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Abstract. The current cascade form adaptive notch filters have two different ways to adjust its parameters. First, each section is adapted
individually (Al). Second, all sections are adapted simultaneously (AS). As to the complexity of tracking p sinusoids, the Al structure
is linear with p but the AS structure is proportional to p 2. However, the AS structure has smaller bias in frequency estimates than that
of the Al structure. In this paper, we will make a detailed comparison between the Al and AS structures by using a new prefilter technique.
Then, we propose a novel structure which has the same complexity order as Als and almost has the same lower frequency bias as ASs.
Extensive computer simulations have been done to compare the performance of three structures under a wide range of tests.

Zusammenfassung. Fiir die iibliche Kaskadenform fiir adaptive Kerbfilter gibt es zwei Moglichkeiten zur Einstellung der Parameter.
Entweder wird jeder Block individuell adaptiert (AI) oder es erfolgt eine simultane Adaption aller Blocke (AS). Entsprechend der
Komplexitit beim Nachfiihren von p Sinussignalen ist die AI-Struktur linear in p und die AS-Struktur proportional zu p . Andererseits
weist die AS-Struktur einen geringeren Bias beziiglich der Frequenzschitzungen auf als die AI-Struktur. In dieser Arbeit wird ein
detaillierter Vergleich zwischen der Al- und der AS-Struktur durchgefiihrt, wobei eine neue Vorfilter-Technik angewendet wird. Danach
schlagen wir eine neue Struktur vor, die den gleichen Komplexititsgrad wie die AI-Struktur aufweist, dabei aber den gleichen Frequenz-
Bias besitzt wie die AS-Struktur. Zum Vergleich des Verhaltens der drei Strukturen werden ausfiihrliche Computer-Simulationen
wiedergegeben.

Résumé, Les filtres adaptatifs coupe-bande sélectifs en cascade actuels ajustent leurs parametres de deux manieres différentes. Dans la
premiére, chaque section s’adapte individuellement ( AI). Dans la seconde, toutes les sections s’adaptent simultanément (AS). En ce
qui concerne la complexité de la poursuite de p sinusoides, la structure Al est linéaire selon p mais la structure AS est proportionnelle 3
p 2. Toutefois, la structure AS est caractérisée par un biais des estimées de fréquence plus petit que celui de la structure Al Nous faisons
dans cet article une comparaison détaillée entre les structures Al et AS 2 I’aide d’une technique nouvelle de pré-filtrage. Nous proposons
ensuite une structure originale ayant le méme ordre de complexité que la structure Al et presque le méme biais en fréquence que la
structure AS. Des simulations sur ordinateur approfondies ont été effectuées afin de comparer les performances des trois structures pour
une gamme de tests étendue.

Keywords. Adaptive notch filter; cascade form structure.

1. Intreduction soids from the background noise [ 16]. Several practi-

cal applications of these problems can be found in the

Recently, two major problems on processing multi-
ple sinusoids in additive noise have received great
attention. One is to estimate or track the sinusoidal
frequencies [4,15], the other is to enhance the sinu-

Correspondence to: S.-C. Pei, Department of Electrical Engi-
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area of communication, sonar, radar and biomedical
signal processing.

The filter schemes which have been used to enhance
and track noisy sinusoids are adaptive line enhancer
(ALE) and adaptive notch filter (ANF). The ALE is
generally realized by using Finite Impulse Response
(FIR) filters, and the ANF is implemented as con-
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strained Infinite Impulse Response (IIR) filters. For
this reason, the ANF have two main advantages over
the ALE. First, the ANF is computationally efficient
for the enhancement of sinusoids. Second, the ANF has
a better model fitting than the ALE, since sinusoids in
noise is an autoregressive moving average process.
Therefore, the ANF is much more accurate in frequency
estimates than the ALE.

In early work, most adaptive notch filters are imple-
mented as direct form high order IIR filters [3, 8, 9,
11]. This form suffers from two disadvantages. One
drawback is that stability monitoring is difficult, the
other one is that the frequencies of the sinusoids need
to be determined from the filter coefficients by using
root finding or transfer function evaluation. Thus, many
authors have used the cascade form adaptive notch
filters to solve these two problems [1, 5, 7, 10].

In the recent approaches, the parameters of cascade
form adaptive notch filters can be adjusted by two dif-
ferent ways. First, each section is adapted simultane-
ously (AS), as shown in Fig. 1(a) [5]. Second, all
sections are adapted individually (Al), as depicted in
Fig. 1(b) [1,7, 10]. As to the complexity of tracking
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Fig. 1. (a) All sections are adapted simultaneously ( AS). (b) Each

section is adapted individually (Al), where Hy(z) denotes second

order notch filter and x(¢) is multiple sinusoids embedded in additive
noise.
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p sinusoids, the Al structure is linear with p but the AS
structure is proportional to p %. Thus, the AS structure
is less efficient and more complicated than the Al struc-
ture in complexity. However, the Al structure mini-
mizes the output mean square error of each section
individually, this results in bias of frequency estimates
even in the absence of noise. Thus the AS structure is
much better than the Al structure in frequency esti-
matton accuracy.

In this paper, we will make a detailed comparison
between the Al and the AS structures by using a pre-
filter technique. From this point of view, it is obvious
and easy to explain why the AS structure has smaller
bias in frequency estimates than the Al structure. In
addition, we propose a novel structure which has the
same complexity order as Als and almost has the same
lower frequency bias as ASs.

The paper is organized as follows. First the problem
statement is made in Section 2. Next the AS and Al
structure is described in Section 3. The bias of fre-
quency estimates in the Al and the AS structure will be
analyzed in Section 4. Finally the novel structure is
proposed in Section 5 and some computer simulations
are presented.

2. Problem statement
Consider p sinusoidal signals in a noise as follows:

x() = i A;sin(w;t+ @) +u(t), (nH
i=1
where v(t) is a zero-mean white noise process with
variance ¢, and the phases { ¢,} are uniformly distrib-
uted on [0, 27). Besides, we assume that the sinusoids
and noise are independent each other for all z. The
signal-to-noise (SNR,) is defined as 10 log,,A?/
(20%). Given the noisy samples x(¢), the problem is to
estimate the sinusoidal frequency ; in real time by
using cascade form adaptive notch filtering technique.

3. The AS and Al structures

In this section, we first describe the basic cell by
which the AS and Al structures in Fig. 1 can be built
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and then demonstrate the difference between AS and
Al in view of prefiltering.

3.1. Basic cell

The basic cell is shown in Fig. 2. It is comprised of
the three following filters:
(a) The transfer function of the notch filter is

l14+a;z7"+772 2)
l+paz ' +p2 2"

Hi(z)=

where p is the pole radius which is specified by the
user. For stability, p has to be smaller than one. In
addition, the notch frequency w’,, and its 3 dB rejection

bandwidth BW are given by
' =arccos (i) (3)
-2
and
BW=m(1-p). (4)
sensitivity
input x i© ~ 7 output s i(t)

notch
output € ;(t)

-p _
> output ¥ (0
(a)
si(t)
x;(t)
T2 Celli b—egt)
yi(®©

()

Fig. 2. (a) Signal flow graph of the basic cell. (b) Equivalent rep-
resentation of the basic cell.

It is obvious that H( w!,,) is equal to zero exactly.
(b) The bandpass filter is realized by subtracting the
output of notch filter from its input. The transfer func-
tion is

gp(2) =1 —Hx(2)

_(p=Daz"'+(p’—1z? (5)
l+paz '+p%272

Since Hi(w!,,) =0, then H5p(w!,,) = 1. This means
that H5p(z) has unit gain and zero phase at the notch
frequency.

(c) The gradient or sensitivity filter can be obtained by
the following method: From Fig. 2, we write the dif-
ference equation of the notch filter as

e() =x(1) +ax,(t—1) +x,(1-2)

—pae(t—1) —p’e(t—2) . (6)

By using a pseudolinear approximation [9, 14], we get
the gradient component as

de;(1)
a. =x(t—1) —pe(t—1) . (N

Thus the gradient filter is given by

(1-p)z~"(1—pz~3%) 8)
1+paiz—l+p22—2 ‘

H5(z2)=

In the following, we use the basic cell to construct the
AS and the Al structures.

3.2. The AS structure

The basic configuration of the AS structure is shown
in Fig. 1(a). It is clear that the transfer function from
x(t) toe(t)is

r
H(z)= [] Hix(2) - (9)
i=1
Let us define the gradient component as g(¢) =
de(t) /8a;. Then using the sensitivity theory [2] and a
pseudolinear assumption, we get the transfer function
from x(#) to g,(¢) as follows:

G =Hix [] H4. (10)

k=1k#i
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Combining (9) and (10), the overall AS structure is

obtained in Fig. 3(a). From this structure, the notch

output e(¢) and the gradient component g;(t) can be

generated easily. Thus the filter parameters can be

a(t+1)=a/(1) -

me(r)gi(1)
“g,([) " ? +pmin ’

The constant p,,;, is included to prevent division by

(11)

updated by zero when signals are not present [5]. From Fig. 3(a)
t t
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Fig. 3. (a) The AS structure for tracking p sinusoids. (b) The Al structure for tracking p sinusoids.
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it is easy to see the total number of the cells in the AS Step 1. Use the AS structure in Fig. 3(a) to generate
structure is ip(p+1) + (p— 1), so the complexity is e(t) and g,(1).

proportional to p 2 Based on the AS structure, we sum- Step 2. Use (11) to update a,(¢).

marize Algorithm 1 as follows. Step 3. Estimate frequency by @,(1+ 1)

=arccos( — ja;(t+1)).

/
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Fig. 4. A prefilter structure which is equivalent to the AS structure.
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3.3. The Al structure

The basic configuration of the AI structure is
depicted in Fig. 1(b). Since each section minimizes its
output mean square error, by using pseudolinear
assumption the gradient component is given by
s5;(t) = de;(t)/9a;. Therefore, the final Al structure is
shown in Fig. 3(b) and the filter parameters can be
updated by

ue(1)s(1)

altr ) =adn - lls:(2) "2+pmin .

(12)

It is obvious that the total number of cells in the Al
structure is p, so its complexity is linear with p. Based
on the Al structure,we summarize Algorithm 2 as fol-
lows:

ALGORITHM 2. For each input sample x(r)

Step 1. Use the Al structure in Fig. 3(b) to generate
e;(t) and 5,(1).

Step 2. Use (12) to update a,().

Step 3. Estimate frequency by @,(t+1)
=arccos( —ia;(t+1)).

3.4. Prefilter interpretation of the AS and Al structure

Itis worth to notice that the AS structure in Fig. 3(a)
can be regarded as a prefilter structure shown in Fig. 4.
This prefilter structure reveals that the procedure,
which updates section Hi(z) in the AS structure, can
be divided into the following two steps:

Step 1. Prefilter x(t) by TT2_, ;.. Hx(z) to generate
%;(t), as shown in Fig. 4.

Step 2. Hiy(z) adapts individually with input £,(r).

In contrast, when Hi(z) is updated in the Al structure,

its two steps are stated as follows:

Step 1. Prefilter x(¢t) by T[Ti_'H%(z) to generate
e;_ (1), as shown in Fig. 1(b).

Step 2. Hi(z) adapts individually with input ¢;_,(¢).

Thus, the basic difference between the AS and the Al

structure lies in the prefilter structure. In the next sec-

tion, we will use this point of view to explain why the

AS structure has a smaller bias of frequency estimates

than the Al structure.

Signal Processing

4. Bias in AI and SI structure

In the above, it can be seen that the AS structure
requires more basic cells than the Al structure. Thus,
we will show that the AS has a smaller frequency bias
than the Al

4.1. Bias in Al structure

Using the Al structure to track p sinusoids in noise,
the front cells in the structure have more than one sinu-
soids in its inputs. The performance surface analysis in
[1, 10] have shown that each section only converges
to one of p sinusoids. The remaining sinusoids and
noise will influence the adaption and cause frequency
estimates bias. For understanding the fact, we derive
the bias of the first section in the Al structure. The other
sections can be derived by the similar ways. When
Algorithm 2 converges, the stationary points of Section
1 are given by

E[s (e, (] =0. (13)
Using the results in [6], (13) becomes
A?
F(a,)= 7’ F(a)) +0°F(a;)=0, (14)
i=1
where
Fi(ay)

_ (a; +2cos(w;))(l~pcos(2w;))
 laip+ (1+p? cos(w)) 1>+ (1—p?)? sin®(w;)

a;[1-p+p*+p°—2p°(3ai —1)]
(1+p)[1-2p*(3ai — 1) +p°]

Since the section 1 may converge to one of p sinusoids,

the solution to (14) in the vicinity of —2 cos(w;),

i=1,2,..., p. Without loosing generality, let us assume
that Algorithm 2 converges to the solution near

d,=—2cos(w,) . (15)

Fv(al) =

Then using Taylor’s series expansion around d,, (14)
becomes

F(a,)=F(4,)+F'(4,)(a —4)=0, (16)

where F(d,) and F’(d,) may be evaluated from (14)
easily. Thus the asymptotic bias of a, is
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bias
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Fig. 5. Bias of 4, in the first section of Al structure if p=2. Dotted
line: 6 dB; dashed line: 3 dB; solid line: O dB.

_ F()
F'(d)’

bias=a, ~d, = (17)
A typical example of p=2 is shown in Fig. 5, which
plots the bias of a, versus w, and SNR, for w, =0.5,
SNR, =3 dB and p=0.95. It is clear that the bias
increases when the interfering sinusoid is strong or
close to the sinusoid which section 1 converges to.
Because the input of section i is x(¢) prefiltered by
[TiZ' H%(z), the number of its interfering sinusoids is
p—i+ 1. 1In particular, the input of the last section con-
tains only one sinusoid in noise without any other inter-
fering sinusoid. Thus, the last section will have the
smallest frequency bias among all the sections.

4.2. Bias in AS structure

Since the AS structure can be viewed as a prefilter
structure shown in Fig. 4, we will use this structure to
explain why the AS have smaller bias than the AL
Beforehand, it is interesting to discuss the transient
behavior of the structure in Fig. 4.

When each section in Fig. 4. has not converged at
the beginning of adaption, the input signal £;(¢) of each
adaptive section is almost the same as x(¢), because the
frequency response of the notch filter has unit gain and
zero group delay everywhere except at notch fre-
quency. If some adaptive sections have converged, then
their corresponding input sinusoids will be predeleted
before entering the other nonconverged adaptive sec-
tions. This will make that nonconverged adaptive sec-

tions only have the opportunity to converge to the
remaining sinusoids.

After all adaptive sections have converged, the input
signal of each adaptive section is only one sinusoid in
almost undistorted white noise. Thus no interfering
sinusoids remain to cause frequency estimate bias.
Each adaptive section is just like the last section of the
Al structure shown in Fig. 1(b). Since the last section
in the Al structure have the smallest bias among all
sections, the AS structure must have smaller bias than
the Al structure.

5. A novel structure

Until now, we have explained that the AS structure
has more complexity and less bias than the Al structure.
Both are due to the major difference in the prefilter
structure. In the section we will propose a novel prefilter
structure in order that the complexity of AS can reduce
to the same order as Al This novel structure is mainly
based on the following key property:

KEY PROPERTY. Suppose

9 .
Hmul(z) = l__[ H;\I(Z) J

i=1
Hua2)= Y HL(2) = (g—1) ,

i=1
then
Hou(2) = Huga(2) +O((1-p)?) , (18)

where Hi\(z) is second order notch filter expressed in
(2), and O(x) denotes a term which goes to zeros at
least as x when x approaches zero [13].

PROOF. See Appendix A.

REMARKS
(a) From (4), the 3 dB rejection bandwidth BW of
&(2) is w(1—p). If the notch is very narrow, then
1 — p approaches zero. Thus the key property becomes

Hp(2) =H,ga(z) +O(BW?) . (19)

Vol. 33, No 1, July 1993
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Equation ( 19) means that we can use H,4,(z) toreplace
H..(z) when Hi(z), i=1, ..., q, have very narrow
notch. A typical example of g=2 is illustrated as fol-
lows: Let

1+0.5z71+z72

Hi(2) = ,
N = T 0475 090057 2
1-05z 14z72

HA(z) = ,
N2 = 10475, 1+ 0.90252 -2
then

1+1.75z 7 %+z77%
HY(2)H(2) = Lz

1+1.5794z 724+ 0.81457 =%’
Hyx(z) +HR(z) —1

_ 1417506z ~>+0.9905z "*
1+1.5794772+0.8145z %"

It is obvious that both transfer functions are almost the
same, and their frequency responses look very similar
as shown in Fig. 6.

(b) This key property has an intuitive explanation
as follows:
Since

Houa(2)= Y HW(2) = (g—1)

i=1

q .
=1-Y (1-Hi(2)),
i=1
from (5), this expression becomes

Hya(2)=1— Y Hisp(2) . (20)

i=1

Note that H§p(z) is a bandpass filter with unit gain and
zero phase at the corresponding notch frequency of

1:(2). Moreover, the narrower notch Hy(z) has, the
narrower passband Hip(z) has. Therefore (20)
implies that the function of H,44(z) includes the fol-
lowing two parts: First, use X.9_; Hyp(2) to extract the
sinusoidal signal from the input signal undistortedly.
Second, subtract the extracted signal from the input

Signal Processing
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Fig. 6. Frequency response, (a) HN(z)HX(z), (b) Hi(z)+
H(z) - 1.

signal. The total effect of these two parts is equivalent
to letting the input signal pass through H,,(z) with
very narrow notch bandwidth.

(c) When g =2, from the derivation in Appendix A
we have

(1- P)ZEl(Z)Ez(Z)
A, (p2)Ay(pz) 21
=R(2) .

Hmul(z) _Hadd(z) =

We may choose p such that

max |R(&“)|<e (22)

0w

to guarantee that H,4,(z) is a good approximation to
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the H,,(z), where ¢ is a small number. For example,
if a;=—2cos(0.4m), a,=—2cos(0.57m) and &=
0.07, then p must be greater than 0.98 such that (22)
is valid.

Now, let us use this key property to reduce the com-
plexity of the AS structure. According to (10), (19)
and (20), the transfer function of gradient component
in the AS structure can be written as

D
G(2)= é;(z)(l— Y HEP(Z))- (23)
k=1,k+#1i

The narrower the notch bandwidth is, the better this
approximation is. In our experience, when p is greater
than 0.95, (23) can be used very well. From (23) and
Fig. 4, a novel structure can be constructed as shown
in Fig. 7. The essence of this structure is the same as
the AS structure, so the bias of frequency estimates will
be very small. Besides, the number of cells is 2p. Thus
its complexity is linear with p, i.e., the same as the Al
structure. Based on this novel structure, we summarize
Algorithm 3 as follows:

ALGORITHM 3. For each input sample x(¢)

Step 1. Use the novel structure in Fig. 7 to generate
e(t) and g,(1).

Step 2. Use (12) to update a;(¢).

Step 3. Estimate the frequency by @,(t+1)=
arccos( — sa,(t+1)).

6. Experimental results

Some computer simulations are performed with sin-
gle precision floating-point on a VAX 3600 computer
system to test the three algorithms in this paper. In all
simulations, the notch frequencies are normalized with
respect to the half sampling frequency.

EXAMPLE 1. Three input sinusoids with equal power.
Referring to Fig. 8, this simulation compares the adap-
tive behavior of three algorithms. The input frequencies
are at 0.6, 0.7, 0.8, respectively. All sinusoids have
equal power with an SNR of 3 dB and the notches are
initialized at 0.2, 0.3, 0.4, which are far from the input
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Fig. 8. Adaptive behavior of three algorithms. (a) Algorithm I, (b)
Algorithm 2, (c) Algorithm 3. Solid line: section 1; dashed line:
section 2; dotted line: section 3.

frequencies. The pole radius p and the step size u are
fixed to be 0.95 and 0.005 during adaption. It can be
seen that Algorithm 1 (AS structure) and algorithm 3
(Novel structure) have almost the same behavior as
expected. In Algorithm 2 (Al structure), because each
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section is adapted individually, section 1 and section 2
converge to the same input sinusoid at the beginning
of adaption. However, when section 1 have converged,
corresponding sinusoid will be deleted before it inputs
section 2. Thus, section 2 changes its converged notch
frequency from 0.6 to 0.7. This means that the section
1 has higher ‘priority’ to choose a converged sinusoid
than the remaining sections in the Al structure.

EXAMPLE 2. Two weak sinusoids in a strong sinusoid.
Referring to Fig. 9, this example compares the adaptive
behavior of three algorithms in a special case. That is,
the input signal x(¢) consists of two weak sinusoids
embedded in a very strong sinusoid. The input fre-
quencies are at 0.2, 0.4, 0.6, and their corresponding
SNR are 20 dB, 0 dB, 0 dB, respectively. The pole
radius p and the step size w are fixed to be 0.95 and
0.005 and the initial notch frequencies are set at 0.333,
0.5, 0.667, respectively. It is easy to see that the strong
sinusoid has smaller ‘ripple’ and less ‘influence’ than
the other two weak sinusoids in all three algorithms.
However, the strong sinusoid causes larger bias of weak
sinusoids’ frequency in the Al structure than the other
two structures.

EXAMPLE 3. Time varying pole radius p. In this exam-
ple, we adapt the Nehorai’s approach for stationary
signal in which the pole radius is initialized to be a
smaller value for fast convergence speed, but is
increased exponentially according to

p(t+1) =pop(t) + (1—po)pe (24)

to improve the bias and signal enhancement [8]. In
this simulation, p(1) =0.7, p, =0.99 and p.. =0.95.
The notch frequencies are initialized at 0.1, 0.2, 0.3 and
the frequencies of the input sinusoids are 0.5, 0.6, 0.7.
All sinusoids have an SNR of 3 dB and the step size u
is chosen as 0.005. Referring to Fig. 10, it can be seen
that all three algorithms converge to the correct fre-
quencies. Note that Algorithm 3 does not suffer unde-
sired problems even though the initial p is chosen as
0.7. However, in order to guarantee that the novel struc-
ture is a good approximation to the AS structure, the
p(1) had better not be too far from unity at the begin-
ning of the adaptive process.
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Fig. 9. Adaptive behavior for two 0 dB sinusoids in a 20 dB sinusoid.
(a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3. Solid line:
section 1; dashed line: section 2; dotted line: section 3.

EXAMPLE 4. Tracking the time-varying sinusoids. In
this example, we concentrate on the use of three algo-
rithms for tracking the nonstationary signals, wherein
the frequency of input sinusoids is assumed to be time
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Fig. 10. Adaptive behavior for time varying pole radius. (a) Algo-
rithm 1, (b) Algorithm 2, (¢} Algorithm 3. Solid line: section 1,
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varying. Three typical cases are investigated below
[12]. In each case, the pole radius p and the step size
w are fixed at 0.95 and 0.005.

(a) Tracking chirp signal.

First, we consider the tracking of a linear chirp signal.
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Fig. 11. Tracking behavior of the linear chirp signal. (a) Algorithm
1, (b) Algorithm 2, (c) Algorithm 3. Solid line: section 1; dashed
line: section 2; dotted line: section 3.

The input signal x(¢) consists of two sinusoids with
fixed frequencies at 0.4, 0.6 and a frequency increasing
chirp signal of the following form:

V2 sin (0.5t +0.0011w¢2) . (25)
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Fig. 12. Tracking behavior of the sinusoid with step-changed fre- Fig. 13. Tracking behavior of the sinusoid with its frequency varied
quency. (a) Algorithm 1, (b) Algorithm 2, (c¢) Algorithm 3. Solid sinusoidally. (a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3.
line: section 1; dashed line: section 2; dotted line: section 3. Solid line: section 1; dashed line: section 2; dotted line: section 3.
All signal components have an SNR of 3 dB and the Next, we consider the input signal, in which the sinu-
notch frequencies are initialized at 0.1, 0.2 and 0.3. soidal frequencies are initially at 0.2, 0.4 and 0.6,
Figure 11 clearly indicates that the tracking capabilities respectively for the first 1000 sample points, after
of the three algorithms are good. which they are suddenly step changed to 0.2, 0.5 and

(b) Tracking the sinusoid with step changed frequency. 0.6. All sinusoids have an SNR of 3 dB and the notches
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Table 1
Statistical results of Algorithm 1

S.-C. Pei, C.-C. Tseng / Adaptive notch filters

Bias X 1073 Standard deviation X 10 3
SNR - N - N
N (dB) i h A fi h 5
1000 1 21.07 15.96 —46.74 69.92 44.87 61.77
5 5.832 6.217 —-21.25 43.24 26.09 38.85
9 1.931 4527 —8.893 27.43 16.54 24.70
13 —0.2533 1.854 —-5.418 17.15 10.34 15.66
17 -1.107 0.5901 —4.113 10.77 6.506 9.937
1500 1 33.02 30.10 —41.19 64.70 53.99 64.59
5 7.361 14.02 —17.67 39.93 32.23 39.09
9 1.633 6.738 —8.690 24.76 19.76 24.21
13 ~0.4619 3.248 —-5.299 15.42 12.28 15.14
17 -1.209 1.475 —4.053 9.655 7.698 9.519
Table 2
Statistical results of Algorithm 2
Bias X 1073 Standard deviation X 10 ~3
SNR - N X - - -
N (dB) fi L 13 h fa b
1000 1 4229 4592 -29.17 121.6 56.82 70.85
5 375.0 31.97 —8.982 72.02 32.60 41.78
9 354.7 26.57 —2.265 44.21 19.87 25.43
13 345.7 24.39 —0.2444 27.57 12.31 15.71
17 341.6 23.49 0.1069 17.29 7.687 9.789
1500 1 391.1 57.88 -27.61 103.7 39.27 51.87
5 356.6 37.76 —9.841 61.39 23.23 31.93
9 343.8 29.41 -3.332 37.69 14.47 19.95
13 339.1 25.86 —-1.097 23.52 9.108 12.54
17 3375 22.49 —0.4351 14.78 5.768 7.898
Table 3
Statistical results of Algorithm 3
Bias X 10 % Standard deviation X 10 ~*
SNR - - - N - "
N (dB) h fa f3 h f 5
1000 1 30.86 19.71 —35.23 69.74 54.04 56.70
5 10.93 5.922 —13.85 41.82 31.19 35.23
9 3.597 0.8851 -6.229 25.65 18.92 22.08
13 0.6616 —0.7689 —3.725 15.91 11.69 13.88
17 —0.5483 —1.186 —3.046 9.993 7.293 8.741
1500 1 13.59 23.00 —28.59 51.87 57.11 50.15
5 1.237 8.124 —1.232 33.20 34.35 30.66
9 —2.447 2.411 —6.402 21.23 21.00 19.27
13 —3.162 0.2593 —4.291 15.53 12.99 12.21
17 —2.947 -0.5186 —3.59%4 8.599 8.092 7.739

Signal Processing
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are initialized at 0.333, 0.5 and 0.667. It can be seen
from Fig. 12 that the three algorithms track this step
change very well.

(c) Tracking the sinusoid with its frequency varied
sinusoidally.

Finally, we study the tracking of the input signal which
consists of two sinusoids with fixed frequencies at 0.35,
0.65 and a sinusoid with its frequency varied sinuso-
idally:

V2 sin(0.5m¢ + 50 sin(0.002m7) ) . (26)

The SNRs of all sinusoids are 3 dB and the notch
frequencies are initialized at 0.1, 0.5 and 0.9. Figure 13
shows that the frequency tracking errors are very small
in all three algorithms.

EXAMPLE 5. Statistical performance of three algo-
rithms. In this example, we demonstrate the statistical
behavior of three algorithms. The input frequencies are
at0.45, 0.5 and 0.55. All sinusoids have an equal power
with different SNRs and the notches are initialized at
0.333, 0.5, 0.667. The pole radius p and the step size u
are fixed at 0.95 and 0.005 during adaption. Tables 1
to 3 summarize the bias and standard deviation of the
notch frequencies calculated from 40 independent tri-
als. Algorithms 1 and 3 have almost the same statistical
results as expected. Also, we see that the smallest bias
f3 in Algorithm 2 is almost the same as the bias of each
f; in Algorithms 1 and 3. This result is consistent with
our previous prediction.

7. Conclusion

A novel structure for cascade from adaptive notch
filters has been developed in this paper. It can reduce
the complexity greatly from order p  to order p, and it
also has the same lower frequency bias as ASs. Exten-
sive computer simulations have been done to test the
performance of this new structure.

Appendix A. Proof of key property

Let us define

A()=14+az 7 "+772,
Ap)=1+pa; ' +p* 2.
E(x)=-az*—(1+p)z72,

then
Ai(p2) =A(2) +(1—p)E(2) . (27
Moreover,
7. A(2) n?=1Ai(Z)
Hmu = =
@=T1 30 = T, A
and
7 A(2)
H, = —(g—1
aa(2) i; A p2) (q )
q q
={Z [A,-(z) Il Ai(pZ)]
=1 i=1,i%j
q q
—(g-1) nAf(pz>} /1A .
i=1 i=1
So,
_ _ 00
Hmul(z) Hadd(z) H?=1A,'(PZ) ’ (28)

where

0(2) = [TA) - Y [A,-(z) I1 A.-(pz)]

i=1 j=1 i=li%j

+(g=1) [T Adp2) -
i=1
Making use of (27),
0(2) = [T Ad2)

i=1

q
~Y 34 [T 1A +(1-pE)]
j=1

i=1,i%j
+(@=D [T A +(1=pE)]. (29)
i=1

Note that the sum of the first term and the third term in
(29) is
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[T 442 +(@= D[ TIAD) + (1 - p)E(2)]

i=1 i=1

q
=9[4

i=]

+(g-D Y [A,-(z) I E,-(z)](l—p)
j=1 i=1i%j

+0((1-p)?) . (30)

Moreover, by expanding and combining, the second
term in (29) becomes

Y 240 I1 [A,»(z)+(1—p)E,-(z)]}

i=1 i=1i#j

=4 ﬁ A(2)

i=1

+(g-1 Y [A,-(z) I E.-(z)](l—p)

i=1 i=Li%j
+0((1-p)?) . (31)
Substituting (30) and (31) into (29), we get
0(2) =0((1-p)*) . (32)
From (28) and (32), we obtain
Hinu(2) =Hoga(2) +O((1—p)?) (33)

and the proof is completed. []
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