,, and H, = [H~$S~~]’ are parity-check matrices of an 
extended (t - 1)-error-correcting and an extended t-error-correcting primitive 
BCH codes of length 2” respectively. Also note that H,, and Hb = [Hz&f,,]’ are 
parity-check matrices of an (S - 1)-error-correcting and an s-error-correcting 
primitive BCH codes of length 2” - 1 respectively. We require that H,, and Hba 

have the same dimension, i.e. azrel and (Y~-~ from the same subfield of GF(2m). 
The submatrices of (15) arranged in the form of (10) generate a linear UEP code 
with a separation vector s = (si, s2, s3) where s1 2 2(t + s) - 1, s2 2 2t + 2 and 
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Table 1. A list of (2, I)-error-correcting codes. 

Codes of length 63 Codes of length 127 

m 1 k k, k, 

0 6 57 0 57 
2 4 55 1 54 
3 3 54 4 50 
4 2 53 11 42 
5 1 52 26 26 
6 0 51 51 0 

m 1 k k, k, 

0 7 120 0 120 
2 4 118 1 117 
3 4 117 4 113 
4 3 116 11 105 
5 2 115 26 89 
6 1 114 57 57 
7 0 113 113 0 

s3 = 2~ + 1. The code has at most m(t + s - 1) + 1 parity-check symbols. It 
protects the first k, = m message bits against s + I - 1 or fewer errors, the next 
kz = 2” - mt - 1 message bits against t or fewer errors, and the other message 
bits against s or fewer errors. 

Example 1. Let m = 5 and t = s = 2. Let (Y be a primitive element in GF(25). 
Consider the code generated by the following parity-check matrix: 

1 

[ 05 

1 1 1 -0. 1 0, 0, 0, . . * 0, 

1 (Y (Y2 . * - 

H= a30 05 05 OS 

- * . 

0, 

(& 1 (y3 (y6 . . . (p 1 a3 &p . . . . (ym 

05 0, 0, 0, * . . 0, 1 (y @2 . . . (y3” 1 
It is a (63,47) UEP code for the message space M = (0, l}” x (0, l}*l x (0, l}*l 
with separation vector at least (7,6,5). Note that there is a (63,45) triple-error- 
correcting BCH code and a (63,51) double-error-correcting BCH code. 

5. Direct sums of product codes 

Let V be an (N, K) linear code with minimum distance D, and W be an (n, k) 
linear code with minimum distance d. Let V CO W denote the product of V and W 
[21]. Then, V CO W is an (Nn, Nk) linear code with minimum distance Dd. A 
codeword in V 8 W can be arranged as an IZ x N array in which every row is a 
codeword in V and every column is a codeword in W. For a nonzero code array in 
V @ W, there are at least D nonzero columns and each nonzero column has at 
least d nonzero components. Hence, the weight of any nonzero code array in 
V 60 W is at least Dd. Product codes are capable of correcting both random and 
burst errors [21]. Now, we consider direct sums of certain binary product codes 
which provide burst error protection in addition to the two-level random error 
protection. 
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weight of c is 
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= D * min{d,, d,} + [(DI + Dz -f)/2] . d. 

Case 111. Suppose that there are two nonzero rows u1 and V; in c1 such that 
v1 #vi. Then there are at least D1 + [D,/2] nonzero columns in cl. This implies 
that there are at least D, + [D,/21 nonzero columns in c. Each of these nonzero 
columns is a nonzero codeword in W, @ W, and has weight at least d. Thus the 
weight of c is at least {DI + [D,/2] } - d. 

Case IV. Suppose that there are two nonzero rows, y and u; in c2 such that 
y #vi. It follows the same argument as that in Case III that w(c) 2 {D2 + 

ID,/21 > . d. 
Denote D * min{di, d,} + [(DI + 4 - D)/2] . d by A, {DI + [D,/2]} - d by A, 

and (4 + [4/2] } . d by A,. Summarizing the above results, we have the 
following weight structure of a nonzero code array c in C = VI @ WI @ V, 8 W,: 

(1) For c E VI @ W,, w(c) 2 DIdI. 

(2) For c E V, @ W,, w(c) 2 D2d2. 

(3) For c $ VI 8 WI and c 4 V, @ W,, w(c) 2 min{Dd, A, A,, A,}. 
From the above weight distribution, we see that the weight of a nonzero code 
array c in VI G0 WI @ V, 8 W, is at least min{D*d,, D2d2, bd, A, AI, A.,}. Suppose 
min{D,dl, bd, A, AI, A,} > D2d2. Then we have the following weight structure of 
a nonzero code array c in VI 8 WI @ V, @ W,: 

(1) For c E V, 8 W,, w(c) 3 D,d,. 

(2) For c E VI 8 WI @ V, @ W2 - V, @ W,, w(c) 2 min{D,d,, L?d, A, Ai, AZ}. 

It follows from Theorem 2 that C = V, 8 W, @ V, 8 W2 is a linear block code with 
a separation vector s = (sl, sJ, where 

s1 2 min{D,d*, bd, A, A,, A2}, 

s2 2 D2d2. 
(16) 

The message space for C is M = (0, l}K1kl x (0, l}@?. 

Example 2. Let VI and V, be two equivalent (7,4) Hamming codes. Let W, and 
W, be the (7,l) and (7,3) BCH codes over GF(2) respectively. Then, WI @ W, is 
a (7,4) Hamming code. The minimum distances of VI and V, are D1 = 3 

and D2 = 3 respectively. The minimum distances of WI, W,, and W, @ W, are 
dI = 7, dz = 4 and d = 3 respectively. Note that VI n V, is the (7, 1) binary 
code with minimum distance D = 7 while V, + V, is the (7,7) binary code with 
minimum distance D = 1. Thus, A = 13, A, = 15, A, = 15, bd = 21, DIdI = 21 

and D2d2= 12. Note that N =7, K1 = K2=4, n =7, k, = 1, k,=3. Since 
min{D,d,, bd, A, AI, A,} = 13 2 D2d2 = 12, we see that VI 69 WI @ V, 8 W, is a 
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two-level UEP (49,16) binary code for the message space M = Mr x M2 with 
separation vector s = (sl, sZ), where M1 = {0,1}4, M2 = (0, l}‘*, si 2 13, s2?= 12. 
We may compare this code with the product code of two (7,4) BCH codes with 
minimum distance 3, which is a (49,16) single-level binary code with minimum 
distance only 9. 

Direct sums of product codes for unequal error protection was first studied by 
Boyarinov and Katsman [16]. The lower bound on the separation vector given by 
(16) is better than the bound derived by Boyarinov and Katsman. 

Now we present a special class of direct sums of product codes. Let & and /I be 
two different primitive Nth roots of unity. Let VI be an (N, K,) binary cyclic code 
which has a; LX*, . . . , a?’ and their conjugates as zeros. Let V2 be an (iV, K2) 
binary cyclic code which has /I, /3*, . . . , P2r and their conjugates as zeros. 
Clearly, VI and V2 are equivalent codes. Hence, K1 = K2 = K and Dr = D2 2 
2t + 1, where D1 is the minimum distance of VI and 4 is the minimum distance 
of V,. If the set {(pi)2m:i= 1, 2, . . . , 2t, m is an integer} contains 
{&*r+l, a*[+*, . . . ) cY*t+a} as a subset, then VI f~ V2 includes cr, (Y*, . . . , a~*‘+~ as 
zeros. Thus, either the minimum distance b of VI fl V2 is at least 2t + 2s + 1 or 
VI fl V, = (0) which is the case that VI f~ V2 contains all the & as zeros. If the set 
{((Yi)2”:i = 1, 2, . . . , 2t and m is an integer} contains {/I, p*, , . . , p*“} as a 
subset, then VI + V2 contains p, /3*, . . . , p2u as zeros. Thus, D, the minimum 
distance of V, + V2 is at least 2u + 1. With the above codes VI and V,, if 
min((2t + l)d,, (2t + 2s + l)d, A, Ai, A,} 2 (2t + l)d2, the direct sum VI 60 WI Q3 

V, 8 W, is an (Nn, K(k, + k2)) code with separation vector s = (sr, s2) where 

s1 2 min((2t + l)dl, (2t + 2s + l)d, A, A,, A,}, 

s* 2 (2t + l)d*, 

A = (2~4 + 1) - min{di, d2} + (2t - u + l)d, 

A1 = A* = (3t + 2)d. 

Example 3. Let (Y be a primitive element in GF(25). Let VI be a (31,21) BCH 
code with minimum distance D1 = 5, which contains a; a3 and their conjugates as 
zeros. Let V2 be a (31,21) BCH code with minimum distance D2 = 5, which 
contains a’, (a3)3, and their conjugates as zeros. Since (Y~ is a conjugate of (Ye, 
V, n V, includes a, cx3, (Ye, and their conjugates as zeros. Since VI fl V, # {0}, the 
minimum distance B of VI n V2 is at least 7. Furthermore, the minimum distance 
D of V, + V2 is at least 3, since a3 is a zero for both VI and V,. Let WI and W, be 
(7,l) and (7,3) BCH code over GF(2). Thus, the minimum distance of WI is 
d1 = 7 and the minimum distance of W2 is d2 = 4. Furthermore, WI @ W2 is a (7,4) 

BCH code over GF(2) with minimum distance d = 3. Thus, t = 2, s = 1, u = 1, 
A =24, A1 =A, =24, bd ~21, D,d, =35, and D2d2 =20. Note that N =31, 
n = 7, kI = 1, k2 = 3, K1 = K2 = 21. Since min{D,d,, bd, A, A,, A2} 2 212 
D2d2= 20, VI @ WI @ V2@ W2 is a (217,84) binary two-level UEP for the 
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Table 2. Some direct sums of product codes for unequal error protection 
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N Ki D, D b n k, k, d, d, d Nn K,k, K,k, s, s2 t, 

15 10 4 2 6 17 1 8 17 6 5 255 10 80 27 24 30 
15 10 4 2 6 7 1 3 7 4 3 105 10 30 17 16 15 
15 10 4 2 6 15 1 10 15 4 3 225 10 100 17 16 15 
15 10 4 2 6 15 1 6 15 6 5 225 10 60 27 24 30 
15 10 4 2 6 15 2 5 10 7 5 225 20 50 29 28 30 
31 21 5 3 7 15 1 10 15 4 3 465 21 210 21 20 31 
31 21 5 3 7 15 1 6 15 6 5 465 21 126 35 30 62 
31 21 5 3 7 15 2 5 10 7 5 465 42 105 35 35 62 

message space M = M, x iV& with separation vector s = (sr, s2) where MI = 
(0, 1}2l, M2 = (0, 1}63, s1 2 21, and s2 2 20. Note that the product code of a (7,4) 
Hamming code with minimum distance 3 and a (31,21) BCH code with minimum 
distance 5 is a (217,84) linear code with minimum distance 15 which is inferior to 
the (217,84) direct-sum code. 

Suppose we transmit each code array in VI 63 WI 63 V, C3 W, row by row. By a 
proof similar to that for simple product codes [21], it can be shown that the code 
VI C3 WI @ V, (23 W, can correct any error-burst of length up to N * [(d - 1)/2] in 
addition to the random-error-correcting capabilities represented by its separation 
vector. Consider the (217,84) binary code illustrated in Example 3. For this code 
21 message bits of a message are protected against up to 10 random errors and 
any error burst of length up to 31, while the other 63 message bits of the same 
message are protected against up to 9 random errors and any error of length up to 
31. 

Some direct-sums of product codes are listed in Table 2 where te denotes the 
maximum length of correctable burst errors. Let (Y and /3 be primitive elements in 
GF(24) and GF(2’) respectively. For N = 15, VI and Vz are binary BCH codes 
with (1, LY, (Y*, (Ye, (w”} and (1, (Ye, a14, ar3, all} as zeros respectively. For 
N = 31, VI and V2 are binary BCH codes with (6, /3*, /34, pa, j316, p3, /3’, p”, 
/324, p”} and {p3, p6, /3l*, /3”, p17, p9, /I”, /3’, @‘, /3”“} as zeros respectively. 
All W, and W2 are binary BCH codes. 
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