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Abstract--Determination of the rotational symmetry of a shape is useful for object recognition and shape 
analysis in computer vision application. However, the usual normalization methods are inapplicable when 
the shape is N-fold rotationally-symmetric (N > = 3). In this paper, an efficient and reliable new method 
using modified Fourier transform is introduced to normalize such a 2D rotationally-symmetric shape. 
Furthermore, we extend this new method to the normalization of a N-fold axial rotationally-symmetric 3D 
object. There are two obvious advantages when using this new method: (1) it prevents the high computation 
load and the difficulty in normalizing the shape's orientation which occurred in the old methods using full 
matching or correlation functions; and (2) the weakness introduced by the old methods using data reduction 
(from 2D data to 1D data) is remedied. Experiments will show the validity of our method. 

Shape normalization Moment Rotational symmetry Principal axis  Fourier transform 

I. INTRODUCTION 

Determination of shape orientation is very useful in 
a number of computer vision applications, especially 
for image registration or matching. Before two shapes 
can be matched for recognition, they are usually scaled 
and rotated to an identical size and orientation. These 
pre-processing jobs are usually called 2D shape nor- 
malization. 

There are several methods proposed for defining the 
orientations of 2D shapes, such as the use of principal 
axes, tl~ shape matrices, t2~ mirror-symmetry axes, 13-5~ 
etc. However, these methods usually fail when the 
tested shape is rotationally-symmetric. A shape is said 
to be rotationally-symmetric (RS) if the shape, after 
being rotated around its own centroid through any 
multiple of a certain fixed angle, becomes identical to 
itself. The reason why they fail is that the principal axes 
of these RS shapes are undefined, and many RS shapes 
are themselves not mirror-symmetric. 

For defining the orientation of a RS shape, several 
methods are proposed. Chaudhuri et al. ~61 used cur- 
vature analysis to determine the best axis of symmetry. 
A correlation function between pairs of curve points is 
defined, and determines the best axis of symmetry as 
the one corresponding to the maximum correlation 
value. Zahn and Roskies, tT~ Wallace and Wintz ia~ and 
Crimmins t91 used the Fourier descriptors to analyze 
the rotational symmetry of simple planar closed curves. 
Abu-Mostafa and Psaltis tl°~ used complex moment 
Cpqs and circular harmonic coefficients c~_ q(r)s to ana- 
lyze N-fold RS shapes. After a polar re-sampling, Per- 

"[" Author to whom all correspondence should be addressed. 

kins "~1 used exhaustive matching to determine the 
order N of rotational symmetry and Highnam It 21 re- 
duced the 2D problem to a linear pattern matching 
problem. Tsai and Chou t13~ defined the generalized 
principal axes of a N-fold RS shape by using its high- 
order moment functions. Leou and Tsai "*) solved 
the fold number N of a simple RS closed contour by 
finding the number of crossing points between the 
average radius and the contour. Lin t~5~ utilized the 
characters about the so-called fold-expanded shape to 
define the orientation of a N-fold RS shape. Pei ~16) 
used a modified Fourier descriptor to determine the 
fold number and then normalizes the orientation of a 
RS shape. 

Generally speaking, a lot of RS shapes cannot be 
easily represented by only one closed contour. Some 
RS shapes which have complicated boundary and inside 
holes belong to this case. Therefore, the methods de- 
scribed in references (6)-(9) and (14) are inapplicable 
in these situations. Some methods (e.g. reference (11)) 
attempt to solve this problem in a more general view: 
they usually re-sample the original 2D shape in the 
polar coordinate system (r - 0), and then make a full 
matching or calculate the correlation function in the 
angular direction 0. Although these methods can de- 
termine the fold number of complex RS shapes perfectly, 
it seems too much computational cost is paid. Besides, 
the calculated matching or correlation functions con- 
tain,no information about the shape's orientation, 
which is not beneficial for the shape normalization. On 
the other hand, Tsai and his co-workers" 3.t~ define 
the orientation of a rotationally-symmetric shape by 
higher-order moments or fold-expanded shape; their 
methods do not seem efficient since the fold number 

1193 



1194 S.-C. PEI and L.-G. LIou 

must be determined before applying their algorithms. 
To remedy the above shortages, Pei et al. (16) intro- 

duce a method using modified Fourier transform. After 
a polar re-sampling, the 2D data function fir, O) is 
reduced to a 1D periodic function 9(0) defined as 

ct~ 

9(0)= I f(r,O)rdr. (1) 
r=O 

Based on the periodicity of 9(0) of a RS 2D shape, he 
successfully determines the fold number N and defines 
the shape's orientation by the 1D Fourier transform 
of 9(0). This method greatly decreases the cost of 
computation, and the Fourier coefficients of 9(0) do 
contain the information of the shape's orientation. 
However, readers should not forget that the reduction 
of computational cost resulted from the reduction of 
input data (2D to ID). That is to say, some information 
of periodicity of the shape is lost. For  example, some 
very obvious RS shapes may not be successfully de- 
termined because their reduced 1D function 9(0)s have 
very weak periodicity (explained in Section 4). Although 
this situation is not often encountered in real appli- 
cation, there is still a shortage. 

In this paper, we try to remedy this shortage and 
still keep the computational cost low. A modified 
method using Discrete Fourier transform (DFT) is 
proposed here. The basic idea of this new method is to 
reduce the original 2D continuous data to several 1D 
discrete data sequences, not to only one 1D sequence 
as before. These 1D sequences are then utilized for the 
normalization and fold determination of a given RS 
shape. Furthermore, this modified method is then ex- 
tended to normalize a N-fold axial rotationally-sym- 
metric object in 3D space. A 3D object S is said to be 
N-fold axial rotationally-symmetric (ARS) if it, after 
being rotated around a fixed axis n through any multi- 
ple of 2n/N, becomes identical to itself. After applying 
the modified method, we can obtain its symmetry axis 
n, fold number N, and its normalized pose. Experiments 
prove the correctness of the method. 

In Section 2, our method is applied to solve the 2D 
rotational symmetry. In Section 3, our method is 

extended to solve 3D axial rotational symmetry. Sec- 
tion 4 is the discussion about our method. Section 5 
displays several experiments. Section 6 is the final 
conclusion. The Appendix is about the characters of a 
N-fold ARS 3D object. 

2. TO D E T E R M I N E  AND N O R M A L I Z E  A N-FOLD 

ROTATIONALLY-SYMMETRIC 2D SHAPE 

2.1. Define A N-fold rotationally-symmetric 2D shape. 

A 2D shape S can be denoted by the following 
signature function f(x,  y) defined as 

{101if (x,y) isinS 
f(x,  y) = if (x, y) is not in S" (2) 

Without loss of generality, we assume the centroid of 
the shape S is just located at the origin of the x - y  
coordinate system. 

The shape S is said to be N-fold rotationally-sym- 
metric if it, after being rotated through any multiple of 
2n/N, becomes identical to itself(see Fig. l(a)). That is 

f (x,y)  =f(x',y'), (3) 

where 

[q 
(Ok = ki2nlN), k is an integer). 

In order to express the angular periodicity of the RS 
shape S more explicitly, we may let f i r ,  O) denote the 
signature of the shape at the location (r, 0) in the polar 
coordinate system (see Fig. l(b)). So equation (3) can 
be rewritten in a simpler form 

. 

where x = r cos 0; y = r sin 0. 

From equation (5), we know fir, 0) is a ID periodic 
function of 0 for any fixed value of r. 

Y 
r 

polar coordinate i ~ . c :  
signal T=0.5 it 

f(x,y) transform . 

(x,y) ~ ~ . . . . . . .  4 . . . . . . .  ":- . . . . . . .  [ . . . . .  T . . . . . . . .  Cmax 
~: :"!: .. x=r cos 8 

ii!i~:~:. X y=r sin O N . . . .  _ . r  
rain 

O 
S 0 0.5 7t n 1.5 n 2n 

(a) (b) 
Fig. I. (a) An example of a N-fold RS shape S (N = 4). Transform the original x-y coordinate system to the 

polar coordinate system for expressing the periodicity of the shape more explicitly. 
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2.2. Fourier transformation of the shape with respect to 
0 only 

Let F(r, 09) denote the 1D Fourier  transformation of 
the shape S with respect to the parameter 0 for any 
fixed radius r. So we have 

F(r, co) =- ~ .f(r, O)e-S°° dO. (6) 
O -  - o z  

Because f(r, O) is a periodic function of 0, it can be 
expanded by a Fourier  series 

f(r,O) = ~, Cp(r)e sp°°°, (7) 
p =  ~ x o  

where coo -= 2x/(2n/N) = N is the fundamental frequency. 
Its Fourier coefficients, Cv(r)s, are then defined as 

N ~/N 
Cp(r) = 2~ !IN f(r, O)e-SP'~°° dO. (8) 

Substituting equation (7) into equation (6), we have 
o~ 

F(r, to) = ~ Cv(r)6(~ - Pcoo). (9) 
p :  - o c  

From equation (9), the 1D Fourier transformation 
F(r, co) must he zero except at the frequencies co = P~o 
for any fixed r. Once the fundamental  frequency 09 o of 
F(r, co) can be determined, it is equivalent to obtain the 
fold number  N of the shape. Equations (6)-(9) are the 
theoretical bases for the methods using Fourier trans- 
formation. 

2.3. Our algorithm: finding the fold number N 

For the computat ional  efficiency, we first determine 
the maximum radius r,,~. and min imum radius rz~ . of 
the given shape (see Fig. 2). The whole shape is con- 
tained in a region A = {(r, 0)Irma. _< r < rmax; 0 _< 0 _< 2n}. 

, rmax 

M circulaJ 
sections 

Without  loss of generality, the value of the maximum 
radius rmax can be set to ! by properly scaling the given 
shape. 

For the convenient use of digital hardware, the 
discrete Fourier transform (DFT) should be adopted 
to analyze the whole problem. So we may divide the 
whole region A into M × N~ sub-regions (see Fig. 2). 
The (m, k)th sub-region of A is denoted by Amk, where 
m =  1 to M and k = 0  to N s -  1). The two positive 
integers, M and N s, separately represent the radial and 
angular resolutions. Here we especially call M the 
section number, and N~ the angular sampling number. 
Amk is defined as 

A,.k--{(r,O)lr,._l <_r<_r,.; Ok <__O<__Ok+l}, (10) 

where 

and 

_ m 2 (1 t) 

2n 
Ok -- k ~ .  (12) 

N~ 

From the definitions in equations (10)-(12), every sub- 
region A,. k is of the same area A. 

Area of A,. k = NsM (r2max 2 __ - -  - -  rmin) = A for all m, k. 

(13) 

Now, we may define a value fro(k) as follows, which 
can be considered as a sampling value of the sub- 
region A,.k. 

1 2 x  r.. 
.f~(k) =- ~ ~ ~ f(r, O)r dr dO ~ j f(r, Ok)r dr. 

amk NsA ,,, 1 

(14) 

2~ 

Ns 

~mk 

k---0 

represented by 
the sampling 
value fro(k) 

k=Ns-I  

Fig. 2. The area A which contains the whole shape S is divided into M circular sections. The angular 
sampling number Ns uniformly divides each section into N s small regions denoted by A.~s. The average 

f(x, y) in the small region A,~ is considered as a sampling value f,.(k). 

PR 27:g-D 
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The above equation is approximated because the 
angular sampling number N, is usually very large (e.g. 
256). 

Then we will have M 1D sequences {f,.(0) . . . . .  
f , . (N~-  l)}(m = 1 to M). The DFT of these sequences 
can be defined as 

N s -  1 

V,.(k) =- ~ fm(n)e -jk(2nn/u'). (15) 
n = O  

After substituting equations (7) and (14) into equa- 
tion (15), we can obtain a new expression for Fm(k ) 

oo 

F,.(k)= ~ T,,,,pHk,p, (16) 
p =  - o o  

where 

1 N s -  1 

Hk" =-- Ns n:o ~ edt'N-k)(2#~ms); Tin" _ 2~ZA , ,  "~" , C,(r)r dr. 

(17) 

From equation (17), it is easy to observe that Hk,p = 1 
when k = pN - aN~, and Hk. p = 0 for any other k (a is an 
integer). 

If the angular sampling number N, happens to be a 
multiple of the fold number N, F,(k) can be simply 
written as 

Fm(k)={Tm.q+aliasingcomponent if k = q N  

k = otherwise 

(18) 

(q is an integer). If Ns is not a multiple of N, Fm(k) can be 
simply written as 

~" Tm,q + aliasing component if k = qN 
F,.(k) "1 

/.aliasing component k = otherwise. 

(19) 

Because the sampling number N~ is usually very large, 
the aliasing components in equations (18) and (19) are 
negligible (see Fig. 3(a)). 

Now we may define a pseudo-power spectrum density 
function t~(k) as 

M 

G(k) = ~ IF,(k)I 2. (20) 
m = l  

Detecting the location of the first peak of t~(k) (i.e. k = N, 
see Fig. 3(b)) is equivalent to determining the fold number 
N of the given shape. Because the function (~(k) is used 
for determining the fold number, it is especially called 
the M-indicator in this paper. Notice the M = 1 indi- 
cator is just the same as the method described in 
reference (16). 

2.4. Normalization of shape orientation 

After determining the fold number N, its correspond- 
ing M DFT values, Fm(N)s, can be obtained. These 
values are usually complex numbers. Let's define C~ 
as the sum of these complex values. 

M 

C~ - ~ Fro(N) = roe j°c (21) 
m = l  

where 0 < 0c < 2n and r~ > 0. Notice the angle 0¢ will 
not be affected by the section number M because every 
sub-region Amk has the same area A. 

If the original shape S is rotated by an angle 0s, the 
rotated shape S' can be represented by f(r, 0 - Os). We 
can expand this function by a Fourier series 

f ( r , O -  0~)= ~ (Cp(r)e-JP~'°°s)eJP~°°°. (22) 
p =  - otD 

Comparing equation (22) with equations (7) and (17), 
we know rotating the shape by an angle 05 will induce 
a constant phase shift exp (-jp~oo0,) to its pth Fourier 
coefficient Cp(r) and Tm.p. If the aliasing components 
described in equations (18) and (19) are negligible, an 
additional constant phase shift exp(-jNOs) will be 
added to all of the F,,(N)s, too. Therefore, the orien- 
tation information of the RS shape is contained in the 
complex value C~. 

If the original shape S can be rotated by an appro- 
priate angle 0~ such that the calculated C1 of the new 
shape is a real positive value (phase = 0), we say that 
the new rotated shape S has been orientation-normalized 
(see Fig. 4). Such an appropriate rotating angle 02 is 
easily calculated by 

0s : 1 0  (23) 
N c' 

) Fro(k) I 

. . . .  .-°") I Fro(N) l 

= 

A (3(k) 

0 N 2N 3N Ns-2N Ns-N Ns 0 

(a) (b)  

A 

first peak G(N) 
o • 

°o° z e r o  

N 2N 3N Ns-2N Ns-N N s 

Fig. 3. (a) The DFT of the 1D data sequence { f~,(k)}, denoted byA{Fm(k)}. (b) The pseudo power spectrum 
function G(k). k = 0 to N~ -- 1. If N, is large enough, Fro(k) and G(k) is zero except at the points k = qN. 



Automatic symmetry determination and normalization for rotationally symmetric 2D shapes and 3D solid objects 1197 

ta te  0s  

0s  
- , k  

~s 

s h a p e  S s h a p e  

not orientation-normalized orientation-normalized 

Fig. 4. Suitably rotate the original shape S by an angle 0, to normalize its orientation. 

It may cause problems if the amplitude of C~ is too 
small. Because any one of Fm(N)s has the same phase 
shift exp(- jN0~),  we may choose the one (say Fi(N)) 
which has the largest amplitude instead of the original 
CI. Therefore, 

1 
0 s = ~ (arg (Fi(N))). (24) 

Obviously, the value of the angle arg(Fi(N)) will be 
affected by the value of M now. 

Now the whole algorithm is completed. 

3. EXTENSION TO A N-FOLD AXIAL 
ROTATIONALLY-SYMMETRIC 3D OBJECT 

3.1. Define a N-fold axial rotationally-symmetric object 
in 3D space 

An object S' in 3D space can be denoted by a 
signature function f ' (X,  Y, Z). Without loss of generality, 
we assume the centroid of the object is located at the 
origin of the X YZ coordinate system (see Fig. 5(a)). 

f , ( X , y , , z ) = ~ l :  if (X, Y , Z ) i s i n S  
(25) 

if (X,  Y Z) is not in S 

The object S' in 3D space is said to be N-fold axial 
rotationally-symmetric (ARS) if it, after being rotated 
through any multiple of 2n/N around a fixed axis n, 
becomes identical to itself. This axis n is called the 
symmetry axis. It means 

f ' (X,  Y, Z) = f ' (X' ,  Y', Z'), (26) 

where 

I i t  [ - ( n 2 - 1 ) c + l  nxnyc-nzs2 nxnze+nrsll 
= n~nyC + n~s (ny-- 1)c + 1 nyn~c-- nxS 

[_ nxn~C -- nys %n~c + nxS (n 2 -- l)c + 

x , (27) 

c = 1 - cos (2kzt/N), s = sin (2kn/N), n = (nx, ny, n:) r is 
the unit vector representing the rotation axis. 

3.2. Determining the symmetry axis n 

In order to determine the symmetry axis n, we first 
calculate the dispersion matrix M of the object S' 

n :symmetry axis . . . .  'netry 
0,0,1) 

t'(X,Y,Z~ 

rotate the object 
such that the new 
symmetry axis is 
equal to (0,0,l) 

m , , , . _  

r 

(a) 

'(X,Y,Z) 

,b jec t  S '  9 ject  S 

(b)  

Top-view of the 
object S 

Fig. 5. (a) An example of a N-fold axial ARS 3D object S'. (N = 5, like a five-leaf fruit). Its symmetry axis 
n can be easily obtained by calculating the dispersion matrix M of the object. (b) Rotate the object S' such 

that the new symmetry axis of the object S is equal to (0,0, 1). 



1198 S.-C. PEI and L.-G. Llou 

defined as 

I m2o0 mll0 mlOl] 

M -  roll o m020 mo11/ ,  (28) 

m l o l  m o l  1 m o o 2 J  

where 

1 
m,~k--iSl,+j+k~f'(X, Y,Z)X~Y~ZkdX dYdZ,  (29) 

and ISI is the volume of the object S. 
The three eigenvalues {,~1,,~2,,~3} and their cor- 

responding eigenvectors {Vl, V2,Va} of the dispersion 
matrix M can be easily calculated. However, to a 
N-fold ARS object, two of the three eigenvalues must 
be equal (e.g. 2~ = 22); and the corresponding eigen- 
vector v 3 of the distinct eigenvalue 23 is just the desired 
symmetry axis n. The proof of the above description is 
described in the Appendix for keeping the whole paper 
short and perspicuous. 

If the original object S' is rotated by a rotation 
matrix R = I-v~, v2, ¥3"] T, the new symmetry axis of the 
rotated object S will be (0,0, l) T. We may define a new 
signature function f (X ,  Y, Z) representing the rotated 
object S (see Fig. 5(b)) 

{~i if (X, Y ,Z) i s i nS  
f (X ,  Y, Z) = if (X, Y, Z) is not in S. 

(30) 

Now, equation (26) can be rewritten in a simpler 
form by the cylindrical coordinate system r -  ~b- Z 
(see Fig. 6). 

f(r, dp, Z ) = f ( r , q ~ + k ( ~ ) , Z ) ,  (31) 

where 

X=rcosq~; Y=rsintp;  Z = Z .  (32) 

Obviously, f(r, dp, Z) is a ID periodic function oftp for 
any fixed r and Z. 

3.3. Fourier transform of the object in r - ~ - Z space 

Let F(r, to, Z) denote the 1D Fourier transformation 
of the function f (r, ~p, Z) with respect to the parameter 

th for any fixed r and Z. Similar to Section 2.2, f(r, q~, Z) 
can be expanded by a Fourier series like this 

ao 

f(r, dp, Z)= ~ Cs(r,Z)e js'°°o, (33) 
s =  - o o  

where too = 2n/(2/n/N)= N is the fundamental fre- 
quency and 

N ,~/N 
C~(r ,Z )=2~  ~_~/ f(r,~p,Z)e-J~'°~dq~. (34) 

Therefore, the 1D Fourier transformation F(r, to, Z) 
with respect to ~ can be written as 

F(r, to, Z) = ~ C~(r,Z)6(to- Stoo). (35) 
s =  - o o  

Obviously, F(r, to, Z) is zero except at the frequencies 
to = so) 0 for any fixed r and Z. Once the fundamental 
frequency ~o o is determined, we can easily obtain the 
fold number N of the ARS object. 

3.4. Our algorithm:finding the fold number N 

For the computational efficiency, we first determine 
the maximum radius r . . . .  minimum radius rmin, maxi- 
mum height Z . . . .  and minimum height Zmi. of the 
object S. The whole object is contained in the region 
A - { (r, q~, Z)lrmi, < r < rmax; 0 __< gb ~ 2n; Z m i  n _~< Z m_ 

Zmax}. Without loss of generality, both of the maximum 
radius rmax and maximum height Zm,. can be set to 
1 by properly scaling the given ARS object. 

For  the same reason for using digital hardware, the 
discrete Fourier transform (DFT) should be adopted 
to analyze the whole problem. So we may divide the 
whole region A into P × Q x N s sub-blocks (see Fig. 7), 
where its (p, q, k)th sub-block is denoted by Apq k (p = 1 
to P, q = 1 to Q, and k = 0 to N s - 1). The three positive 
integers, P, Q and N s separately represent the resolu- 
tions in the directions of r, Z, and ~b. Similar to Section 
2, P and Q are the defined section numbers, and Ns is 
the angular sampling number. 

Apq k = {(r, ~b, Z)lrp_ ~ < r <_ rp; q5 k <_ dp < ~k+ l; 

Z q _ ~ < Z < Z q } ,  (36) 

cylindrical 
coordinate 
transform gnal 

f(x,Y,Z) 

v 

X=r cos i~ 

Y=r sin 

Z=Z 
ct S J 

X,Y,Z) 

: Zmi n 

Fig. 6. Transform the X YZ coordinate system of the object S to the cylindrical coordinate system r/pZ. 
Here f(r,q~,Z) is a ID periodic function of~b for any fixed r and Z. 
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2 7 ~  

Ns 

::: . . . . . . . . . . . . .  Zv :  - -- ,.-: -..., 

, f t . .  . . . . .  , , . ~ : - . . : , , : - : , ,  

: i % ,  Z & ~ i !  "'.,, "'.,.".,. A '~. . . . . . . . . .  : "' " ~ ' ~ ' " ' " , ~  pqk 

o , i  "- ,  .., I represented by 
, ~ ,  . . ..... z ~ ~ ~ . . . . . ; . . . , . .  ~ ] the sampling 

- - : ~  :~;2 . . . . . .  ~ , ' - .  i z'q ~ ~ ~ I " ^ l u e f  ~k ~ 2;/ti ~ : :  "', " " :  " ' - :  : [ E" 1 va pq~ j 
4. "4i "' ....... :4 .... "+.~---+--'r = t 

""..i i \  : " ' : ~ r  : " . .  N .  " ; ' 
o irp.~ .."rp i irm= 

i " - , , . , i i " , . . .  . . . . . . . . .  . . . . . .  .~ . . . . .  . . . . .  
. : = .  

, , , ,, ................ '. . . . . . . . . . .  : . 

"'" . . . . . . . . .  ; . . . . . .  " . . . . .  L . . :  
Zmi n P sections 

Fig. 7. The region A which contains the whole object S in the cylindrical coordinate system is divided into 
P Q . N  s small block regions, denoted by Apq k. The average f(r, dp, Z) in the small block region Apq k is 

considered as a sampling value fpq(k). 

where 

and 

% = # ) r 2 . x + ( ~ P ) r ~ i . ,  (37) 

z q = ( Q ) Z , . . ~ + ( V ) z , . i . .  (38, 

27~ 
4)k = k . (39) 

N,, 

From the definitions in equations (36)-(39), every sub- 
block, Apqk, is of the same volume A defined as 

7"[ 
v o l u m e  o f  Apqk = N~ppp~(rmax _ _ 2  rmin)  ( Z m a x 2  __ Z m i n  ) = A 

for all p, q, k. (40) 

Now we can define a value fpq(k) which can be 
considered as a sampling value of the sub-block Amk 

(see Fig. 7 ) .  

f m ( k ) = A j "  j' J f (r ,  dAZ)rdrdd)dZ 
Apqk 

2re zq ,p 
~ - -  S [ f (r ,  dpk, Z ) rdrdZ .  (41) 

NsAz~_~ ,p , 

The above equat ion is approximated because the 
angular  sampling number  N s is usually very large (e.g. 
256). 

Now we have PQ 1D sequences {f~(0), .... f ~ ( N  s - 1)} 
f o r p = l  t o P a n d q = l  toQ.  The DFTs  of these 1D 
sequences can be defined as 

N s -  1 

Fro(k) =- ~ fpq(n)e -)k(2nn/N'). 142) 
n=O 

After substituting equations (33) and (41) into equa- 
tion (42), we can obtain a new expression for Fpq(k) 

Fnq(k)= ~ Tpq,~Hk,~, (43) 
s ~ -oo  

I Fl,q(k) I G(k) 

. .  . . . . . .  , I ~ ( N )  I 

I 1__ 
N 2N 3N Ns-2N Ns-N N s 

( a )  

,1first peak G(N) 
o S 

,°'°" zero 

N 2N 3N 

(b) 
Ns-2N Ns-N N s 

Fig. 8. The DFT of the ID data sequence {fro(k)}, denoted by {.Fro(k)}. (b) The pseudo power spectrum 
function (~(k). k = 0 to N~ - 1. If N s is large enough, F~(k) and G(k) is zero except at the points k = dN. 
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where 

1 N s -  1 

Hk's = Ns ,=o ~ eJ('u-k)(2"'Vu'); 

2n zq ,~ 
L~,~--- ~ ~ C~tr, Z)rdrdZ. (44) 

A zq 1 rp 1 

From equation (44), it is easy to observe that Hk,~ = 1 
when k = sN - aN,, and Hk,, = 0 for any other k. 

If the angular sampling number  Ns happens to be a 
multiple of the fold number  N, Fpq(k) can be simply 
written as 

Tpq,d + aliasingcomponent,  i r k  = dN 
Ft, q(k) 

o . k = otherwise 

(45) 

(d is an integer). If N~ is not a multiple of N, Fm(k ) can 
be simply written as 

T~, d + aliasing component, if k = dN 
Fpq(k) 

( aliasing component, k = otherwise. 

(46) 

We now define a pseudo-power spectrum density 
function (~(k) as 

e Q 
G(k)= ~ ~ IFpq(k)l 2. (47) 

p = l  q - 1  

Detecting the location of the first peak of t~(k) (i.e. 
k = N) is equivalent to determining the fold number  N 
of the given ARS object. This function (~(k), is especially 
called the (P, Q)- - indica tor  in this paper. 

3.5. Normalization of object orientation 

After determining the fold number  N, its PQ cor- 
responding D F T  values, Fm(N)s, can be easily obtained. 
Similar to 2D case, we may define a complex value C l 
as the summation of all Fpq(N)s. 

P (2 
C1= Z Z Fpq(U)=rc ej~c, (48) 

p = l  q = l  

where 0 < q~¢ < 2rt and r c > 0. Notice the angle 0¢ 
will not be affected by the section numbers, P 
and Q, because every sub-block Apqk has the same 
volume A. 

If the object S is rotated around the Z-axis by an 
angle q5 t, the rotated object can be represented by 
f(r, (a - qSt, Z). We can expand it by a Fourier  series 

f ( r ,~ -dp , ,Z )=  ~ (Cs(r,Z)e-J~°'°~')e J~'°~'. (49) 
5 - -  - -  O0 

Comparing equation (49) with equations (33) and 
(44), it is easy to observe that rotating the object 
around the Z-axis by an angle q5 r will induce a constant  
phase shift exp(-js~oodpt ) to its sth Fourier coeffi- 
cient C~(r, Z) and Tpq.,. If the aliasing components 
defined in equations (45) and (46) are negligible, 
all of the Fm(N)s will have a constant  phase shift 
exp(-jNq~,). 

If the original ARS object S can be rotated around 
the Z-axis by an approximate angle q~t such that the 
calculated C~ of the new object is a real positive value 
(phase = 0), we say that the new rotated object S has 
been orientation-normalized (see Fig. 9). Such an ap- 

. . . .  • "aetry 
3,0,1) 

~etry 
3,o,1) 

9ject  S 

(not orientation-normalized) 

(Top-view of S) 

rotate around 
the axis by an 

angle Ot 

)bject 

(orientation normalized) 

(top view of ~ )  
Fig. 9. Suitably rotate the original object S around the Z-axis by an angle 0, to normalize the orientation. 



Automatic symmetry determination and normalization for rotationally symmetric 2D shapes and 3D solid objects 1201 

propriate rotating angle 0s is calculated by 

1 
~, = ~ ~'c. (50) 

If the amplitude of C~ is too small, we may choose 
the one in all of the Fpq(N)s (say F~b(N)) which has the 
largest amplitude to replace the original C~. Therefore, 

1 
dp, = ~(arg(F~b(N)) ). (51) 

Now, the whole algorithm is completed. 

4. DISCUSSIONS 

In both of the 2D and 3D cases described in Section 
2 and 3, our methods have similar processing steps: (1) 
change the original coordinate system X Y (or X YZ) 
into the polar coordinate system that can express more 
explicitly the periodicity of rotational symmetry; (2) 
reduce the original 2D shape (or 3D object) into several 
1D data sequences; (3) calculate the DFTs of these 1D 
sequences; (4) determine the fold number N by finding 
the first peak of a pseudo-power spectrum density 
function G(k); and (5) normalize the orientation of the 
2D shape (or 3D object) by using the DFT values, 
Fm(N)s (or Fpq(N)s). 

4.1. How to choose the section number M? 

At the second step, we say the original 2D (or 3D) 
data should be reduced to M (or PQ) 1D data sequences. 
How will the section number M (or PQ) be chosen? 
Take the 2D case for example. We first consider an 
extreme case when M = oe and N~ = ~ .  The pseudo- 
power function, (~(k), is now equal to the Fourier 
transform of the angular correlation function of the 2D 
RS shape. Of no doubts, it is known to be the most 
reliable indicator to show the angular periodicity of a 
RS shape because no periodic information will be lost. 
On the other words, an indicator with a smaller section 
number is usually less reliable than that with a larger 
number because of more lost information. 

To show this concept, let's see some special computer- 
generated N-fold RS symmetric shapes depicted in 
Fig. 10. The M = 1 indicator (proposed by reference 
(16)) fails to determine their fold numbers because their 
reduced 1D data sequences are all DC sequences, and 
all the periodicities are gone (see Fig. 10(e)). However, 
the M = 2 (or larger) indicator can still successfully 
determine their fold numbers because some periodicities 
are reserved (see Fig. 10ft)). So the choice of M is, in 
fact, a trade-off between the computational load and 
the reliability of the fold number's estimation. In real 
applications, the indicators whose section number M 
is smaller than five are usually reliable enough for 
practical use. 

A better choice of the section number M depends on 
the complexity of the shape. For  example, if a simple 
2D shape whose boundary can be represented by a 
single-value function of the angle 0 in the polar co- 

ordinate system, the M = 1 indicator will be the best 
choice. It is because the original 2D shape can be 
completely reconstructed by its reduced 1D data se- 
quence {ft(k)} and no periodic information will be 
lost. However, an indicator with larger M is usually 
recommended when the shape is hollow, shell-like, or 
boundary-complicated. Similar rules can also be ap- 
plied to the 3D case. If we have no prior information 
about the complexity of the shape, the indicators with 
the larger M will be better. 

4.2. Threshold of  the indicator G(k) 

To determine whether a periodic signal exists in 
G(k), an appropriate threshold must be specified first. 
Basically, this threshold depends on two factors: (1) 
magnitudes of the aliasing components; and (2) position 
errors of the boundary points. The first item depends 
on the sampling number N s and the angular periodic 
characters of the RS shapes (broad-banded or narrow- 
banded). The second item is often resulted from the 
quantization errors of the boundary points. Because it 
is hard to model these errors, it seems hard to obtain 
a general formula specifying the threshold value. Here 
we just approximate the threshold in a very coarse 
manner. 

If the aliasing errors and quantization errors can 
provide a perturbation fro(k) to the sampling value 
f,~(k) (similar to f pq(k)) 

fro(k) = fro(k) + fro(k), (52) 

where the perturbation tSm(k ) is a random variable of 
normal distribution N(0, a) for m = 1 to M and k = 0 
to S s - 1. The DFT of {6re(k)} is denoted by {Am(k)}. 

So we can derive an average bound of errors 

= m= l E(fm(n)6m(n,)) e 2k,tn-,'~/s~ 
L n=O n '=O 

= MNscr:. (53) 

E(') is the operator of ensemble average. 
So the value MNsCr 2 can be utilized to define an 

appropriate threshold. In the 3D case, the value is 
equal to PQNstr 2 which can be derived by a similar 
procedure. 

5. EXPERIMENTS 

In this section, we design two parts of experiments 
for proving that the proposed algorithm can be success- 
fully applied in the normalization of 2D RS shapes and 
3D ARS objects. 

5.1. Experiments for 2D shape 

In this subsection, two things will be proved: (1) the 
fold number N can be correctly determined; and (2) 
The orientation of the given 2D shape can be success- 
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Fig. 10. (a)-(d) Are four special N-fold rotationally symmetric 2D shapes. The M = 1 indicator fails to 
determine their fold numbers because all of their reduced 1D data sequences are DC sequences. However, 

M = 2 indicator is successful. (e) M = 1 indicator. (f) M = 2 indicator. 
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fully normalized. The sampling number Ns is chosen 
256. It means a 256-point DFT is adopted in our 
experiments. Two computer-generated 2D shapes are 

tested here. 
Let's see the first example shown in Fig. 11. It is a 

simple, of no inside holes, five-fold RS shape. Its outer 
boundary contour can be represented by a single-value 
function of the angle 0. A large part of RS shapes seen 
in daily life belong to this kind. The M = 1 indicator 
(~(k) is chosen to determine the fold number N. Fig- 

ure 1 l(a) and (c) show two arbitrarily-oriented shapes 
S 1 and S 2. Figure 1 l(b) and (d) are separately their 
normalized poses, $1 and $2. Notice that these two 
normalized shapes are almost identical. Figure 1 l(e) 
shows the result of the M = 1 indicator (~(k). It is zero 
except at the points k = 5q (q is an integer). So the fold 
number N (=  5) is correctly determined. 

The second example shown in Fig. 12 test a more 
complicated shape (N = 4). The M = 3 indicator is 
used as a more reliable indicator than that of M = 1. 
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I I I 
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25 

Fig. 11. (a) A shape with an arbitrarily-chosen orientation. (b) The normalized shape of(a). (c) Another shape 
with an arbitrarily-chosen orientation. (d) The normalized shape of (c). Notice that (b) and (d) are almost 

identical. (e) The M = 1 indicator. 
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(d) The orientation-normalized shape Sj 
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Fig. 12. (a) A shape with an arbitrarily-chosen orientation. (b) The normalized shape of (a). (c) Another 
shape with an arbitrarily-chosen orientation. (d) The normalizeql shape of (c). Notice that (b) and (d) are 

almost identical. (e) The M = 3 indicator. 

Its fold number (=  4) and orientations are successfully 
determined and normalized, too. 

5.2. Experiments for 3D object 

Similar to the previous experiments, two things will 
be proved here: (1) the symmetry axis n and the fold 
number N of a given ARS 3D object can be correctly 
determined; and (2) Its orientation can be successfully 
normalized. The sampling number N~ is also chosen 
256. Two computer-generated 3D objects are tested. 

In the first example, a five-fold object which looks 
like a five-leaf fruit is tested and shown in Fig. 13. 
Figure 13(a) and (c) show two arbitrarily-chosen poses, 
S'~ and S~, of the ARS 3D objects. Figure 13(b) and 
(d) show their normalized objects. Notice that these 
two normalized objects, S1 and Sz, are almost identical. 
Figure 13(e) shows the result of the (1, 1)-indicator. Its 
fold number N ( = 5) can be correctly determined. The 
three eigenvalues of the dispersion matrix of the object 
S'~ (or S~) are {0.5426, 0.5426, 0.7667}. We can see that 
two of these eigenvalues are equal. The detected sym- 
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Fig. 13. (a) An object with an arbitrarily-chosen orientation. (b) The normalized object of (a). (c) Another 
object with an arbitrarily-chosen orientation. (d) The normalized object of (c). Notice that (b) and (d) are 

almost identical. (e) The (1, 1)-indicator. 

metry axes of the objects S~ and S~ are (0.9319, - 0.3346, 
0.1402) T and (0.4980, 0.3324, 0.8009) T, just  the same as 
the true directions we previously assign. 

A three-fold object is tested in the second example. 
This object can be divided into three parts: (1) the 
upper part is three-fold; (2) the middle part is a conical 
surface; and (3) the lower part is six-fold. Of course, it 
is still a three-fold ARS object. All the results are 

shown in Fig. 14 and their explanations are similar 
to that in Fig. 13.. The (3,3)-indicator is used in this 
example. Three eigenvalues of the dispersion matrix of 
the object S'1 (S~) are {0.2772,0.2772,0.5625}. We can 
see that two of these eigenvalues are equal. The detected 
symmetry axes of the objects S', and S~ are (0.1955, 
-0.5185, 0.8324) T and (0.5176, 0.7166, 0.4674) T, just the 
same as the true directions we previously assign. 
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Fig. 14. (a) An object with an arbitrarily-chosen orientation. (b) The normalized object of (a). (c) Another 
object with an arbitrarily-chosen orientation. (d) The normalized object of (c). Notice that (b) and (d) are 

almost identical. (©) The (3, 3)-indicator. 

6 .  C O N C L U S I O N  

In this paper, we propose an efficient and reliable 
new method for fold number determination and orien- 
tation normalization of a N-fold rotationally-sym- 
metric 2D shape. The 2D shapes are not constrained 
to simple closed contours, and they can be hollow or 
any complex shapes. Basically, our method reduces the 
original 2D data function into M 1D data sequences 
(not only one). The DFTs of these 1D sequences are 
then utilized in determining the fold number and 
normalizing the shape's orientation. 

This method is also extended to solve a N-fold axial 
rotationally symmetric 3D object. Its symmetry axis n 
is first determined by finding the corresponding eigen- 
vector v 3 of the distinct eigenvalue 23 of the object's 
dispersion matrix M. Similar to the 2D case, the 3D 
data function is reduced to PQ 1D data sequences. 
Their DFTs are then utilized in determining the fold 
number and normalizing the orientation of the object. 

The choice of the section number M (or P and Q) is 
a trade-off between the computational load and the 
reliability of the determined fold number N. Larger 
section numbers (M or (P, Q)) usually implies a heavier 
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compu ta t i on  load and  a more  reliable fold n u m b e r  
est imation.  If  the shape  is complex or  shell-like, larger 
section n u m b e r  is recommended.  If, on the contrary ,  
the test shape is a simple closed con t ou r  which can be 
represented by a single-value funct ion of pa rame te r  0, 
smaller  section (M = 1) is recommended.  

There  are two most  obvious  advan tages  in our  new 
method:  (1) it prevents  the high com pu t a t i on  load and  
the difficulty in normal iz ing  the shape 's  o r ien ta t ion  
occurred in the old methods  using full ma tch ing  or 
correlat ion functions; and  (2) The weakness int roduced 
by the old me thods  using da ta  reduct ion (from 2D da ta  
to 1D data)  is remedied. 
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A P P E N D I X  

From the proof of Tsai's paper ~13 16~, we know the disper- 
sion matrix of a N-fold rotationally symmetric 2D shape 
(N > = 3) is equal to a scaled identity matrix (=al).  Now, to 
a N-fold ARS 3D object, we want to know what kind of 
special characters may exist in its dispersion matrix. 

Without loss of generality, let's consider a N-fold ARS 3D 
object S whose symmetry axis n is equal to (0,0,1) x. Its 
dispersion matrix is still defined as 

m2oo m l l o  mlOl  

M roll o too20 IAI) mol  l , 

lol m o l l  too02 

where 

(A2) 

S(Z) is a cross-section parallel to the X - Y plane at height 
Z. f (X ,  Y, Z) is a signature function whose value is 0 or 1. ISI 
is the volume of the object S. 

Because the symmetry axis n is just equal to the Z-axis of 
the coordinate system, every cross-section S(Z) is at least 
N-fold rotationally-symmetric (or kN-fold, k is a positive 
integer). The centroid of each cross-section slice must be 
located at (0, 0, Z)T. Therefore, m 101 = m011 = 0. On the other 
side, we know the dispersion matrix of a N-fold RS 2D shape 
is equal to a scaled-identity matrix (=  al). From equation 
(A2), we have 

[ml°° m l l ° l = K l ,  (A3) 
m l l O  mo2o~  

where K is a constant, I is a 2 x 2 identity matrix. 
Equation (AI) can be written in a simpler form [ 001 M = K 0 . (A4) 

0 moo 2 

Obviously, M has two same eigenvalues (21 = 22 = K) and 
one distinct eigenvalue (23 = moo2). The corresponding eigen- 
vector of ;t s is i = (0, 0, 1) T, that is just the symmetry axis we 
defined earlier. Rotating the object S by any rotation matrix 

. R will not change the eigenvalues. The eigenvector correspond- 
ing to the new distinct eigenvalue must be equal to (R~), the 
new symmetry axis. It completes the whole proof. 
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