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Abstract, The current cascade form adaptive notch filters have two different ways to adjust its parameters. First, each section is adapted 
individually (AI). Second, all sections are adapted simultaneously (AS). As to the complexity of tmckingp sinusoids, the AI structure 
is linear with p but the AS structure is proportional to p 2. However, the AS structure has smaller bias in frequency estimates than that 
of the AI structure. In this paper, we will make a detailed comparison between the AI and AS structures by using a new prefilter technique. 
Then, we propose a novel structure which has the same complexity order as AIs and almost has the same lower frequency bias as ASs. 
Extensive computer simulations have been done to compare the performance of three structures under a wide range of tests. 

Zusammenfassung. Fiir die tthliche Kaskadenform ftir adaptive Kerbfilter gibt es zwei MOglichkeiten zur Einstellung der Parameter. 
Entweder wird jeder Block individuell adaptiert (AI) oder es erfolgt eine simultane Adaption aller Bltcke (AS). Entsprechend der 
Komplexit~t beim Nachfilhren von p Sinussignalen ist die AI-Stmktur linear in p und die AS-Struktur proportional zu p 2. Andererseits 
weist die AS-Struktur einen geringeren Bias beztiglich der Frequenzschatzungen anf als die AI-Stmktur. In dieser Arbeit wird ein 
detaillierter Vergleich zwischen der AI- und der AS-Struktur durchgeflthrt, wobei eine neue Vorfilter-Technik angewendet wird. Danach 
schlagen wir eine neue Struktur vor, die den gleichen Komplexit~tsgrad wie die AI-Struktur aufweist, dabei aber den gleichen Frequenz- 
Bias besitzt wie die AS-Struktur. Zum Vergleich des Verhaltens der drei Strukturen werden aus~hrliche Computer-Simulationen 
wiedergegeben. 

Rtsumt .  Les filtres adaptatifs coupe-bande stlectifs en cascade actueis ajustent leurs param~tres de deux mani~res difftrentes. Dans la 
premiere, chaque section s'adapte individuellement (AI). Dans la seconde, toutes les sections s'adaptent simultantment (AS). En ce 
qui concerne la complexit6 de la poursuite de p sinusoides, la structure AI est lintaire scion p mais la structure AS est proportionnelle ~t 
p 2. Toutefois, la structure AS est caraclkriste par un biais des estimtes de fr&luence plus petit que celui de la structure AI. Nous faisons 
dans cet article une comparaison dttaillte entre les structures AI et AS ~t 1' aide d'une technique nouvelle de pr~-filtmge. Nous proposons 
ensuite une structure originale ayant le mSme ordre de complexit6 que la structure AI et presque le mSme biais en frtquence que la 
structure AS. Des simulations sur ordinateur approfondies ont 6t6 effectutes afin de comparer les performances des trois structures pour 
une gamme de tests 6tendue. 

Keywords. Adaptive notch filter; cascade form structure. 

1. Introduction 

Recently, two major problems on processing multi- 
ple sinusoids in additive noise have received great 
attention. One is to estimate or track the sinusoidal 
frequencies [4,15], the other is to enhance the sinu- 
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neering, National Taiwan University, Taipei, Taiwan, ROC. 

soids from the background noise [ 16]. Several practi- 
cal applications of these problems can be found in the 
area of communication, sonar, radar and biomedical 
signal processing. 

The filter schemes which have been used to enhance 
and track noisy sinusoids are adaptive line enhancer 
(ALE) and adaptive notch filter (ANF). The ALE is 
generally realized by using Finite Impulse Response 
(FIR) filters, and the ANF is implemented as con- 
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96 S.-C. Pei, C - C  Tseng / Adaptive notch filters 

strained Infinite Impulse Response (IIR) filters. For 
this reason, the ANF have two main advantages over 

the ALE. First, the ANF is computationally efficient 

for the enhancement of sinusoids. Second, the ANF has 

a better model fitting than the ALE, since sinusoids in 
noise is an autoregressive moving average process. 

Therefore, the ANF is much more accurate in frequency 
estimates than the ALE. 

In early work, most adaptive notch filters are imple- 
mented as direct form high order IIR filters [ 3, 8, 9, 

11 ]. This form suffers from two disadvantages. One 

drawback is that stability monitoring is difficult, the 

other one is that the frequencies of the sinusoids need 
to be determined from the filter coefficients by using 

root finding or transfer function evaluation. Thus, many 

authors have used the cascade form adaptive notch 
filters to solve these two problems [ 1, 5, 7, 10]. 

In the recent approaches, the parameters of cascade 

form adaptive notch filters can be adjusted by two dif- 
ferent ways. First, each section is adapted simultane- 

ously (AS),  as shown in Fig. l ( a )  [5]. Second, all 
sections are adapted individually (AI),  as depicted in 

Fig. 1 (b) [ 1, 7, 10]. As to the complexity of tracking 

~ H~z)Section I section 2 section p 

~_~ Adaptive I algorithm 
M'm E[e2(t)] 

(a) 

section I section 2 section p 
x(t) ~ ~  e P ~  e(t)= ep(t) 

(b) 

Fig. 1. (a) All sections are adapted simultaneously (AS). (b) Each 
section is adapted individually (AI), where H'N(Z) denotes second 
order notch filter and x(t) is multiple sinusoids embedded in additive 

noise. 

p sinusoids, the AI structure is linear with p but the AS 
structure is proportional to p 2. Thus, the AS structure 

is less efficient and more complicated than the AI struc- 

ture in complexity. However, the AI structure mini- 

mizes the output mean square error of each section 

individually, this results in bias of frequency estimates 
even in the absence of noise. Thus the AS structure is 
much better than the AI structure in frequency esti- 
mation accuracy. 

In this paper, we will make a detailed comparison 

between the AI and the AS structures by using a pre- 
filter technique. From this point of view, it is obvious 

and easy to explain why the AS structure has smaller 

bias in frequency estimates than the AI structure. In 

addition, we propose a novel structure which has the 
same complexity order as AIs and almost has the same 

lower frequency bias as ASs. 

The paper is organized as follows. First the problem 
statement is made in Section 2. Next the AS and AI 

structure is described in Section 3. The bias of fre- 
quency estimates in the AI and the AS structure will be 
analyzed in Section 4. Finally the novel structure is 

proposed in Section 5 and some computer simulations 
are presented. 

2. Problem statement 

Consider p sinusoidal signals in a noise as follows: 

p 
x( t )  = y~ Ai sin(w/t+ c~i) + v( t)  , (1) 

i=l 

where v( t )  is a zero-mean white noise process with 
variance ~2, and the phases {~bi} are uniformly distrib- 

uted on [0, 270. Besides, we assume that the sinusoids 
and noise are independent each other for all t. The 

signal-to-noise (SNRi) is defined as 101ogloA~/ 
(2o 2). Given the noisy samples x(t) ,  the problem is to 

estimate the sinusoidal frequency tog in real time by 
using cascade form adaptive notch filtering technique. 

3. The AS and AI structures 

In this section, we first describe the basic cell by 
which the AS and AI structures in Fig. 1 can be built 
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and then demonstrate the difference between AS and 
AI in view of prefiltering. 

3.1. Basic cell 

The basic cell is shown in Fig. 2. It is comprised of 
the three following filters: 
(a) The transfer function of the notch filter is 

i 1 + a i z - t  -t-Z - 2  
H N ( Z )  = (2) 

1 + p a i z - J + p 2 z - 2 ,  

where p is the pole radius which is specified by the 
user. For stability, p has to be smaller than one. In 
addition, the notch frequency o9~o t and its 3 dB rejection 
bandwidth BW are given by 

i = arccos (a_2~2) (3) Ol not 

and 

BW = "rr( 1 - p ) .  (4) 

input x i(t) 

i 

(a) 

sensitivity 
P'output s i(t) 

notch 
output e i(t) 

~ ,  bandpass 
output y i(t) 

si(t) 

t 
xi(t) _[ Cell i [ 

-I [ -- ei(t) 

1 
yi(t) 

(b) 

Fig. 2. (a) Signal flow graph of the basic cell. (b) Equivalent rep- 
resentation of the basic cell. 

It is obvious that H~(~0~ot) is equal to zero exactly. 
(b) The bandpass filter is realized by subtracting the 
output of notch filter from its input. The transfer func- 
tion is 

i i = --HN(Z) HBp(Z) 1 

( p _  l )ai z - l +  ( p 2 _  I)Z-2 
= l q _ f l a i z _ l _ } _ f l 2 Z _  2 ( 5 )  

• i i i i Since Hs(w,o,)  =0,  then HBp(O)not) = 1. This means 
that i Hap(Z) has unit gain and zero phase at the notch 
frequency. 
(c) The gradient or sensitivity filter can be obtained by 
the following method: From Fig. 2, we write the dif- 
ference equation of the notch filter as 

el(t) =xi( t )  - l-aixi( t-  1) + x i ( t - 2 )  

- paiei( t -  1) - p2ei( t -  2 ) . (6) 

By using a pseudolinear approximation [ 9, 14], we get 
the gradient component as 

aei( t ) 
- -  =Xi(t--  1) --pei( t--  1) . (7) 

0a i 

Thus the gradient filter is given by 

i __ ( 1 - P ) Z - I ( 1 - P  z - z )  
t i c ( z )  - (8) 

1 + paiz - ~ + p2z -2 

In the following, we use the basic cell to construct the 
AS and the AI structures. 

3.2. The AS structure 

The basic configuration of the AS structure is shown 
in Fig. 1 (a). It is clear that the transfer function from 
x( t )  to e( t )  is 

p 
HN(Z) • (9) H ( Z )  ~-- H i 

i=1 

Let us define the gradient component as g i ( t )=  

a e ( t ) / ~ i .  Then using the sensitivity theory [2] and a 
pseudolinear assumption, we get the transfer function 
from x(t) to gi(t) as follows: 

p 
Gi(z ) i =Ho(z) l-I  H~(z~.  (lO~ 

k= l ,k# i 
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98 s..c. Pei, C.-C. Tseng /Adaptive notch filters 

Combining (9) and (10), the overall AS structure is 
obtained in Fig. 3(a). From this structure, the notch 
output e(t)  and the gradient component gi(t) can be 
generated easily. Thus the filter parameters can be 
updated by 

tze( t)gi( t) 
a,(t+ 1 ) = a,(t) - IIg,(t)II 2 q-Pmin " ( 1 1 ) 

The constant Pmin is included to prevent division by 
zero when signals are not present [5]. From Fig. 3(a) 

X(t) 
q P O O O  

~ 0 0 0 0  

0 0 0 0  

(a) 

~ gp(t) 

--' e(t) 

~ Op-l(t) 

e(t) 

~ g2(t) 

e(t) 

~ gl(t) 
e(t) 
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(t) 

up~] %(t) 

Fig. 3. (a) The AS structure for tracking p sinusoids. (b) The AI structure for tracking p sinusoids. 
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it is easy to see the total number of the cells in the AS Step 1. Use the AS structure in Fig. 3 (a) to generate 

structure is $p(p + 1) + (p - 1 ), so the complexity is e(t) andgi(t). 

proportional top ‘. Based on the AS structure, we sum- Step 2. Use ( 11) to update ai( r) . 

marize Algorithm 1 as follows. 

ALGORITHM 1. For each input sample x(t) 

. 
. 

. 
. 

L 

I I 
1 Hk(z) t-j-&--t- l l -w* H;(z) -I”‘; w Hk(z) e1”>, 2:;; 

t 
adaptive 

algorithm 

Min E(&O) 

-*o - 

Step 3. Estimate frequency by ki( t + 1) 

=arccos( -&.2,(t+ 1)). 

Fig. 4. A prefilter structure which is equivalent to the AS structure. 
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3.3. The AI structure 4. Bias in AI and SI structure 

The basic confguration of the AI structure is 

depicted in Fig. 1 (b).  Since each section minimizes its 
output mean square error, by using pseudolinear 

assumption the gradient component is given by 

s i ( t )  = Oee(t)/OCt i .  Therefore, the final AI structure is 
shown in Fig. 3(b) and the filter parameters can be 

updated by 

tzei( t)si( t) 
ai(t+ 1) =ag(t) - IIs~(t)II 2 +Pmin ' (12) 

It is obvious that the total number of cells in the AI 
structure is p, so its complexity is linear with p. Based 
on the AI structure,we summarize Algorithm 2 as fol- 

lows: 

ALGORITHM 2. For each input sample x(t)  
Step 1. Use the AI structure in Fig. 3(b) to generate 

ei(t) and si(t). 
Step 2. Use (12) to update a~(t). 
Step 3. Estimate frequency by tb~(t + 1 ) 

= arccos( - lai( t+ 1)). 

3.4. Prefilter interpretation of the AS and AI structure 

In the above, it can be seen that the AS structure 
requires more basic cells than the AI structure. Thus, 

we will show that the AS has a smaller frequency bias 
than the AI. 

4.1. Bias in AI structure 

Using the AI structure to track p sinusoids in noise, 

the front cells in the structure have more than one sinu- 

soids in its inputs. The performance surface analysis in 
[ 1, 10] have shown that each section only converges 

to one of p sinusoids. The remaining sinusoids and 
noise will influence the adaption and cause frequency 
estimates bias. For understanding the fact, we derive 

the bias of the first section in the AI structure. The other 
sections can be derived by the similar ways. When 

Algorithm 2 converges, the stationary points of Section 

1 are given by 

E[sl( t )e l ( t )  ] = 0 .  (13) 

Using the results in [6], (13) becomes 

A~ 
F(al)  = i= 1 " ~  Fi(al  ) + ° ' 2 F v ( a l  ) = 0 ,  (14) 

where 

It is worth to notice that the AS structure in Fig. 3 (a) 

can be regarded as a prefilter structure shown in Fig. 4. 
This prefilter structure reveals that the procedure, 

which updates section HE(z) in the AS structure, can 

be divided into the following two steps: 
Step 1. Prefilter x(t)  by I-IP=I.k,~H~(z) to generate 

~f/(t), as shown in Fig. 4. 
Step 2. i HN(Z) adapts individually with input gi(t). 
In contrast, when HiN(Z) is updated in the AI structure, 
its two steps are stated as follows: 
Step 1. Prefilter x(t)  by I--I~Z]H~(z) to generate 

ei- l ( t ) ,  as shown in Fig. l (b ) .  
Step 2. HE (z) adapts individually with input e~_ 1(t). 
Thus, the basic difference between the AS and the AI 
structure lies in the prefilter structure. In the next sec- 
tion, we will use this point of view to explain why the 
AS structure has a smaller bias of frequency estimates 
than the AI structure. 

Fi(a,) 

(al + 2  cos(co/)) (1 - p  cos(2coi)) 
[alp+ ( 1 + p2 cos(co/) ) ]2 + ( 1 - p 2 )  2 sin2(coi) 

a l [ l _ p + p 2 + p 5  2p3(1 2 ~ a l - 1 ) ]  
Fv(al)  = ( l + p ) [ 1 - -  2 i 2 2p (~al 1) + p 4 ]  

Since the section 1 may converge to one ofp sinusoids, 

the solution to (14) in the vicinity of - 2  cos(coiL 
i = 1, 2 . . . . .  p. Without loosing generality, let us assume 
that Algorithm 2 converges to the solution near 

d l =  - 2  cos(col) . (15) 

Then using Taylor's series expansion around ~1, (14) 

becomes 

F(al)  = F ( d l )  + F ' (d l ) (a l  - d l )  = 0 ,  (16) 

where F ( ~  ) and F'(d~ ) may be evaluated from (14) 
easily. Thus the asymptotic bias of al is 

Signal Processing 
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w2 ( x  p i )  

Fig. 5. Bias of a~ in the first section of AI structure if p = 2. Dotted 
line: 6 dB; dashed line: 3 dB; solid line: 0 dB. 

tions only have the opportunity to converge to the 

remaining sinusoids. 

After all adaptive sections have converged, the input 

signal of each adaptive section is only one sinusoid in 

almost undistorted white noise. Thus no interfering 

sinusoids remain to cause frequency estimate bias. 

Each adaptive section is just like the last section of the 

AI structure shown in Fig. 1 (b). Since the last section 

in the AI structure have the smallest bias among all 

sections, the AS structure must have smaller bias than 

the AI structure. 

5. A novel structure 

F ( d , )  
bias = al - d ,  (17) 

F ' ( d l )  " 

A typical example of p = 2 is shown in Fig. 5, which 

plots the bias ofa~ versus o~ and SNR2 for col -- 0.5~r, 

SNR] =3  dB and p=0.95.  It is clear that the bias 

increases when the interfering sinusoid is strong or 

close to the sinusoid which section 1 converges to. 

Because the input of section i is x ( t )  prefiltered by 

Fl ~iJ~ H~(z), the number of its interfering sinusoids is 

p - i + 1. In particular, the input of the last section con- 

tains only one sinusoid in noise without any other inter- 

feting sinusoid. Thus, the last section will have the 

smallest frequency bias among all the sections. 

4.2. Bias in AS structure 

Since the AS structure can be viewed as a prefilter 

structure shown in Fig. 4, we will use this structure to 

explain why the AS have smaller bias than the AI. 

Beforehand, it is interesting to discuss the transient 

behavior of the structure in Fig. 4. 

When each section in Fig. 4. has not converged at 

the beginning of adaption, the input signal gi( t ) of each 

adaptive section is almost the same as x(t), because the 

frequency response of the notch filter has unit gain and 

zero group delay everywhere except at notch fre- 
quency. If some adaptive sections have converged, then 

their corresponding input sinusoids will be predeleted 

before entering the other nonconverged adaptive sec- 

tions. This will make that nonconverged adaptive sec- 

Until now, we have explained that the AS structure 

has more complexity and less bias than the AI structure. 

Both are due to the major difference in the prefilter 

structure. In the section we will propose a novel prefilter 

structure in order that the complexity of AS can reduce 

to the same order as AI. This novel structure is mainly 

based on the following key property: 

KEY PROPERTY. Suppose 

q 

: H N ( Z  ) , n m u l ( Z )  H i 
i=1 

q 

= HN(Z)-- (q-- 1) , n a d d ( Z )  E i 
i=1 

then 

Hmul(Z ) = Hadd(Z ) + O (  ( 1 - p)2) , (18) 

where i HN(Z) is second order notch f i l ter expressed in 

(2), and O(x )  denotes a term which goes to zeros at 

least as x when x approaches zero [13]. 

PROOF. See Appendix A. 

REMARKS 

(a) From (4), the 3 dB rejection bandwidth BW of 
i HN(Z) is xr( 1 -- p). If the notch is very narrow, then 

1 - p approaches zero. Thus the key property becomes 

Hm,l(Z) = Haad(Z) + O(BW 2) . (19) 
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Equation (19) means that we can u s e  H a d  d (Z) to replace 
Hm,](Z) when i HN(Z), i = 1 . . . . .  q, have very narrow 
notch. A typical example of  q = 2 is illustrated as fol- 

lows: Let 

H~(z) = 

H2(Z) = 

1 +0.5z-~ +z-2  
1 + 0.475z - 1 + 0.9025z - 2 ' 

l - 0 . 5 z - ~  + z  - z  

1 - 0 . 4 7 5 z  -~ + 0 . 9 0 2 5 z - 2 '  

then 

H ~ ( z ) H ~ ( z ) =  
1 + 1 . 7 5 z - e + z  -4 

1+1.5794z - 2 + 0 . 8 1 4 5 z  - 4 ,  

H~(z) +H~(z )  - 1 

1+1.7506Z -2+0.9905Z -4 

1+1.5794z  -2+0 .8145z  - 4 .  

It is obvious that both transfer functions are almost the 

same, and their frequency responses look very similar 

as shown in Fig. 6. 

(b) This key property has an intuitive explanation 

as follows: 

Since 

q 

= H N ( Z ) - - ( q - - 1 )  Hadd(Z) E i 
i = 1  

q 

- H ~ ( z ) )  , = I _ E (  1 i 
i = 1  

from (5),  this expression becomes 

q 

Hap(Z) • (20) H , d d ( Z ) = l - -  ~ i 
i = l  

Note that H~p(Z) is a bandpass filter with unit gain and 

zero phase at the corresponding notch frequency of  
i HN(Z ) . Moreover, the narrower notch/-/'N(Z) has, the 

narrower passband Him,(z) has. Therefore (20) 

implies that the function of  Hadd(Z ) includes the fol- 
lowing two parts: First, use Eq= i Hkp(Z) to extract the 
sinusoidal signal from the input signal undistortedly. 

Second, subtract the extracted signal from the input 

4 J  

D -  
E 
ro  

2 .  o~ 

1.20 

- t  . 0 0  - 0 . 6 0  - 0 . 2 0  
. . . . . .  i i i 

o 20  o 60 t oo  

normalized frequency ( x p l )  

(a) 

J.J 

0 . 0 0  
(3- 
E 
ro  

O. , tO 

0 . 0 0  , I . . . .  I , 
- 1 .  O0 - 0 . 6 0  - 0  20  O. 20  0 . 6 0  1 0 0  

normalized frequency ( x p i )  

(b) 

Fig. 6. Frequency response, (a) H~(z)H2(z), (b) H~(z)+ 
H2(z) - I. 

signal. The total effect of  these two parts is equivalent 

to letting the input signal pass through Hmul(Z) with 

very narrow notch bandwidth. 

(c)  When q = 2, from the derivation in Appendix A 

we have 

( 1 - p)  2E z ( z ) E e ( z )  
H m u l ( Z )  - -  Hadd(Z ) = 

A l ( p Z ) A 2 ( p z )  (21) 

=R(z). 

We may choose p such that 

max Ig (d° ' ) [  < e  (22) 
0 ~ t a~ - r r  

to guarantee that H ~ a ( z )  is a good approximation to 
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x(t)  

-'[- 'I'- 

w 
r '--  

Q • 

:iI 

iili 

~ ~p-l(t) 

,- " e(t) 

gp(t) 

-' ~ e ( t )  

Fig. 7. A novel structure for tracking p sinusoids. 
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the Hmu~(Z), where e is a small number. For example, 

if a~ = - 2  cos(0.4~r), a2 = - 2  COS(0.5aT) and e =  
0.07, then p must be greater than 0.98 such that (22)  
is valid. 

Now, let us use this key property to reduce the com- 

plexity of  the AS structure. According to (10) ,  (19)  

and (20) ,  the transfer function of  gradient component 
in the AS structure can be written as 

1 m i  Gi(z)=Ho(z) ~ H~p(Z) 
k = l , k ~ i  

(23) 

The narrower the notch bandwidth is, the better this 

approximation is. In our experience, when p is greater 

than 0.95, (23)  can be used very well. From (23)  and 
Fig. 4, a novel structure can be constructed as shown 

in Fig. 7. The essence of  this structure is the same as 

the AS structure, so the bias of  frequency estimates will 

be very small. Besides, the number of  cells is 2p. Thus 
its complexity is linear with p, i.e., the same as the AI 

structure. Based on this novel structure, we summarize 

Algorithm 3 as follows: 

ALGORITHM 3. For each input sample x(t)  
Step 1. Use the novel structure in Fig. 7 to generate 

e(t)  and gi(t).  
Step 2. Use (12)  to update a i (  t ) . 

Step 3. Estimate the frequency by ¢bi(t + 1) = 
arccos( -- l ai( t + 1 ) ). 

6. Experimental  results 

Some computer simulations are performed with sin- 

gle precision floating-point on a VAX 3600 computer 
system to test the three algorithms in this paper. In all 
simulations, the notch frequencies are normalized with 
respect to the half sampling frequency. 

EXAMPLE 1. Three input sinusoids with equal power. 

Referring to Fig. 8, this simulation compares the adap- 
tive behavior of  three algorithms. The input frequencies 
are at 0.6, 0.7, 0.8, respectively. All sinusoids have 
equal power with an SNR of 3 dB and the notches are 
initialized at 0.2, 0.3, 0.4, which are far from the input 
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Fig. 8. Adaptive behavior of three algorithms. (a) Algorithm 1, (b) 
Algorithm 2, (c) Algorithm 3. Solid line: section 1; dashed line: 

section 2; dotted line: section 3. 

frequencies. The pole radius p and the step s i z e / i  are 
fixed to be 0.95 and 0.005 during adaption. It can be 
seen that Algorithm 1 (AS structure) and algorithm 3 
(Novel  structure) have almost the same behavior as 
expected. In Algorithm 2 (AI structure), because each 
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section is adapted individually, section 1 and section 2 
converge to the same input sinusoid at the beginning 
of adaption. However, when section 1 have converged, 
corresponding sinusoid will be deleted before it inputs 
section 2. Thus, section 2 changes its converged notch 
frequency from 0.6 to 0.7. This means that the section 
1 has higher 'priority' to choose a converged sinusoid 
than the remaining sections in the AI structure. 

EXAMPLE 2. Two weak sinusoids in a strong sinusoid. 
Referring to Fig. 9, this example compares the adaptive 
behavior of three algorithms in a special case. That is, 
the input signal x(t)  consists of  two weak sinusoids 
embedded in a very strong sinusoid. The input fre- 
quencies are at 0.2, 0.4, 0.6, and their corresponding 
SNR are 20 dB, 0 dB, 0 dB, respectively. The pole 
radius p and the step size/.~ are fixed to be 0.95 and 
0.005 and the initial notch frequencies are set at 0.333, 
0.5, 0.667, respectively. It is easy to see that the strong 
sinusoid has smaller 'ripple' and less 'influence' than 
the other two weak sinusoids in all three algorithms. 
However, the strong sinusoid causes larger bias of  weak 
sinusoids' frequency in the AI structure than the other 
two structures. 

EXAMPLE 3. Time varying pole radius p. In this exam- 
ple, we adapt the Nehorai's approach for stationary 
signal in which the pole radius is initialized to be a 
smaller value for fast convergence speed, but is 
increased exponentially according to 

p(t+ l) =pop(t) + (1 -po)p~ (24) 

to improve the bias and signal enhancement [8].  In 
this simulation, p( 1 ) = 0 . 7 ,  po = 0.99 and p= =0.95.  
The notch frequencies are initialized at 0.1, 0.2, 0.3 and 
the frequencies of  the input sinusoids are 0.5, 0.6, 0.7. 
All sinusoids have an SNR of 3 dB and the step s ize /z  
is chosen as 0.005. Referring to Fig. 10, it can be seen 
that all three algorithms converge to the correct fre- 
quencies. Note that Algorithm 3 does not suffer unde- 
sired problems even though the initial p is chosen as 
0.7. However, in order to guarantee that the novel struc- 
ture is a good approximation to the AS structure, the 
p( l ) had better not be too far from unity at the begin- 
ning of the adaptive process. 
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Fig. 9. Adaptive behavior for two 0 dB sinusoids in a 20 dB sinusoid. 
(a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3. Solid line: 

section 1; dashed line: section 2; dotted line: section 3. 

EXAMPLE 4. Tracking the time-varying sinusoids. In 
this example, we concentrate on the use of three algo- 
rithms for tracking the nonstationary signals, wherein 
the frequency of input sinusoids is assumed to be time 
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Fig. 11. Tracking behavior of the linear chirp signal. (a) Algorithm 
1, (b) Algorithm 2, (c) Algorithm 3. Solid line: section 1; dashed 

line: section 2; dotted line: section 3. 

varying. Three typical cases are investigated below 

[ 12].  In each case, the pole radius p and the step size 

/x are fixed at 0.95 and 0.005. 
(a)  Tracking chirp signal. 
First, we  consider the tracking of  a linear chirp signal. 

The input signal x( t )  consists of  two sinusoids with 

fixed frequencies at 0.4, 0.6 and a frequency increasing 
chirp signal of  the fol lowing form: 

V~ sin(0.5"rrt + 0.001¢rt 2) • (25)  
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Fig. 12. Tracking behavior of the sinusoid with step-changed fre- 
quency. (a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3. Solid 

line: section 1; dashed line: section 2; dotted line: section 3. 

All signal components have an SNR of  3 dB and the 
notch frequencies are initialized at 0.1, 0.2 and 0.3. 

Figure 11 clearly indicates that the tracking capabilities 
of  the three algorithms are good. 

(b)  Tracking the sinusoid with step changed frequency. 

t 0 0  

-;~ 3 (c) 

o.eo ........ ....... 

.- 2 

0.20 

0 300 500 900 1200 1500 

Novel  

iteration 

Fig. ! 3. Tracking behavior of the sinusoid with its frequency varied 
sinusoidally. (a) Algorithm 1, (b) Algorithm 2, (c) Algorithm 3. 
Solid line: section 1; dashed line: section 2; dotted line: section 3. 

Next, we consider the input signal, in which the sinu- 
soidal frequencies are initially at 0.2, 0.4 and 0.6, 

respectively for the first 1000 sample points, after 
which they are suddenly step changed to 0.2, 0.5 and 

0.6. All sinusoids have an SNR of  3 dB and the notches 
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Table  1 

Statistical results o f  A lgor i thm 1 

S.-C. Pei, C.-C. Tseng /Adaptive notch filters 

N 
S N R  

(dB)  

Bias x 10 -3  Standard deviat ion × 10 -5  

1000 1 21.07 15.96 - 46 .74  69.92 44.87 61.77 

5 5 .832 6 .217 - 21.25 43.24 26.09 38.85 

9 1.931 4 .527 - 8.893 27.43 16.54 24.70 

13 - 0 . 2 5 3 3  1.854 - 5 . 4 1 8  17.15 10.34 15.66 

17 - 1.107 0.5901 - 4 . 1 1 3  10.77 6.506 9 .937 

1500 1 33.02 30.10 - 41 .19  64 .70  53.99 64.59 

5 7.361 14.02 - 17.67 39.93 32.23 39.09 

9 1.633 6.738 - 8 .690 24 .76  19.76 24.21 

1 3  - 0 .4619  3.248 - 5 .299 15.42 12.28 15.14 

17 - 1.209 1.475 - 4 .053 9 .655 7.698 9 .519 

Table  2 

Statistical results o f  Algor i thm 2 

N 

S N R  

( d B )  

Bias × 1 0 - 5  Standard deviat ion × 10 5 

], ]2 ]3 ], ]2 Y3 

1000 1 422.9  45 .92  - 29.17 121.6 56.82 70.85 

5 375.0  31.97 - 8 .982 72.02 32.60 41.78 

9 354.7  26.57 - 2 .265 44.21 19.87 25.43 

13 345.7  24.39 - 0 . 2 4 4 4  27.57 12.31 15.71 

17 341.6  23.49 0 .1069  17.29 7.687 9 .789 

1500 1 391.1 57.88 - 27.6 ! 103.7 39.27 51.87 

5 356.6  37.76 - 9.841 61.39 23.23 31.93 

9 343.8  29.41 - 3 .332 37.69 14.47 19.95 

13 339.1 25 .86  - 1.097 23.52 9 .108 12.54 

17 337.5 22 .49  - 0.4351 14.78 5 .768 7.898 

Table  3 

Statistical results o f  Algor i thm 3 

N 

S N R  

( d a )  

Bias × 1 0 - s  S tandard  deviat ion × 10 -5  

], ]2 ]3 Y, ]2 Y3 

1000 1 

5 

9 

13 

17 

30.86 

10.93 
3.597 
0 .6616  

- 0.5483 

19.71 

5 .922 

0.8851 

- 0 .7689  

- 1.186 

- 3 5 . 2 3  

- 13.85 

- 6 .229 

- 3.725 

- 3 .046 

69 .74  

41.82 

25.65 

15.91 

9.993 

54.04 

31.19 

1 8 . 9 2  

1 1 . 6 9  

7.293 

56.70 

35.23 

22.08 

13.88 

8.741 

1500 1 

5 

9 
13 

17 

13.59 

1.237 

- 2 .447 

- 3 . 1 6 2  

- 2 .947 

23 .00  

8 .124 

2.411 

0 .2593 

- 0 . 5 1 8 6  

- 28.59 

- 1.232 

- 6 .402 

- 4 . 2 9 1  

- 3 .594 

51.87 

33.20 

21.23 

15.53 
8.599 

57.11 

34.35 

21 .00  
12.99 

8.092 

50.15 

30.66 

19.27 
12.21 

7 .739 
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are initialized at 0.333, 0.5 and 0.667. It can be seen 
from Fig. 12 that the three algorithms track this step 
change very well. 
(c) Tracking the sinusoid with its frequency varied 
sinusoidally. 
Finally, we study the tracking of the input signal which 
consists of two sinusoids with fixed frequencies at 0.35, 
0.65 and a sinusoid with its frequency varied sinuso- 
idally: 

sin(0.57rt + 50 sin(0.002xrt) ) . (26) 

The SNRs of all sinusoids are 3 dB and the notch 
frequencies are initialized at 0.1, 0.5 and 0.9. Figure 13 
shows that the frequency tracking errors are very small 
in all three algorithms. 

EXAMPLE 5. Statistical performance of three algo- 
rithms. In this example, we demonstrate the statistical 
behavior of three algorithms. The input frequencies are 
at 0.45, 0.5 and 0.55. All sinusoids have an equal power 
with different SNRs and the notches are initialized at 
0.333, 0.5, 0.667. The pole radius p and the step size/x 
are fixed at 0.95 and 0.005 during adaption. Tables 1 
to 3 summarize the bias and standard deviation of the 
notch frequencies calculated from 40 independent tri- 
als. Algorithms 1 and 3 have almost the same statistical 
results as expected. Also, we see that the smallest bias 
f3 in Algorithm 2 is almost the same as the bias of each 

in Algorithms 1 and 3. This result is consistent with 
our previous prediction. 

7. Conclusion 

A novel structure for cascade from adaptive notch 
filters has been developed in this paper. It can reduce 
the complexity greatly from order p 2 to order p, and it 
also has the same lower frequency bias as ASs. Exten- 
sive computer simulations have been done to test the 
performance of this new structure. 

Appendix A. Proof of key property 

Let us define 

Ai(z) = 1 +aiz - l  . ~ . . z - 2  , 

Ai(pz) = 1 "-~ ~ a z  1 + p2z-2 

El(Z) = -aiz--  2__ (1 + p)z -2 ,  

then 

A,(pz) =A~(z) + ( 1 - p)E,(z) . 

Moreover, 

Hmul(Z ) = f i  
Ai(z) 

i=l  A i ( p z )  

and 

l-l~.~ 1 A i ( z )  

l - lq=l  A i ( p z  ) 

(27) 

fl., Ai(z) 
H a d d ( Z )  = i ~ 1 A i ~  ) ( q - l )  

~{j~_l[AJ(Z)i~l,i~ Ai(pz) ] 
- ( q -  l)  HAi(pZ A,(pz) .  

• " ~ i =  1 

So, 

nmMz) -/-/aM Z) 

where 

Q(z) 

I ]  q i A i ( f f z )  ' 
(28) 

Q(z) = 1 A i ( z ) -  Aj(z) 1-I Ai(pz) 
i ~ l  j ~ l  L i = l , i ~ j  "J 

q 

+ ( q -  11 I-[ Ai(oz) • 
i = l  

Making use of (27), 

q 

Q(z) = I-] Ai(z) 
i= l  

(z) f i  [ A , ( z ) + ( 1 - p ) E , ( z ) ]  
j=  1 i= 1, i~j  

q 

+ ( q - l )  I-I  [ A i ( z ) + ( 1 - p ) E i ( z ) ] .  (29) 
i=l  

Note that the sum of the first term and the third term in 
(29) is 
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q q 

l-I Ai(z) + (q - 1 ) 1-I [A,(z) + ( 1 - p)Ei(z ) ] 
i= l  i= l  

q 

=q l-I Ai(z )  
i~l 

~ I A j  q ] + ( q - l )  (z) l-I Ei(z) ( l - p )  
j ~ l  L i=l,i~j 

+ O ( ( 1 - p )  2 ) .  (30) 

Moreover, by expanding and combining, the second 
term in (29) becomes 

~ ( A ~ ( z )  f i  [ A i ( z ) + ( l - p ) E i ( z ) ] ~  
i= 1 i~ I,i~j 

q 

=q l--I a i ( z )  
i~l  

~ I  q ] + ( q - l )  At(z) 1-I Ei(z) ( l - p )  
j ~ l  L i~l,i~:j ..a 

+O((1 - -p )2 ) .  (31) 

Substituting (30) and (31 ) into (29), we get 

Q(z) = O ( ( 1 - p ) 2 )  . (32) 

From (28) and (32), we obtain 

Hmul(Z) -- Hadd( Z) + O( ( 1 -- p) z) (33) 

and the proof is completed. [] 
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