CODES WITH MULTI-LEVEL ERROR-CORRECTING CAPABILITIES*

Mao-Chao LIN
National Taiwan University, Taipei, Taiwan, ROC

Shu LIN
University of Hawaii, Honolulu, Hawaii 96822, USA
Received 29 December 1987
Revised 29 August 1988

Abstract

In conventional channel coding, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some circumstances, some information symbols in a message are more significant than the other symbols. As a result, it is desirable to devise codes with multi-level error-correcting capabilities. In this paper, we investigate block codes with multi-level error-correcting capabilities, which are also known as unequal error protection (UEP) codes. Several classes of UEP codes are constructed. One class of codes satisfies the Hamming bound on the number of parity-check symbols for systematic linear UEP codes and hence is optimal.

1. Introduction

In conventional channel coding, all the information symbols of a message are regarded equally significant, and hence redundant (or parity-check) symbols are added to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other information symbols in the same message. Therefore, it is desirable to devise coding schemes which provide higher protection for the more significant information symbols. Suppose a message from an information source consists of m parts, each has a different level of significance and requires a different level of protection against channel errors. An obvious way to accomplish this is to use a separate code for each message part and then time share the codes. The redundant symbols of each code are designed to provide an appropriate level of error-correcting capability for the corresponding message part. This encoding scheme requires a separate encoder and decoder pair for each code. A more efficient way is to devise a single code for all the message parts. The redundant symbols are designed to provide m levels of error protection for m parts of a message. It has been proved that a single code with m levels of

[^0]error-correcting capability usually requires less redundant symbols than that required by time-sharing m separate codes with the same m levels of errorcorrecting capability [1-8]. Moreover, a single code requires only one encoder and one decoder. This may be desirable in many situations. A code with multi-levels of error-correcting capabilities is known as an unequal error protection (UEP) code. UEP codes were first studied by Masnick and Wolf [9], than by other coding theorists [5,6,10-20].

In this paper, we investigate codes with multi-level error-correcting capabilities. Two classes of multi-level UEP codes are presented. Each code in the first class is obtained by combining codes of shorter lengths. We find that a subclass of such codes meets the Hamming bound on the parity-check symbols for systematic linear UEP codes. Each of the second class of codes is achieved by taking direct sums of product codes. The minimum distances of such codes are greater than those for the simple product codes of comparable dimensions, besides, some message bits have extra error protection.

2. Cloud structure and the separation vector of a block code

Let $\{0,1\}^{n}$ denote the vector space of all n-tuples over the binary field GF(2). Let V and W be two subsets of $\{0,1\}^{n}$. Let \boldsymbol{v} and \boldsymbol{w} denote two vectors from V and W respectively. We define the separation between V and W, denoted $d(V, W)$, as follows:

$$
\begin{equation*}
d(V, W) \triangleq \min \{d(\boldsymbol{v}, \boldsymbol{w}): \boldsymbol{v} \in V \text { and } \boldsymbol{w} \in W\}, \tag{1}
\end{equation*}
$$

where $d(\boldsymbol{v}, \boldsymbol{w})$ denotes the Hamming distance between \boldsymbol{v} and \boldsymbol{w}. Clearly the separation $d(V, W)$ between V and W is simply a measure of distance between the two sets, V and W. Let r be a vector in $\{0,1\}^{n}$. Then it is easy to show that the separations between $\{r\}, V$ and W satisfy the following triangle inequality,

$$
\begin{equation*}
d[\{\boldsymbol{r}\}, V]+d[\{\boldsymbol{r}\}, W] \geqslant d(V, W) \tag{2}
\end{equation*}
$$

Consider a message space M which is the product of m component message spaces, $M_{1}, M_{2}, \ldots, M_{m}$. For $1 \leqslant i \leqslant m$, let \boldsymbol{x}_{i} denote a message from the message space M_{i}. Then the product space M consists of the following set of m-tuples,

$$
\begin{equation*}
M=\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right): x_{i} \in M_{i} \text { for } 1 \leqslant i \leqslant m\right\} . \tag{3}
\end{equation*}
$$

Let C be a binary block code of length n for the product message space M. Let $\boldsymbol{v}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m}\right)$ denote the codeword for the message ($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m}$) from M. Let a be a specific message in M_{i}. Consider the following subset of codewords in C,

$$
\begin{equation*}
Q_{i}(a)=\left\{v\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{m}\right): \boldsymbol{x}_{j} \in M_{j} \text { for } 1 \leqslant j \leqslant m \text { and } j \neq i\right\} \tag{4}
\end{equation*}
$$

This set $Q_{i}(a)$ is called an i-cloud of C corresponding to the message a in M_{i}.

There are $\left|M_{i}\right| i$-clouds in C corresponding to $\left|M_{i}\right|$ messages in M_{i}. These i-clouds form a partition of C. For two distinct i-clouds, $Q_{i}(\boldsymbol{a})$ and $Q_{i}(\boldsymbol{b})$, the separation between them is $d\left(Q_{i}(\boldsymbol{a}), Q_{i}(\boldsymbol{b})\right)$. Then we define the minimum separation among the i-clouds of C as follows:

$$
\begin{equation*}
\left.s_{i} \triangleq \min \left\{d Q_{i}(\boldsymbol{a}), Q_{i}(\boldsymbol{b})\right): \boldsymbol{a}, \boldsymbol{b} \in M_{i} \text { and } \boldsymbol{a} \neq \boldsymbol{b}\right\} \tag{5}
\end{equation*}
$$

It follows from (1), (4) and (5) that

$$
\begin{aligned}
& s_{i}=\min \{d {\left[\boldsymbol{v}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{m}\right), \boldsymbol{v}\left(\boldsymbol{x}_{1}^{\prime}, \ldots, \boldsymbol{x}_{i}^{\prime}, \ldots, \boldsymbol{x}_{m}^{\prime}\right)\right]: } \\
&\left.\boldsymbol{x}_{l}, \boldsymbol{x}_{l}^{\prime} \in M_{l} \text { for } 1 \leqslant l \leqslant m \text { and } x_{i} \neq x_{i}^{\prime}\right\} .
\end{aligned}
$$

Geometrically, we may view that the code C consists of $\left|M_{i}\right| i$-clouds, where any two i-clouds are separated by a distance at least s_{i}. This distance structure of i-clouds determines the level of error protection for component message $\boldsymbol{x}_{\boldsymbol{i}}$. The m-tuple,

$$
s \triangleq\left(s_{1}, s_{2}, \ldots, s_{m}\right)
$$

is called the separation vector of the block code C for the product space $M=M_{1} \times M_{2} \times \cdots \times M_{m}$. This separation vector determines the levels of error protection for the m component messages, $x_{1}, x_{2}, \ldots, x_{m}$. We readily see that the minimum Hamming distance of C is $d_{\text {min }}=\min \left\{s_{i}: 1 \leqslant i \leqslant m\right\}$.

Now we are ready to show that the minimum separation s_{i} of the i-clouds of a block code C determines the level of error protection (or error correction) for the i th component message $\boldsymbol{x}_{\boldsymbol{i}}$ from $\boldsymbol{M}_{\boldsymbol{i}}$. To do this we devise a nearest cloud decoding algorithm for which each component message is decoded independently. Suppose a codeword \boldsymbol{v} is transmitted and a vector \boldsymbol{r} is received. To decode the i th component message, we compute the separation between $\{\boldsymbol{r}\}$ and every i-cloud. Let $Q_{i}(a)$ be the i-cloud such that

$$
d\left[\{\boldsymbol{r}\}, Q_{i}(\boldsymbol{a})\right]<d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}\right)\right]
$$

for any $\boldsymbol{x}_{i} \in M_{i}$ and $\boldsymbol{x}_{i} \neq \boldsymbol{a}$. Then the i th component message is decoded into \boldsymbol{a}. The i th component message contained in r will be decoded correctly provided that there are $\left\lfloor\left(s_{i}-1\right) / 2\right\rfloor$ or fewer transmission errors in r. To see this, let $\boldsymbol{v}=\boldsymbol{v}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m}\right)$ be the transmitted codeword. For $\boldsymbol{x}_{\boldsymbol{i}}^{\prime} \neq \boldsymbol{x}_{i}$, it follows from (2) that

$$
\begin{equation*}
d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}\right)\right]+d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right] \geqslant d\left[Q_{i}\left(\boldsymbol{x}_{i}\right), Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right] . \tag{6}
\end{equation*}
$$

Since $d\left[Q_{i}\left(\boldsymbol{x}_{i}\right), Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right] \geqslant s_{i}$ and $d(\boldsymbol{r}, \boldsymbol{v}) \geqslant d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}\right)\right]$, we have

$$
\begin{equation*}
d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right] \geqslant s_{i}-d(\boldsymbol{r}, \boldsymbol{v}) \tag{7}
\end{equation*}
$$

If there are $t_{i}=\left\lfloor\left(s_{i}-1\right) / 2\right\rfloor$ or fewer transmission errors in r, then $d(r, v) \leqslant t_{i}$. It follows from (6) and (7) that $d\left[\{\boldsymbol{r}\}, Q_{i}(\boldsymbol{x})\right] \leqslant t_{i}$ and $d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right]>t_{i}$. Hence, $d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}\right)\right]<d\left[\{\boldsymbol{r}\}, Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right]$ for $\boldsymbol{x}_{i} \neq \boldsymbol{x}_{i}^{\prime}$. Thus, the decoding algorithm described above results in the correct i-cloud, $Q_{i}\left(x_{i}\right)$, and hence the correct component
message x_{i}. However, if there are more than t_{i} errors in the received vector r, the inequality $d\left[\{r\}, Q_{i}\left(\boldsymbol{x}_{i}\right)\right]<d\left[\{r\}, Q_{i}\left(\boldsymbol{x}_{i}^{\prime}\right)\right]$ for $\boldsymbol{x}_{i} \neq \boldsymbol{x}_{i}^{\prime}$ may not hold. As a result, the i th component message is decoded incorrectly into some $\boldsymbol{x}_{i}^{\prime} \neq \boldsymbol{x}_{i}$. Theorem 1 characterizes the multi-level error-correcting capabilities of a block code.

Theorem 1. Let C be a block code for the product of m message spaces, $M_{1}, M_{2}, \ldots, M_{m}$. Let $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ be the separation vector of C. Then, for $1 \leqslant i \leqslant m$, the i th component message contained in a received vector can be correctly decoded provided that the number of transmission errors in the received vector is $\left\lfloor\left(s_{i}-1\right) / 2\right\rfloor$ or less.

A code C with a separation vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ is called a $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-error-correcting code where $t_{i}=\left\lfloor\left(s_{i}-1\right) / 2\right\rfloor$ for $1 \leqslant i \leqslant m$ and is the error correcting capability of the code for the i th component message \boldsymbol{x}_{i}. If $t_{1}, t_{2}, \ldots, t_{m}$ are all distinct, then C provides m levels of error-correcting capabilities, one for each component message. In this case, C is called a m-level error-correcting code or a m-level UEP code. Without loss of generality, we assume that $s_{1} \geqslant s_{2} \geqslant \cdots \geqslant s_{m}$ throughout of this paper.

The concept of separation vector was first introduced by Dunning and Robbins [13]. The separation vector defined in this paper is a generalization of Dunning and Robbins', which applies for either linear or nonlinear codes. Note that the minimum separation s_{i} for the i-clouds depends on how a code is partitioned into the i-clouds. Different encoding (or mapping) of M onto C yields different partitions of C. As a result, the separation vector of C depends on the encoding mapping.

3. Direct-sum codes for unequal error protection

An approach for constructing multi-level UEP codes is to take direct-sums of linear component codes. For $1 \leqslant i \leqslant m$, let C_{i} be a binary $\left(n, k_{i}\right)$ linear block code for the message space $M_{i}=\{0,1\}^{k_{i}}$. For $i \neq j$, we require that $C_{i} \cap C_{j}$ contains only the all-zero n-tuple 0 . Let $\boldsymbol{v}\left(\boldsymbol{x}_{i}\right)$ denote the codeword in C_{i} for the message $x_{i} \in M_{i}$. Let C be the direct-sum of $C_{1}, C_{2}, \ldots, C_{m}$, denoted $C=C_{1} \oplus C_{2} \oplus$ $\cdots \oplus C_{m}$. Then C is an (n, k) linear code for the product message space $M=M_{1} \times M_{2} \times \cdots \times M_{m} \quad$ where $k=k_{1}+k_{2}+\cdots+k_{m}$. For any message $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ in M, the corresponding codeword is

$$
\begin{equation*}
v\left(x_{1}, x_{2}, \ldots, x_{m}\right)=v\left(x_{1}\right)+v\left(x_{2}\right)+\cdots+v\left(x_{m}\right) \tag{8}
\end{equation*}
$$

Let $\left\{j_{1}, j_{2}, \ldots, j_{l}\right\}$ be a subset of $\{1,2, \ldots, m\}$. Consider the direct-sum,

$$
C\left(j_{1}, j_{2}, \ldots, j_{l}\right)=C_{j_{1}} \oplus C_{j_{2}} \oplus \cdots \oplus C_{j_{i}}
$$

Then $C\left(j_{1}, j_{2}, \ldots, j_{i}\right)$ is a subcode of C. An i-cloud of C for the component
message \boldsymbol{x}_{i} from M_{i} is simply the following set:

$$
Q_{i}\left(\boldsymbol{x}_{i}\right)=\boldsymbol{v}\left(\boldsymbol{x}_{i}\right) \oplus C(1, \ldots, i-1, i+1, \ldots, m)
$$

The vector $\boldsymbol{v}\left(\boldsymbol{x}_{i}\right)$ is in the i-cloud $Q_{i}\left(\boldsymbol{x}_{i}\right)$ and is called the center of $Q_{i}\left(\boldsymbol{x}_{i}\right)$. A vector in $Q_{i}\left(\boldsymbol{x}_{i}\right)$ is of the form $\boldsymbol{v}\left(\boldsymbol{x}_{i}\right)+\boldsymbol{w}$, where $\boldsymbol{w} \in C(1, \ldots, i-1, i+$ $1, \ldots, m)$.

Let $w(\boldsymbol{v})$ denote the Hamming weight of the vector \boldsymbol{v}. Since $d(\boldsymbol{v}, \boldsymbol{u})=$ $w(v+u)$, the minimum separation of the i-clouds of C is

$$
\begin{equation*}
s_{i}=\min \left\{w\left[v\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)\right]: x_{i} \neq 0\right\} \tag{9}
\end{equation*}
$$

Theorem 2. Consider an (n, k) linear code C which is the direct sum of codes $C_{1}, C_{2}, \ldots, C_{m}$, where C_{i} is an (n, k_{i}) linear code for the component message space $M_{i}=\{0,1\}^{k_{i}}$ for $1 \leqslant i \leqslant m$. If the minimum weight of codewords in $C-C(i+1, i+2, \ldots, m)$ is at least d_{i} and $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{m}$, then C is an m-level error-correcting code for the product message space $M=M_{1} \times M_{2} \times$ $\cdots M_{m}$ with separation vector $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$, where $s_{i} \geqslant d_{i}$ for $i=$ $1,2, \ldots, m$.

Proof. Note that for each codeword in $C(i+1, i+2, \ldots, m)$, the corresponding component message $x_{1}, x_{2}, \ldots, x_{i}$ are all zero. Each codeword of C, $\boldsymbol{v}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{m}\right)$ with $\boldsymbol{x}_{i} \neq 0$, is not in $C(i+1, i+2, \ldots, m)$ and hence has weight at least d_{i}. The proof then follows from (9).

Theorem 2 describes a method of constructing multi-level UEP codes by taking direct sums of linear component codes. With this method, we are able to construct two classes of UEP codes.

4. Construction of linear multi-level UEP codes by combining shorter codes

Let $\boldsymbol{H}_{a a}$ and $\boldsymbol{H}_{a}=\left[\boldsymbol{H}_{a a}^{\mathrm{T}} \boldsymbol{H}_{a b}^{\mathrm{T}}\right]^{\mathrm{T}}$ be the parity-check matrices of an $\left(n_{a}, \boldsymbol{k}_{a}+r\right)$ linear code $C_{a a}$ and an (n_{a}, k_{a}) linear code C_{a} respectively, where $\boldsymbol{H}_{a a}$ is an $\left(n_{a}-k_{a}-r\right) \times n_{a}$ matrix, $\boldsymbol{H}_{a b}$ is a $r \times n_{a}$ matrix, \boldsymbol{H}_{a} is an $\left(n_{a}-k_{a}\right) \times n_{a}$ matrix and T denotes the transpose operation. Let $\boldsymbol{H}_{b b}$ and $\boldsymbol{H}_{b}=\left[\boldsymbol{H}_{b b}^{\mathrm{T}} \boldsymbol{H}_{b b}^{\mathrm{T}}\right]^{\mathrm{T}}$ be the parity-check matrices of an ($n_{b}, k_{b}+r$) linear code $C_{b b}$ and an (n_{b}, k_{b}) linear code C_{b} respectively, where $\boldsymbol{H}_{b b}$ is an $\left(n_{b}-k_{b}-r\right) \times n_{b}$ matrix, $\boldsymbol{H}_{b a}$ is a $r \times n_{b}$ matrix and \boldsymbol{H}_{b} is an $\left(n_{b}-k_{b}\right) \times n_{b}$ matrix. Consider the ($\left.n_{a}+n_{b}, k_{a}+k_{b}+r\right)$ linear code C with the following parity-check matrix,

$$
\boldsymbol{H}=\left[\begin{array}{cc}
\boldsymbol{H}_{a a} & \mathbf{0} \tag{10}\\
\boldsymbol{H}_{a b} & \boldsymbol{H}_{b a} \\
\mathbf{0} & \boldsymbol{H}_{b b}
\end{array}\right],
$$

where 0 represents a zero matrix of proper dimension. Let C_{2} be the $\left(n_{a}+n_{b}, k_{a}\right)$ subcode of C such that each codeword in C_{2} is the concatenation of a codeword in C_{a} and the all-zero n_{b}-tuple. Let C_{3} be the $\left(n_{a}+n_{b}, k_{b}\right)$ subcode of C such that every codeword in C_{3} is the concatenation of the all-zero n_{a}-tuple and a codeword in C_{b}. Since $C_{2} \oplus C_{3}=C(2,3)$ is an $\left(n_{a}+n_{h}, k_{a}+k_{b}\right)$ subcode of C, there must exist r linear independent codewords in $C-C(2,3)$. These r linear independent codewords span an $\left(n_{a}+n_{b}, r\right)$ linear subcode C_{1} of C. We readily see that C is the direct sum of C_{1}, C_{2}, and C_{3}, i.e. $C=C_{1} \oplus C_{2} \oplus C_{3}$.
Let $d_{a a}, d_{b b}, d_{a}$ and d_{b} be the minimum distances of $C_{a a}, C_{b b}, C_{a}$ and C_{b} respectively. Suppose $d_{a a}+d_{b b} \geqslant d_{a} \geqslant d_{b}$. Now we examine the distance structure of C. Any codeword \boldsymbol{v} in C can be expressed as $\boldsymbol{v}=\left(\boldsymbol{v}_{a}, \boldsymbol{v}_{b}\right)$ where \boldsymbol{v}_{a} is an n_{a}-tuple and \boldsymbol{v}_{b} is an n_{b}-tuple. Then $\left(\boldsymbol{v}_{a}, \boldsymbol{v}_{b}\right) \cdot \boldsymbol{H}^{\mathrm{T}}=0$. This implies that $\boldsymbol{v}_{a} \cdot \boldsymbol{H}_{a a}^{\mathrm{T}}=$ 0 and $\boldsymbol{v}_{b} \cdot \boldsymbol{H}_{b b}^{\mathrm{T}}=0$. Thus, \boldsymbol{v}_{a} is a codeword in $C_{a a}$ and \boldsymbol{v}_{b} is a codeword in $C_{b b}$. Consider a codeword ($\boldsymbol{v}_{a}, \boldsymbol{v}_{b}$) in $C-C(2,3)$. Then, $\boldsymbol{v}_{a} \neq 0$ and $\boldsymbol{v}_{b} \neq 0$. Hence, the weight of any codeword v in $C-C(2,3)$ is at least $d_{a a}+d_{b b}$. For any codeword ($\boldsymbol{v}_{a}, \boldsymbol{v}_{b}$) in $C-C_{3}$, either it is in C_{2}, or both \boldsymbol{v}_{a} and \boldsymbol{v}_{b} are not zero. For the former case, the weight of the codeword is at least d_{a}. For the latter case, the weight of the codeword is at least $d_{a a}+d_{b b}$. Since $d_{a a}+d_{b b} \geqslant d_{a}$, the minimum weight of codewords in $C-C_{3}$ is d_{a}. Since $d_{a a}+d_{b b} \geqslant d_{a} \geqslant d_{b}$, we can easily see that the minimum weight of C is d_{b}. It follows from Theorem 2 that, for $d_{a a}+d_{b b} \geqslant d_{a} \geqslant d_{b}$, the code C with the parity-check matrix \boldsymbol{H} of (10) is a linear block code for the product message space $M=\{0,1\}^{r} \times\{0,1\}^{k_{a}} \times\{0,1\}^{k_{b}}$ with separation vector $s=\left(s_{1}, s_{2}, s_{3}\right)$ where $s_{1} \geqslant d_{a a}+d_{b b}, s_{2} \geqslant d_{a}$ and $s_{3}=d_{b}$.

A generator matrix for the code C with a parity-check matrix of the form given by (10) can be formed easily. Let \boldsymbol{G}_{a} and \boldsymbol{G}_{b} be the generator matrices for the $\left(n_{a}, k_{a}\right)$ code C_{a} and (n_{b}, k_{b}) code C_{b} respectively. Let $\left[\boldsymbol{G}_{a}^{\mathrm{T}} \boldsymbol{G}_{a a}^{\mathrm{T}}\right]^{\mathrm{T}}$ and $\left[\boldsymbol{G}_{b}^{\mathrm{T}} \boldsymbol{G}_{b b}^{\mathrm{T}}\right]^{\mathrm{T}}$ be generator matrices for the $\left(n_{a}, k_{a}+r\right)$ code $C_{a a}$ and the ($n_{b}, k_{b}+r$) code $C_{b b}$ respectively. Then the following $\left(k_{a}+k_{b}+r\right) \times\left(n_{a}+n_{b}\right)$ matrix,

$$
\boldsymbol{G}=\left[\begin{array}{cc}
\boldsymbol{G}_{a a} & \boldsymbol{G}_{b b} \tag{11}\\
\boldsymbol{G}_{a} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{G}_{b}
\end{array}\right]
$$

is a generator matrix for \boldsymbol{C} where $\left[\boldsymbol{G}_{a a} \boldsymbol{G}_{b b}\right],\left[\boldsymbol{G}_{a} \mathbf{0}\right]$ and $\left[\mathbf{0} \boldsymbol{G}_{b}\right.$] generate the $\left(n_{a}+n_{b}, r\right)$ code C_{1}, the $\left(n_{a}+n_{b}, k_{a}\right)$ code C_{2} and the $\left(n_{a}+n_{b}, k_{b}\right)$ code C_{3} respectively.

In the following, we present two special classes of linear UEP codes with parity-check matrices of the form given by (10). Let α be a primitive element in $\mathrm{GF}\left(2^{m}\right)$. Every nonzero element in $\mathrm{GF}\left(2^{m}\right)$ can be expressed as a power of α and can be represented by a nonzero m-tuple over GF(2) (in column form). For any nonnegative integer l, let $\beta_{1}, \beta_{2}, \ldots, \beta_{2^{m+1}-2^{m}}$ represent all the ($m+l$)-tuples over GF(2) (in column form) for which the last l components are not all zero.

Consider the binary code C associated with the following parity-check matrix:

$$
\left.\boldsymbol{H}=\left[\begin{array}{cccccccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{2^{m}-2} & \vdots & 0_{m} & 0_{m} & \cdots & 0_{m} \tag{12}\\
1 & \alpha^{3} & \alpha^{6} & \cdots & \alpha^{3\left(2^{m}-2\right)} & \vdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] \cdots \cdots \cdot\right\}
$$

where each power of α is represented by an m-tuple in column form, 0_{l} is a column of l zeros and 0_{m} is a column of m zeros. The matrix \boldsymbol{H} consists of $2 m+l$ rows and $2^{m+l}-1$ columns, and hence the code C associated with \boldsymbol{H} is a ($2^{m+t}-1,2^{m+t}-2 m-l-1$) linear code over GF(2). Note that the \boldsymbol{H} matrix has the form given by (10) where

$$
\left.\begin{array}{rl}
\boldsymbol{H}_{a} & =\left[\begin{array}{l}
\boldsymbol{H}_{a a} \\
\boldsymbol{H}_{a b}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{3} & \cdots & \alpha^{2^{m}-2} \\
1 & \alpha^{3} & \alpha^{6} & \cdots & \alpha^{3\left(2^{m}-2\right)}
\end{array}\right] \\
\boldsymbol{H}_{b} & =\left[\begin{array}{l}
\boldsymbol{H}_{b a} \\
\boldsymbol{H}_{b b}
\end{array}\right]=\left[\begin{array}{llll}
\beta_{1} & \beta_{2} & \cdots & \beta_{2^{m+1}-2^{m}}
\end{array}\right] \\
\boldsymbol{H}_{a a} & =\left[\begin{array}{llll}
1 & \alpha & \alpha^{3} & \cdots
\end{array} \alpha^{2^{m}-2}\right.
\end{array}\right] \quad \begin{array}{ll}
\boldsymbol{H}_{b b} & =\text { some } l \times\left(2^{m+1}-2^{m}\right) \text { matrix which has no zero column. }
\end{array}
$$

The codes, $C_{a a}$ and C_{a}, generated by parity-check matrices $\boldsymbol{H}_{a a}$ and \boldsymbol{H}_{a} are simply the Hamming and double-error-correcting BCH codes of length $2^{m}-1$ respectively. Hence, $d_{a a}=3$ and $d_{a}=5$. The code C_{b} generated by the paritycheck matrix \boldsymbol{H}_{b} is a shortened Hamming code with minimum distance $d_{b}=3$, and the code $C_{b b}$ generated by the parity-check matrix $\boldsymbol{H}_{b b}$ has minimum distance $d_{b b}=2$. As a result, C is a code for the product message space $M=M_{1} \times M_{2} \times M_{3}$ where $M_{1}=\{0,1\}^{m}, M_{2}=\{0,1\}^{2^{m}-2 m-1}$ and $M_{3}=\{0,1\}^{2^{m+1}-2^{m-m-1}}$. The separation vector of C is $s=\left(s_{1}, s_{2}, s_{3}\right)$ where $s_{1} \geqslant d_{a a}+d_{b b}=5, s_{2} \geqslant d_{a}=5$, and $s_{3}=d_{b}=3$. For this code, the first $2^{m}-m-1$ message bits of a message are protected against up to 2 random errors while the next $2^{m+l}-2^{m}-m-l$ message bits against any single error. Hence, it is a $(2,1)$-error-correcting code.

For $m=0, C$ becomes a conventional single-error-correcting Hamming code of length $2^{l}-1$. For $l=0, C$ reduces to a primitive double-error-correcting BCH code of length $2^{m}-1$. For $m=l, C$ is equivalent to Boyarinov-Katsman UEP code [16]. The code C can be transformed into systematic form with identical two-level error-correcting capability.

A lower bound (equivalent to the Hamming bound for single-level errorcorrecting codes) on the number of parity-check bits for systematic linear UEP codes has been derived by Masnick and Wolf [9], and van Gils [20]. It follows from Theorem 2 of [9] that, for a two-level $\left(t_{1}, t_{2}\right)$-error-correcting code of length n, the number of parity-check bits satisfies the following inequality:

$$
\begin{equation*}
2^{n-k} \geqslant 1+\sum_{i=1}^{t_{2}}\binom{n}{i}+\sum_{j=t_{2}+1}^{t_{1}} \sum_{i=0}^{t_{2}}\binom{n-k_{1}}{i}\binom{k_{1}}{j-i} . \tag{13}
\end{equation*}
$$

Consider a two-level UEP code with the following parameters: $n=2^{m+l}-1$, $k_{1}=2^{m}-m-1, t_{1}=2, t_{2}=1$. It follows from the Hamming bound given by (13) that

$$
\begin{align*}
2^{n-k} & \geqslant 2^{-1} \cdot\left\{2^{2 m+l+1}-(2 m) \cdot 2^{m+l}-\left(2^{m}-2 m+1\right) \cdot 2^{m}-\left(m^{2}-m\right)+2\right\} \\
& =2^{-1} \cdot\left\{2^{2 m+l}+\Delta\right\}, \tag{14}
\end{align*}
$$

where $\quad \Delta=2^{m+l}\left(2^{m-1}-2 m\right)+2^{2 m}\left(2^{l-1}-1\right)+(2 m-2) \cdot 2^{m}+\left(2^{m}-m^{2}+m+2\right)$. For either $m=3$ and $l=3$, or $m \geqslant 4$ and $l \geqslant 1$, the number Δ is greater than zero. Hence, it follows from (14) that $n-k>2 m+l-1$. This is to say that the number of parity-check symbols required for a two-level linear systematic UEP code with parameters, $n=2^{m+l}-1, k_{1}=2^{m}-m-1, t_{1}=2$ and $t_{2}=1$ is at least $2 m+l$. The two-level UEP code given by the parity-check matrix \boldsymbol{H} of (12) has exactly $2 m+l$ parity-check symbols. Hence, under the condition that $m=3, l=3$, or $m \geqslant 4$ and $l \geqslant 1$, the code meets the Hamming bound of (13) and hence is optimal. A list of codes with lengths 63 and 127 is given in Table 1 for various m and l, where $k_{1}=2^{m}-m-1$ and $k_{2}=2^{m+l}-2^{m}-m-l$ and $k=k_{1}+k_{2}$. For example, there is a $(63,52)$ code which provides protection for the first 26 message bits against up to 2 random errors and protection for the next 26 message bits against any single error.

The second class of linear UEP codes with parity-check matrices of the form given by (10) is specified by the following submatrices:

$$
\begin{align*}
\boldsymbol{H}_{a a} & =\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0_{m} & 1 & \alpha & \cdots & \alpha^{2^{m}-2} \\
0_{m} & 1 & \alpha^{3} & \cdots & \left(\alpha^{3}\right)^{2^{m}-2} \\
\vdots & \vdots & \vdots & & \vdots \\
0_{m} & 1 & \alpha^{2 t-3} & \cdots & \left(\alpha^{2 t-3}\right)^{2^{m}-2}
\end{array}\right] \\
\boldsymbol{H}_{a b} & =\left[\begin{array}{lllll}
0_{m} & 1 & \alpha^{2 t-1} & \cdots & \left(\alpha^{2 t-1}\right)^{2^{m}-2}
\end{array}\right] \tag{15}\\
\boldsymbol{H}_{b a} & =\left[\begin{array}{llll}
1 & \alpha^{2 s-1} & \cdots & \left(\alpha^{2 s-1}\right)^{2^{m}-2}
\end{array}\right] \\
\boldsymbol{H}_{b b} & =\left[\begin{array}{cccc}
1 & \alpha^{2 s-3} & \cdots & \left(\alpha^{2 s-3}\right)^{2^{m}-2} \\
\vdots & \vdots & & \vdots \\
1 & \alpha^{3} & \cdots & \left(\alpha^{3}\right)^{2^{m}-2} \\
1 & \alpha & \cdots & \alpha^{2^{m}-2}
\end{array}\right]
\end{align*}
$$

where $s \leqslant t$. Note that $\boldsymbol{H}_{a a}$ and $\boldsymbol{H}_{a}=\left[\boldsymbol{H}_{a a}^{\mathrm{T}} \boldsymbol{H}_{a b}^{\mathrm{T}}\right]^{\mathbf{T}}$ are parity-check matrices of an extended ($t-1$)-error-correcting and an extended t-error-correcting primitive BCH codes of length 2^{m} respectively. Also note that $\boldsymbol{H}_{b b}$ and $\boldsymbol{H}_{b}=\left[\boldsymbol{H}_{b b}^{\mathrm{T}} \boldsymbol{H}_{b a}^{\mathrm{T}}\right]^{\mathrm{T}}$ are parity-check matrices of an ($s-1$)-error-correcting and an s-error-correcting primitive BCH codes of length $2^{m}-1$ respectively. We require that $\boldsymbol{H}_{u b}$ and $\boldsymbol{H}_{b u}$ have the same dimension, i.e. $\alpha^{2 t-1}$ and $\alpha^{2 s-1}$ from the same subfield of $\mathrm{GF}\left(2^{m}\right)$. The submatrices of (15) arranged in the form of (10) generate a linear UEP code with a separation vector $s=\left(s_{1}, s_{2}, s_{3}\right)$ where $s_{1} \geqslant 2(t+s)-1, s_{2} \geqslant 2 t+2$ and

Table 1. A list of $(2,1)$-error-correcting codes.

Codes of length 63													Codes of length 127				
m	l	k	k_{1}	k_{2}		m	l	k	k_{1}	k_{2}							
0	6	57	0	57		0	7	120	0	120							
2	4	55	1	54	2	4	118	1	117								
3	3	54	4	50	3	4	117	4	113								
4	2	53	11	42	4	3	116	11	105								
5	1	52	26	26	5	2	115	26	89								
6	0	51	51	0	6	1	114	57	57								
					7	0	113	113	0								

$s_{3}=2 s+1$. The code has at most $m(t+s-1)+1$ parity-check symbols. It protects the first $k_{1}=m$ message bits against $s+t-1$ or fewer errors, the next $k_{2}=2^{m}-m t-1$ message bits against t or fewer errors, and the other message bits against s or fewer errors.

Example 1. Let $m=5$ and $t=s=2$. Let α be a primitive element in $\operatorname{GF}\left(2^{5}\right)$. Consider the code generated by the following parity-check matrix:

$$
\boldsymbol{H}=\left[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & \cdots & 1 & 0_{1} & 0_{1} & 0_{1} & \cdots & 0_{1} \\
0_{5} & 1 & \alpha & \alpha^{2} & \cdots & \alpha^{30} & 0_{5} & 0_{5} & 0_{5} & \cdots & 0_{5} \\
0_{5} & 1 & \alpha^{3} & \alpha^{6} & \cdots & \alpha^{90} & 1 & \alpha^{3} & \alpha^{6} & \cdots & \alpha^{90} \\
0_{5} & 0_{5} & 0_{5} & 0_{5} & \cdots & 0_{5} & 1 & \alpha & \alpha^{2} & \cdots & \alpha^{30}
\end{array}\right] .
$$

It is a $(63,47)$ UEP code for the message space $M=\{0,1\}^{5} \times\{0,1\}^{21} \times\{0,1\}^{21}$ with separation vector at least $(7,6,5)$. Note that there is a $(63,45)$ triple-errorcorrecting BCH code and a $(63,51)$ double-error-correcting BCH code.

5. Direct sums of product codes

Let V be an (N, K) linear code with minimum distance D, and W be an (n, k) linear code with minimum distance d. Let $V \otimes W$ denote the product of V and W [21]. Then, $V \otimes W$ is an ($N n, N k$) linear code with minimum distance $D d$. A codeword in $V \otimes W$ can be arranged as an $n \times N$ array in which every row is a codeword in V and every column is a codeword in W. For a nonzero code array in $V \otimes W$, there are at least D nonzero columns and each nonzero column has at least d nonzero components. Hence, the weight of any nonzero code array in $V \otimes W$ is at least $D d$. Product codes are capable of correcting both random and burst errors [21]. Now, we consider direct sums of certain binary product codes which provide burst error protection in addition to the two-level random error protection.

Let V_{1} and V_{2} be (N, K_{1}) and (N, K_{2}) binary linear codes with minimum distances D_{1} and D_{2} respectively. The intersection of V_{1} and V_{2}, denote $V_{1} \cap V_{2}$, is a linear subcode of both V_{1} and V_{2}. Let \hat{D} be the minimum distance of $V_{1} \cap V_{2}$. It is clear that $\hat{D} \geqslant D_{1}$ and $\hat{D} \geqslant D_{2}$. Let $V_{1}+V_{2}$ denote the following set,

$$
V_{1}+V_{2} \triangleq\left\{\mathbf{v}: \mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2} \text { with } \boldsymbol{v}_{1} \in V_{1} \text { and } \boldsymbol{v}_{2} \in V_{2}\right\} .
$$

Clearly $V_{1}+V_{2}$ is linear and a supercode of both V_{1} and V_{2}. If $V_{1} \cap V_{2}=\{0\}$, then $V_{1}+V_{2}$ is the direct sum of V_{1} and V_{2}. Let D be the minimum distance of $V_{1}+V_{2}$.
Let W_{1} and W_{2} be an (n, k_{1}) and an (n, k_{2}) binary linear codes with minimum distances d_{1} and d_{2} respectively. We assume that $W_{1} \cap W_{2}=\{0\}$. Then, the direct sum of W_{1} and W_{2}, denoted $W=W_{1} \oplus W_{2}$, is an ($n, k_{1}+k_{2}$) linear code. Let d be the minimum distance of W.
For $i=1,2$, the product $V_{i} \otimes W_{i}$ is an ($N n, K_{i} k_{i}$) linear code with minimum distance $D_{i} d_{i}$. Since $W_{1} \otimes W_{2}=\{0\}, V_{1} \otimes W_{1}$ and $V_{2} \otimes W_{2}$ have only the zero code array in common. Let C be the direct sum of $V_{1} \otimes W_{1}$ and $V_{2} \otimes W_{2}$. Then C is an ($N n, K_{1} k_{1}+K_{2} k_{2}$) linear code. A code array c in C is sum of a code array c_{1} in $V_{1} \otimes W_{1}$ and a code array \boldsymbol{c}_{2} in $V_{2} \otimes W_{2}$, i.e. $\boldsymbol{c}=\boldsymbol{c}_{1}+\boldsymbol{c}_{2}$. Each row in array \boldsymbol{c} is a codeword in $V_{1}+V_{2}$, and each column in c is a codeword in $W_{1} \otimes W_{2}$.
Now we consider the weight of a nonzero code array c in $C=V_{1} \otimes W_{1} \oplus V_{2} \otimes$ W_{2}. If $\boldsymbol{c} \in V_{1} \otimes W_{1}$, then $w(\boldsymbol{c}) \geqslant D_{1} d_{1}$. If $\boldsymbol{c} \in V_{2} \otimes W_{2}$, then $w(c) \geqslant D_{2} d_{2}$. If \boldsymbol{c} is neither in $V_{1} \otimes W_{1}$ nor in $V_{2} \otimes W_{2}$ then \boldsymbol{c} is the sum of a nonzero code array \boldsymbol{c}_{1} in $V_{1} \otimes W_{1}$ and a nonzero code array \boldsymbol{c}_{2} in $V_{2} \otimes W_{2}$. To determine the weight of $c=c_{1}+c_{2}$, there are four cases to be considered.

Case I. Suppose all the nonzero rows in \boldsymbol{c}_{1} and \boldsymbol{c}_{2} are alike and identical to a certain vector \boldsymbol{v}. Then \boldsymbol{v} must be a codeword in $V_{1} \cap V_{2}$. Thus, $\boldsymbol{w}(\boldsymbol{v}) \geqslant \hat{D}$. This implies that there are at least \hat{D} nonzero columns in array c. Since each of these columns has weight at least d. As a result, $w(\boldsymbol{c}) \geqslant \hat{D} d$.

Case II. Suppose that all the nonzero rows in c_{1} are identical to some codeword v_{1} in V_{1} and all the nonzero rows in \boldsymbol{c}_{2} are identical to some codeword \boldsymbol{v}_{2} in V_{2}, where $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{2}$. Then $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}$ is a nonzero codeword in $V_{1}+V_{2}$ and has weight at least D. Note that $w\left(\boldsymbol{v}_{1}\right) \geqslant D_{1}$ and $w\left(\boldsymbol{v}_{2}\right) \geqslant D_{2}$. There are two types of nonzero columns in c. The first type is that cach column is either the sum of a zero column in \boldsymbol{c}_{1} and a nonzero column in \boldsymbol{c}_{2} or the sum of a nonzero column in c_{1} and a zero column in \boldsymbol{c}_{2}. Such a column is either a nonzero codeword in W_{1} or a nonzero codeword in W_{2}. Therefore, a nonzero column of the first type in \boldsymbol{c} has weight at least $\min \left\{d_{1}, d_{2}\right\}$. The second type of nonzero columns in c is that each column is the sum of a nonzero column in \boldsymbol{c}_{1} and a nonzero column in \boldsymbol{c}_{2}. Such a column is a nonzero codeword in $W_{1} \oplus W_{2}$ and has weight at least d. The fact that $w\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right) \geqslant D$ implies that there are at least D type-1 nonzero columns in C. Let f be the number of type- 1 nonzero columns in c where $f \geqslant D$. Then there are at least $\left\lceil\left(D_{1}+D_{2}-f\right) / 2\right\rceil$ type- 2 nonzero columns in c. Hence a lower bound on the
weight of \boldsymbol{c} is

$$
\begin{aligned}
& \min _{f \geqslant D}\left\{f \cdot \min \left\{d_{1}, d_{2}\right\}+\left\lceil\left(D_{1}+D_{2}-f\right) / 2\right\rceil \cdot d\right\} \\
& =D \cdot \min \left\{d_{1}, d_{2}\right\}+\left\lceil\left(D_{1}+D_{2}-f\right) / 2\right\rceil \cdot d .
\end{aligned}
$$

Case III. Suppose that there are two nonzero rows \boldsymbol{v}_{1} and $\boldsymbol{v}_{1}^{\prime}$ in \boldsymbol{c}_{1} such that $\boldsymbol{v}_{1} \neq \boldsymbol{v}_{1}^{\prime}$. Then there are at least $D_{1}+\left\lceil D_{1} / 2\right\rceil$ nonzero columns in \boldsymbol{c}_{1}. This implies that there are at least $D_{1}+\left\lceil D_{1} / 2\right\rceil$ nonzero columns in \boldsymbol{c}. Each of these nonzero columns is a nonzero codeword in $W_{1} \oplus W_{2}$ and has weight at least d. Thus the weight of c is at least $\left\{D_{1}+\left\lceil D_{1} / 2\right\rceil\right\} \cdot d$.

Case IV. Suppose that there are two nonzero rows, \boldsymbol{v}_{2} and $\boldsymbol{v}_{2}^{\prime}$ in \boldsymbol{c}_{2} such that $\boldsymbol{v}_{2} \neq \boldsymbol{v}_{2}^{\prime}$. It follows the same argument as that in Case III that $w(\boldsymbol{c}) \geqslant\left\{D_{2}+\right.$ $\left.\left\lceil D_{2} / 2\right\rceil\right\} \cdot d$.

Denote $D \cdot \min \left\{d_{1}, d_{2}\right\}+\left\lceil\left(D_{1}+D_{2}-D\right) / 2\right\rceil \cdot d$ by $\lambda,\left\{D_{1}+\left\lceil D_{1} / 2\right\rceil\right\} \cdot d$ by λ_{1} and $\left\{D_{2}+\left\{D_{2} / 2\right\rceil\right\} \cdot d$ by λ_{2}. Summarizing the above results, we have the following weight structure of a nonzero code array c in $C=V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$:
(1) For $c \in V_{1} \otimes W_{2}, w(c) \geqslant D_{1} d_{1}$.
(2) For $\boldsymbol{c} \in V_{2} \otimes W_{2}, w(c) \geqslant D_{2} d_{2}$.
(3) For $c \notin V_{1} \otimes W_{1}$ and $c \notin V_{1} \otimes W_{2}, w(c) \geqslant \min \left\{\hat{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\}$.

From the above weight distribution, we see that the weight of a nonzero code array c in $V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$ is at least $\min \left\{D_{1} d_{1}, D_{2} d_{2}, \hat{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\}$. Suppose $\min \left\{D_{1} d_{1}, \hat{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\} \geqslant D_{2} d_{2}$. Then we have the following weight structure of a nonzero code array \boldsymbol{c} in $V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$:
(1) For $c \in V_{2} \otimes W_{2}, w(c) \geqslant D_{2} d_{2}$.
(2) For $\boldsymbol{c} \in V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}-V_{2} \otimes W_{2}, w(\boldsymbol{c}) \geqslant \min \left\{D_{1} d_{1}, \tilde{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\}$. It follows from Theorem 2 that $C=V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$ is a linear block code with a separation vector $\boldsymbol{s}=\left(s_{1}, s_{2}\right)$, where

$$
\begin{align*}
& s_{1} \geqslant \min \left\{D_{1} d_{1}, \hat{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\} \\
& s_{2} \geqslant D_{2} d_{2} \tag{16}
\end{align*}
$$

The message space for C is $M=\{0,1\}^{K_{1} k_{1}} \times\{0,1\}^{K_{2} k_{2}}$.
Example 2. Let V_{1} and V_{2} be two equivalent $(7,4)$ Hamming codes. Let W_{1} and W_{2} be the $(7,1)$ and $(7,3) B C H$ codes over $\mathrm{GF}(2)$ respectively. Then, $W_{1} \oplus W_{2}$ is a $(7,4)$ Hamming code. The minimum distances of V_{1} and V_{2} are $D_{1}=3$ and $D_{2}=3$ respectively. The minimum distances of W_{1}, W_{2}, and $W_{1} \oplus W_{2}$ are $d_{1}=7, d_{2}=4$ and $d=3$ respectively. Note that $V_{1} \cap V_{2}$ is the $(7,1)$ binary code with minimum distance $\hat{D}=7$ while $V_{1}+V_{2}$ is the $(7,7)$ binary code with minimum distance $D=1$. Thus, $\lambda=13, \lambda_{1}=15, \lambda_{2}=15, \hat{D} d=21, D_{1} d_{1}=21$ and $D_{2} d_{2}=12$. Note that $N=7, K_{1}=K_{2}=4, n=7, k_{1}=1, k_{2}=3$. Since $\min \left\{D_{1} d_{1}, \hat{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\}=13 \geqslant D_{2} d_{2}=12$, we see that $V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$ is a
two-level UEP $(49,16)$ binary code for the message space $M=M_{1} \times M_{2}$ with separation vector $s=\left(s_{1}, s_{2}\right)$, where $M_{1}=\{0,1\}^{4}, M_{2}=\{0,1\}^{12}, s_{1} \geqslant 13, s_{2} \geqslant 12$. We may compare this code with the product code of two $(7,4) \mathrm{BCH}$ codes with minimum distance 3 , which is a $(49,16)$ single-level binary code with minimum distance only 9.

Direct sums of product codes for unequal error protection was first studied by Boyarinov and Katsman [16]. The lower bound on the separation vector given by (16) is better than the bound derived by Boyarinov and Katsman.

Now we present a special class of direct sums of product codes. Let α and β be two different primitive N th roots of unity. Let V_{1} be an (N, K_{1}) binary cyclic code which has $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ and their conjugates as zeros. Let V_{2} be an (N, K_{2}) binary cyclic code which has $\beta, \beta^{2}, \ldots, \beta^{2 t}$ and their conjugates as zeros. Clearly, V_{1} and V_{2} are equivalent codes. Hence, $K_{1}=K_{2}=K$ and $D_{1}=D_{2} \geqslant$ $2 t+1$, where D_{1} is the minimum distance of V_{1} and D_{2} is the minimum distance of V_{2}. If the set $\left\{\left(\beta^{i}\right)^{2^{m}}: i=1,2, \ldots, 2 t, \quad m\right.$ is an integer $\}$ contains $\left\{\alpha^{2 t+1}, \alpha^{2 t+2}, \ldots, \alpha^{2 t+2 s}\right\}$ as a subset, then $V_{1} \cap V_{2}$ includes $\alpha, \alpha^{2}, \ldots, \alpha^{2 t+2 s}$ as zeros. Thus, either the minimum distance \hat{D} of $V_{1} \cap V_{2}$ is at least $2 t+2 s+1$ or $V_{1} \cap V_{2}=\{0\}$ which is the case that $V_{1} \cap V_{2}$ contains all the α^{i} s as zeros. If the set $\left\{\left(\alpha^{i}\right)^{2^{m}}: i=1,2, \ldots, 2 t\right.$ and m is an integer $\}$ contains $\left\{\beta, \beta^{2}, \ldots, \beta^{2 u}\right\}$ as a subset, then $V_{1}+V_{2}$ contains $\beta, \beta^{2}, \ldots, \beta^{2 u}$ as zeros. Thus, D, the minimum distance of $V_{1}+V_{2}$ is at least $2 u+1$. With the above codes V_{1} and V_{2}, if $\min \left\{(2 t+1) d_{1},(2 t+2 s+1) d, \lambda, \lambda_{1}, \lambda_{2}\right\} \geqslant(2 t+1) d_{2}$, the direct sum $V_{1} \otimes W_{1} \oplus$ $V_{2} \otimes W_{2}$ is an $\left(N n, K\left(k_{1}+k_{2}\right)\right)$ code with separation vector $s=\left(s_{1}, s_{2}\right)$ where

$$
\begin{aligned}
& s_{1} \geqslant \min \left\{(2 t+1) d_{1},(2 t+2 s+1) d, \lambda, \lambda_{1}, \lambda_{2}\right\}, \\
& s_{2} \geqslant(2 t+1) d_{2}, \\
& \lambda=(2 u+1) \cdot \min \left\{d_{1}, d_{2}\right\}+(2 t-u+1) d, \\
& \lambda_{1}=\lambda_{2}=(3 t+2) d .
\end{aligned}
$$

Example 3. Let α be a primitive element in $\operatorname{GF}\left(2^{5}\right)$. Let V_{1} be a $(31,21) \mathrm{BCH}$ code with minimum distance $D_{1}=5$, which contains α, α^{3} and their conjugates as zeros. Let V_{2} be a $(31,21) \mathrm{BCH}$ code with minimum distance $D_{2}=5$, which contains $\alpha^{3},\left(\alpha^{3}\right)^{3}$, and their conjugates as zeros. Since α^{9} is a conjugate of α^{5}, $V_{1} \cap V_{2}$ includes $\alpha, \alpha^{3}, \alpha^{5}$, and their conjugates as zeros. Since $V_{1} \cap V_{2} \neq\{0\}$, the minimum distance \hat{D} of $V_{1} \cap V_{2}$ is at least 7. Furthermore, the minimum distance D of $V_{1}+V_{2}$ is at least 3 , since α^{3} is a zero for both V_{1} and V_{2}. Let W_{1} and W_{2} be $(7,1)$ and $(7,3) B C H$ code over $\mathrm{GF}(2)$. Thus, the minimum distance of W_{1} is $d_{1}=7$ and the minimum distance of W_{2} is $d_{2}=4$. Furthermore, $W_{1} \oplus W_{2}$ is a $(7,4)$ BCH code over GF(2) with minimum distance $d=3$. Thus, $t=2, s=1, u=1$, $\lambda=24, \lambda_{1}=\lambda_{2}=24, \hat{D} d \geqslant 21, D_{1} d_{1}=35$, and $D_{2} d_{2}=20$. Note that $N=31$, $n=7, \quad k_{1}=1, \quad k_{2}=3, \quad K_{1}=K_{2}=21$. Since $\min \left\{D_{1} d_{1}, \hat{D} d, \lambda, \lambda_{1}, \lambda_{2}\right\} \geqslant 21 \geqslant$ $D_{2} d_{2}=20, \quad V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$ is a $(217,84)$ binary two-level UEP for the

Table 2. Some direct sums of product codes for unequal error protection

N	K_{i}	D_{i}	D	\hat{D}	n	k_{1}	k_{2}	d_{1}	d_{2}	d	$N n$	$K_{1} k_{1}$	$K_{2} k_{2}$	s_{1}	s_{2}	t_{B}
15	10	4	2	6	17	1	8	17	6	5	255	10	80	27	24	30
15	10	4	2	6	7	1	3	7	4	3	105	10	30	17	16	15
15	10	4	2	6	15	1	10	15	4	3	225	10	100	17	16	15
15	10	4	2	6	15	1	6	15	6	5	225	10	60	27	24	30
15	10	4	2	6	15	2	5	10	7	5	225	20	50	29	28	30
31	21	5	3	7	15	1	10	15	4	3	465	21	210	21	20	31
31	21	5	3	7	15	1	6	15	6	5	465	21	126	35	30	62
31	21	5	3	7	15	2	5	10	7	5	465	42	105	35	35	62

message space $M=M_{1} \times M_{2}$ with separation vector $s=\left(s_{1}, s_{2}\right)$ where $M_{1}=$ $\{0,1\}^{21}, M_{2}=\{0,1\}^{63}, s_{1} \geqslant 21$, and $s_{2} \geqslant 20$. Note that the product code of a $(7,4)$ Hamming code with minimum distance 3 and a $(31,21) \mathrm{BCH}$ code with minimum distance 5 is a $(217,84)$ linear code with minimum distance 15 which is inferior to the $(217,84)$ direct-sum code.

Suppose we transmit each code array in $V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$ row by row. By a proof similar to that for simple product codes [21], it can be shown that the code $V_{1} \otimes W_{1} \oplus V_{2} \otimes W_{2}$ can correct any error-burst of length up to $N \cdot\lfloor(d-1) / 2\rfloor$ in addition to the random-error-correcting capabilities represented by its separation vector. Consider the $(217,84)$ binary code illustrated in Example 3. For this code 21 message bits of a message are protected against up to 10 random errors and any error burst of length up to 31 , while the other 63 message bits of the same message are protected against up to 9 random errors and any error of length up to 31.

Some direct-sums of product codes are listed in Table 2 where t_{B} denotes the maximum length of correctable burst errors. Let α and β be primitive elements in $\operatorname{GF}\left(2^{4}\right)$ and $\operatorname{GF}\left(2^{5}\right)$ respectively. For $N=15, V_{1}$ and V_{2} are binary BCH codes with $\left\{1, \alpha, \alpha^{2}, \alpha^{4}, \alpha^{8}\right\}$ and $\left\{1, \alpha^{7}, \alpha^{14}, \alpha^{13}, \alpha^{11}\right\}$ as zeros respectively. For $N=31, V_{1}$ and V_{2} are binary BCH codes with $\left\{\beta, \beta^{2}, \beta^{4}, \beta^{8}, \beta^{16}, \beta^{3}, \beta^{6}, \beta^{12}\right.$, $\left.\beta^{24}, \beta^{17}\right\}$ and $\left\{\beta^{3}, \beta^{6}, \beta^{12}, \beta^{24}, \beta^{17}, \beta^{9}, \beta^{18}, \beta^{5}, \beta^{10}, \beta^{20}\right\}$ as zeros respectively. All W_{1} and W_{2} are binary BCH codes.

References

[1] T. Cover, Broadcast channels, IEEE Trans. Inform. Theory IT-18 (Jan. 1972) 2-14.
[2] P.P. Bergmans, Random coding theorem for broadcast channels with degraded components, IEEE Trans. Inform. Theory IT-19 (Mar. 1973) 197-207.
[3] A.D. Wyner, A theorem on the entropy of certain binary sequences and application: Part II, IEEE Trans. Inform. Theory IT-19 (Nov. 1973) 772-777.
[4] R.G. Gallagher, Capacity and coding for degraded channels, Problemy Peredachi Informatsii 10 (3) (1974) 3-14.
[5] L.A. Bassalygo et al., Bounds for codes with unequal protection of two sets of message, Problemy Peredachi Informatsii, 15 (3), (July-September 1979) 40-49.
[6] G.L. Katsman, Bounds on volume of linear codes with unequal information symbol protection, Problemy Peredachi Informatsii 16 (2) (April-June, 1980) 25-32.
[7] T. Kasami, S. Lin, V.K. Wei and S. Yamamura, Coding for the binary symmetric broadcast channel with two receivers, IEEE Trans. Inform. Theory IT-31 (5) (September 1985) 616-625.
[8] C. Heagard, H. Depedro and J. Wolf, Permutation codes for the Gaussian broadcast channel with two receivers, IEEE Trans. Inform. Theory IT-24 (5) (September, 1978) 569-578.
[9] B. Masnick and J. Wolf, On linear unequal error protection codes, IEEE Trans. Inform. Theory. IT-13 (4) (July, 1967) 600-607.
[10] W.C. Gore and C.C. Kilgus, Cyclic codes with unequal error protection, IEEE Trans. Inform. Theory IT-17 (2) (1971) 214-215.
[11] D. Mandelbaum, Unequal-error-protection codes derived from difference sets, IEEE Trans. Inform. Theory IT-18 (5) (September, 1972) 686-687.
[12] C.C. Kilgus and W.C. Gore, A class of cyclic unequal-error-protection codes, IEEE Trans. Inform. Theory IT-18 (5) (September, 1972) 687-690.
[13] L.A. Dunning and W.E. Robbins, Optimal encoding of linear block codes for unequal error protection, Information and Control 37 (1978) 150-177.
[14] V.N. Dynkin and V.A. Togonidze, Cyclic codes with unequal symbol protection, Problemy Peredachi Informatsii 12 (1) (January-March, 1976) 24-28.
[15] V.A. Zinovev and V.V. Zyablov, Codes with unequal protection of information symbols, Problemy Peredachi Informatsii 15 (3) (July-September 1979) 50-60.
[16] I.M. Boyarinov and G.L. Katsman, Linear unequal error protection codes, IEEE Trans. Inform. Theory IT-27 (2) (March 1981) 168-175.
[17] I.M. Boyarinov, Combined decoding methods for linear codes with unequal protection of information symbols, Problemy Peredachi Informatsii 19 (1) (January-March, 1983) 17-25.
[18] W.J. van Gils, Two topics on linear unequal error protection codes: bounds on their length and cyclic code classes, IEEE Trans. Inform. Theory IT-29 (6) (November, 1983).
[19] W.J. van Gils, Linear unequal error protection codes from shorter codes, IEEE Trans. Inform. Theory IT-30 (3) (May, 1984) 544-546.
[20] W.J. van Gils, On linear unequal error protection codes, Report, Research Laboratories, N.V. Philips' Gloeilampenfabriken, Eindhoven, Netherlands.
[21] S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applications (Prentice Hall, New Jersey, 1983).

[^0]: * This research was supported by NSF Grant DCI-8418248-01 and NASA Grant NAG 5-407. 0012-365X/90/\$03.50 © 1990 — Elsevier Science Publishers B.V. (North-Holland)

