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Abstract 

An efficient image sampling structure conversion using mathematical morphology is described in this paper. The 
conversion between quincunx and rectangular structures evidently will play an important role in television image 
processing and HDTV applications. We propose to use morphological filters in this conversion scheme instead of the 
conventional linear filters. The advantages of the morphological approach over the linear-filtering approach are its direct 
geometric interpretation, simplicity, and efficiency in hardware implementation. Some image examples are given to show 
the effectiveness of this approach. 
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I. Introduction 

In the multidimensional signal processing, the 
conversion between different periodic sampling 
structures is an important problem, especially for 
the conversion between quincunx and rectangular 
structures in television image processing and 
HDTV applications. For reconstructing the origi- 
nal picture accurately, we have to use appropriate 
decimation and interpolation low-pass filters. 
Conventionally, the existing linear programming 
methods [3, 6] are often used to design such filters 
by incorporating several time- and frequency- 
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domain constraints. The procedures of design are 
very complicated, difficult and time consuming for 
implementation. Also, one may observe a great deal 
of complexity and computation being indispens- 
able in this linear-filtering approach fr'r the samp- 
ling structure conversion, in this paper, ~,, propose 
to use morphological filters in this conversion 
scheme instead of the conventional linear filters. 
The advantages of the morphological approach 
over the linear-filtering approach are its direct geo- 
metric interpretation, simplicity and efficiency in 
hardware implementation. 

We summarize this paper as tbllows: Sectiol~ 2 
reviews the mathematical morphology operations 
on binary images and gray-level images. Section 3 
illustrates the image sampling conversion methods 



using morphological filters. Section 4 gives some 
image examples to show the effectiveness of this o o  o 
approach. The conclusions are finally made in o o o  o o® o OO O 
Section 5. o 
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2. Mathematical morphology 

Mathematical morphology is an approach to the 
image processing based on set theory concepts of 
shapes [4, 5]. An image can be represented by a set 
of pixels, the morphological operations deal with 
two images: the original data to be analyzed and 
a structuring element, which is analogous to the 
kernel of a convolution operation. Each structuring 
element has a shape which can be regarded as 
a parameter to the operation. The four basic opera- 
tions in mathematical morphology are dilation, 
erosion, opening and closing. This mathematical 
field was introduced by Matheron [4]. Serra pres- 
ents these concepts in detail [5]. A tutorial is found 
in Haralick et al. [2]. 

2.1. Binarr image morphology 

We assume X (original image) and B (structuring 
element) to be the subsets of a two-dimensional 
(2-D) Euclidean space, and let (X)b denote the 
translation of X by the vector h, 

(X)~ = l y l y =  x + b, x~ Xj, (I) 

then the two fundamental morphological opera- 
tions, dilation and erosion, can be defined as fol- 
lows: 

Dilation: X (9 B = ~ (X)b 
beB 

= l Y l y = x + h ,  xeX ,  heB}, t2) 

Erosion: X e B  = ~(X)-b 
beB 

- {y lh~ B, implies (y + h) e X}. (3) 

This means that a dilation of X by B, X ~ B, can be 
described as the union of translations of X by all 
vectors h contained in the structuring element B. 
For erosion, X e B, the result is an intersection of 
translation by all vectors - b, where b is contained 

X B XeB X®B 

denotes the origin of the structuring element B. 

(a) 
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X B XoB XeB 

(b) 

Fig. I. Example of binary image morphology: (a) erosion and 
dilation of X by B: (b) opening and closing of X by B (the dark 
solid curves correspond to the boundaries of the transformed 
sets). 

in B. Fig. I(a) shows the example of erosion and 
dilation of X by B. Dilation and erosion cause the 
expanding or shrinking of areas when the structur- 
ing element has a disk-like shape. Although dila- 
tion and erosion are complementary morphologi- 
cal operations, they are noninvertible. This means 
that the original image, in general, cannot be re- 
covered by performing dilation to its eroded ver- 
sion or vice versa. 

An opening is defined as an erosion followed by 
a dilation by the same structuring element and is 
shown as 

Opening: X O B = (X (9 B) ~ B. (4) 

On the other hand, we define a closing as a dilation 
followed by an erosion as 

Closing: X • B = (X ~ B) e B. (5) 

Openings on an image with a structuring element 
B can be pictured by moving B inside all the shapes 
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of an image and marking only those places where 
B fits. Similarly, closings on an image with a struc- 
turing element B can be pictured by moving 
B arcand the outside of all shapes of an image with 
the result that the concave corners are rounded 
and the convex corners remain unchanged. The 
example of opening and closing of X by B is shown 
in Fig. l(b). 

2.2. Gray-scale morphology 

Morphological concepts can be extended to 
gray-scale images. In the gray-scale morphology 
[2], gray-scale images are visualized as three- 
dimensional (3-D)landscapes with the gray values 
as third dimension. The structuring elements of 
the gray-scale morphology are 3-D shapes, like 
spheres or cylinders. Performing morphological 
operations on a gray-scale image by a spherical- 
structuring element is equivalent to sliding a sphere 
across the gray-level surface. 

Let the image X(x) be represented as a function 
of coordinates x. The analytical definitions of the 
gray-level morphology operations are as follows: 

Dilation: X (9 B = D(x)= max[X(x - b) + B(b)], 

(6) 

Erosion: X e B = E(x)= min[X(x + b ) -  B(b)], 
beB' 

(7) 

where the B(b)'s are weights that are a function of b, 
and B' is the region of support of the structuring 
element B. 

Note that all of the relationships for binary im- 
age morphology are preserved here in a form in 
which intersection is replaced by min, while union 
is replaced by max. The opening and closing opera- 
tions for gray-level images are defined similarly as 
in the binary case, i.e. 

Opening: X o B = (X e B) ~ B. (8) 

Closing: X • B = (X ~ B) e B, (9) 

In gray-level morphology the disk shaped struc- 
turing element shown in Fig. 2(a) is 3-D. The result 
of a 3-D opening is to move the top areas under the 
top surface of the landscape in Fig. 2(b) defined by 
the image, and keep those areas where the disk- 
shaped structuring element fits. Strongly peaked 
areas with widths less than the diameter of the 
disk-shaped structuring element will flatten out as 
illustrated in Fig. 2(c). 

3. Sampling structure conversions using 
morphological filters 

3.1. Conversion between orthogonal and 
quincunx structures 

The orthogonal and quincunx periodic sampling 
structures are the most commonly used in televi- 
sion image processing. The relationship between 
the (L, K) quincunx lattices in the spatial and fre- 
quency domains is shown in Fig. 3, where TI and 
T2 represent the sampling period in the horizontal 
and vertical directions for a spatial sampling pat- 
tern. L and K are the parameters of the quincunx 
sampling structure. A spectral representation of the 
(L,K) quincunx sampling structure in frequency 
domain is given in Fig. 3(b). The conversion from 

(a) (b) (c) 

Fig. 2. Example of gray-level image morphology: (a) disk-shaped structuring element: (b) gray-level image hmdscape: (c) opening by 
a disk-shaped structuring elemeat. 
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Fig. 3. (i,, K) quincunx sampling: (a) sample points in the (/I, tzl plane; (b) spectrum centers (denoted by x) and the ideal diamond. 
sha~'d filter (L = 2, K = 3). 
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Fig. 4, Block diagram of the sampling structure conversions: decimation interpohltion system using 2-D morphological filters. 

orthogonal structure to quincunx structure or vice 
versa corresponds to a decimation or to an interpo- 
lation. It is shown that the marked ideal diamond- 
shaped decimation filter or interpolation filter in 
Fig. 3(b) is good candidate for conversion process- 
ing, because it allows a maximum definition in the 
horizontal and vertical directions. It is well known 
that human visual perception in the horizontal and 
vertical directions is better than in the diagonal 
direction. Siohan [6] and Knoll [3] have recently 

designed these 2-D diamond-shaped linear FIR 
filters using complicated optimization techniques 
which are very time-consuming. The type of sym- 
metry in the ideal diamond-shaped filters will de- 
pend on the respective values of the parameters 
L and K, and will be tetragonal (L =~ K) or octo- 
g~,nal (L = K). In consideration of the block dia- 
gram of the sampling structure conversions shown 
in Fig. 4, the orthogonal structure input in l'iZ. 4 
is filtered first through the diamond-shaped 
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decimation filter Hoo and then downsampled to the 
(L, K) quincunx structure output. For the inverse 
process, the quincunx structure is unsampled by 
(L, K) times and then interpolated to become the 
orthogonal structure output by the diamond- 
shaped interpolation filter Foo. For the purpose of 
convenience of transmission, the decimation is 
a first step with the effect of bandwidth reduction, 
then an interpolation is carried out at the receiver 
in order to recover the original signal. The natural 
consequence of this type of processing is a distor- 
tion which depends on the values of the conversion 
parameters, and also on the deviation from the 
ideal frequency characteristics. 

The morphological low-pass filters are used here 
to substitute the linear decimation/interpolation 
filters. With mathematical morphology filter tech- 
nologies, the complexity of the filter design and 
implementation are greatly reduced on the ground 
that time-consuming optimization procedures and 
multiplicatio, operations used in linear filters can 
be omitted. Image objects are most naturally per- 
ceived as geometrical shapes. Therefore, a need 
exists for representation that emphasizes geometric 
structures. Mathematical morphology can provide 
a unique geometric representation of an image by 
analyzing its shape and conveying its size, orienta- 
tion, and connectivity. Sequential alternating 
application of the morphological operations of 
opening and closing by means of the same structur- 
ing element removes details of the image that are 
small in comparison of this structuring element. We 
call these alternating sequential filters as mor- 
phological low-pass filters: 

I-D low-pass decimation filter Ho: 
closing [opening (X)], (1o) 

1-D low-pass interpolation filter Fo: 
closing (W). (ii) 

The typical quincunx sampling patterns for 
different L,K parameters are shown in 
Figs. 5(a)-5(c). Note that only one-half, one-fourth 
or one-eighth of the image samples are remained in 
each sampling conversion case. The system dia- 
grams of the sampling structure conversions using 
morphological filters are shown in Figs. 6 and 7, 
where the two 3 x 1 or 5 x I decimation structuring 
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(a) (b) ( c )  

Fig. 5. Q u i n c u n x  sampl ing :  (a) L = K = I: (b) L = !, K = 2; 
(c) L = K = 2. 

elements and 3 x 2 or 5 x 2 interpolation structur- 
ing elements are also shown for reference. The 
black dots in the 3 x 3/5 x .5 windows denote the 
structuring element, and the gray-scale values of 
these dots are constant. In analogy to the linear 
filters one can imagine that the length and direction 
of the diagonal structuring elements will determine 
the passband bandwidth and spectrum orientation 
of the filters. The larger the structuring element is, 
the narrower the filter passband becomes. The 
downsampling (upsampling) procedure deletes (in- 
terpolates) the image samples on every other di- 
agonal with the inclination angle 0 = tan-I(L/K). 
The 2-D diamond-shaped decimation and interpo- 
lation filters are easily designed by a separable 
product of 1-D 0-degree diagonal and (Tt - 0) ° di- 
agonal morphological filters, for example, 0 = 45 ° 
for L = K = I  in Fig. 6 and 0 = 2 7  ° for L - I ,  
K = 2 in Fig. 7, i.e. for 0 = 45°: 

2-D low-pass decimation filter H0o: 
H~ 3S[H'~S(X) ], (12) 

2-D low-pass interpolation filter F0o: 
F~35[F~5(W)], (13) 

where H4oS(Fo 4s) and H~3S(Fo ~3s) are the 45 ° di- 
agonal and 135 ° diagonal low-pass filters, respec- 
tively. 

By means of mathematical morphological filters, 
the complexity of filter design and implementation 
is greatly reduced because only summation/sub- 
traction operations and max/min decisions are 
needed. Two opening and closing operations (four 
dilation and four erosion operations) are used for 
the morphological filter in Fig. 6(a). In this connec- 
tion, the computational complexity can be counted 
as four max and four min decisions per pixel. 
The summation and subtraction are not needed 
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Fig. 6. System diagram of the sampling structure conversions using morphological filters: (a) from the orthogonal to the (L, K) 
quincunx structure, L = K - I or L = K = 2: (b) from the (L K) quincunx to the orthogonal structure. 
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Fig, 7, System diagram of the sampling structure conversions using morphological filters: (a) from the orthogonal to the (t, K) 
quincunx structure, L -- I, K -- 2: (b) from the (L, K) quincunx to the orthogonal structure. 

in dilation and erosion if we give the value of zero 
to the gray-scale values of the structuring element. 
On the other hand, if the morphological filter in 
Fig. 6(a) is replaced by the 2-D 3 x 3 linear filter, 

the computational complexity is nine multiplica- 
tions and eight summations per pixel. Meanwhile, 
the processing speed of morphological filters is very 
fast because the basic morphological operations 
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can be implemented in the pipeline processing form 
of parallelism [ 1 ]. 

3.2. Conversioi~ from the (L,, KI) quincunx 
structure to the (L2, Kz ) quincunx structure 

To take into account a sampling conversion from 
an (L,, K,) to an (L2, K2) quincunx structure, Fig. 8 

shows that cascaded design of the interpolation and 
decimation processes is sufficient to achieve this 
conversion process. We denote F(I4/) and H(S) as 
the morphological low-pass filters associated with 
the up- and down-sampling operations, respec- 
tively. It can be seen that the two filters F(W) and 
H(S) operate on the same rectangular (orthogonal) 
sampling structure. Therefore, the more efficient 
implementation can be obtained if the two ideal 
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structure 
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! G(w)=H IF(w)] "I I 
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Fig. 8. Conversion from the (L v K~) to the (L 2, K 2) quincunx structure. 
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Fig. 9. Contours of the ideal filters for a conversion between two quincunx sampling structures (L = LI = L2 = I, KI = 1, Kz = 2). 
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Fig. I0. Conversion from the (LI, K~) rectangular to the (L,, K,) quincunx structure. 

filters are combined to form one composite mor- 
phological low-pass filter, denoted by G(W). The 
frequency spectrum of the two filters H(S) and 
F(W) are the small and the big diamond-shaped 
areas, respectively, as shown in Fig. 9. The com- 
mon part of these two areas is the frequency spec- 
trum of the filter G(W) and is shown as the shaded 
area in Fig. 9. 

3.3. Conversion,from the (L,, K l) rectangular 
structure to the (L2, K2) quincunx structure 

Assume we want to convert the rectangular 
structure into a quincunx sampling structure 
with rational factors p-= L2/LI and q -  K2/I<i. 
Fig. 10 illustrates a cascade of the interpolation and 
decimation processes to achieve this sampling con- 
version. Similarly, the two morphological filters 
F(W) and H(S) can be combined to form a com- 
posite morphological low-pass filter G(W). The fre- 
quency spectrum of the two filters H(S)and F(W) 
are the diamond shaped and rectangular areas, 
respectively, as shown in Fig. 11. The common part 
of these two areas is the frequency spectrum of the 
filter G(W) and is shown as the shaded area in 
Fig. I 1. 

4. Experimental results and discussions 

In this section, some experiments are described 
to demonstrate the effectiveness of the morphologi- 
cal approach. Figure 4 shows the experimental 
block diagram. The orthogonal input signal first 
passes through a decimation filter and down samp- 

--.-/_ 

P( [ ~ T 2 w) -----.- 

I 

zrl 

Fig. ! I. Contours of the ideal filters for a conversion from the 
(Lt, Kt) rectangular to the ~L2, K,) quineunx structure (L = LI 
= L 2 =  I , K = K I - - K , = 2 ) .  

ling operation is performed afterwards. Then the 
middle quincunx sampled signal is upsampled and 
passed through an interpolation filter to obtain the 
final orthogonal output. The distortion and devi- 
ation of the output from the input can be utilized to 
evaluate this type of sampling conversion process 
with the designed 2-D diamond-shaped mor- 
phological filters. 

The first experiment is processed by using the 
morphological decimation and interpolation filters 
with 3 x 3 structuring elements for the parameters 
L = K = 1. The test picture 'LENA' is shown in 
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Fig. 12. (a) Original test picture - Lena: (b) result of a down and up conversion for L -- K = i and with 3 x 3 morphological 
decimation and interpolation filters (SNR = 24.24dB): (c) result of a down and up conversion for L = !, K = 2 and with 5 x 5 
morphological decimation and interpolation filters (SNR - 19.99 dB): (d) result of a down and up conversion for L = 2, K = 2 and with 
3 x 3 morphological decimation and interpolation filters (SNR = 20.14 dB). 

l,~ig. 12(a). The output SNR of the exp¢:rimental 
result illustrated in Fig. 12(b) is 24.24 dB. The result 
corresponding to L -  K = 1 preserves the maxi- 
mal horizontal and vertical resolution as expected. 

With reference to the second experiment with 
the parameters L = 1, K = 2, the morphological 
decimation and interpolation filters, with 5 x 5 
structuring elements, are used. The output picture 
is given in Fig. 12(c) of which SNR is 19.99dB. 
Since the vertical sampling ra'te and resolution are 
decimated by a factor of 4, tile blurring effect be- 
comes visible. However, there is no perceptible dis- 

tortion in the low-frequency areas of the output 
image. The results for the parameters L = K = 2 
and with 3 x 3 morphological filters are shown in 
Fig. 12(d)of ~,Jhich SNR is 20.14dB. In general, the 
smaller the structuring element of the morphologi- 
cal filter is. the higher the horizontal/vertical reso- 
lution of the, result is. 

For carrying out the test of conversion from an 
(Lt, Kt) to an (Lz, Kz) quincunx structure, the 
picture 'LENA' is used, and the system diagram has 
been presented in Fig. 8. The output results corres- 
ponding to the conversion for (LI - 1, K1 = 1 to 
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Fig. 13, Conversion from the (Lt, Kt)quincunx structure to the (Lz, K2)quincunx structure by morphological filters: (L,, K,)quincunx 
structure output y(m, n). but filled with nearest neighbor pixel values: (a) from (Lt = I, Kt = l) to (L2 = I, K2 = 2); (b) from (Lt = I. 
K ,  ,= I) to (L2 = 2, K :  = 2); (c) f rom (Lt  = I, g l  = 2) to (L ,  = 2, K ,  = 2). 

L 2 - - I ,  K2=2) ,  ( L i - - l ,  K I = I  to L z - 2 ,  
K 2 = 2 )  a n d ( L i -  1, K i - 2  to L 2 - 2 ,  K 2 - 2 )  
are shown in Figs. 13(a)-13(c), respectively. In or- 
der to view the final quincunx structure output 
images more clearly, the decimated/skipped pixels 
in (L2, K2) subsampling have been filled with the 
gray level of the nearest neighbor nondecimated 
pixel. 

As to the conversion from an (L~ - ~, K, -- 2) 
rectangular sampling structure to an (L2--1,  
K2 - 2) quincunx sampling structure, the test pic- 
ture 'LENA' is also used, and the system diagram 

has been presented in Fig. 10. Fig. 14 shows the 
quincunx structure output y(m, n) filled with the 
nearest neighbor pixel values. 

From the experimental results, we observe that, 
in the output images, the edges are preserved; de- 
tails appear more flat and fine details less than the 
size of the structuring elements will be suppressed 
by morphology filtering. The picture quality shown 
in Fig. 15(b) (SNR = 24.12 dB) seems satisfactory 
and is compatible to the linear-filtering approach 
shown in Fig. 15(c)(SNR - 27,15 dB), which is pro- 
cessed by a linear filter realized by the convolution 
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Fig. 14. Conversion from the (L~ = I, K~ = 2) rectangular 
structure to the (L, = I, K 2 = 2) quincunx structure by mor- 
phological filters: (L 2, K,)quincunx structure output y(m, n), but 
filled with nearest neighbor pixel values. 

. . . . . . . . . . .  

' I t 
J 

Fig. 15. (a) Original test picture - Vegetable; (b) result of a down and up conversion for L - K - I and with 3 x 3 morphological 
decimation and interpolation filters (SNR -- 24.12dB); (c) result of a down and up conversion for L = K -- I and with 3 × 3 linear 

decimation and interpolation filters (SNR -- 27.15 dB). 
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with 3 x 3 window for the sampling structure down 
and up conversions a t / .  = K = I. 

5. Conclusions 

An effective sampling structure conversion using 
mathematical morphology has been presented in 
this paper. 2-D diamond-shaped morphological 
decimation and interpolation filters are constructed 
to allow a conversion from orthogonal to quincunx 
or quincunx to quincunx structure very efficiently. 
The morphological filters are relatively simple and 
inherently parallel. They are also suitable for very 
fast hardware architectures and VLS! implementa- 
tion. Some experimental results have shown the 
effectiveness of this approach. 
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