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In the topic of motion analysis in image understanding, we 
usually need to find the motion of a particular object. 
However, frequently the correspondence problem, which is 
well known to be difficult, must first be solved. If the 
correspondence problem can be avoided in motion analysis, it 
will greatly reduce the difficulty of solving motion parameters. 
Using the concept of object normalization described in this 
paper, we can determine the motion parameters without 
solving the correspondence problem. The object of interest is 
not necessarily assumed rigid here. It can undergo a uni- 
formly, linearly deformable motion (affine transformation), 
including translation, rotation and skewing. Under the 
assumption of this motion model, a closed-form solution of 
the desired motion parameters can be obtained efficiently by 
our proposed method. In some special cases where the closed- 
form solution cannot be determined uniquely, a modified 
method is also developed to solve them. A theoretical error 
analysis is presented to show for what kinds of object it IS 
inherently hard to acquire motion parameters. 

Keywords: moment, shape normalization, affine transformation, 

rigid object, uniformly-deformable 

Before introducing this topic, we have to explain the 

character of the so-called interested object in our paper. 

In 2D space, the interested object can be a continuous 
shape or just a collection of points. It can move in 2D 
space in a rigid or deformable way, In 3D space, the 
interested object can be a continuous solid volume, 
surface or just a collection of points. Similarly, it can 
also move in 3D space in a rigid or deformable way. The 
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motion model used here is constrained to the linearly- 
deformable one (aftine transformation). The details of 

this model will be clearly defined in later sections. 
Previously. it has usually been necessary to solve the 

correspondence problem before estimating the motion 
parameter of an interested object. However, the corre- 
spondence problem is quite hard to solve, therefore 

many researchers try to find some c,orrf.spondenceless 

methods. Until now, there have been some good results 
published: the concept of moments (or tensor) is one of 
the best choices. In fact, in the topic of pattern 
recognition. moments have been adopted extensively in 
areas such as moment invariants’ ‘, orientation deter- 
mination for the planar patchX ‘I. shape normaliza- 
tion”, object detection”, etc. In these applications, two 
concepts are especially appealing to us: 

1. Affine-invariants defined by moments, which says 

that two 2D shapes different by an arbitrary affine 
transformation have some unchangcuhle common 

quantities which can be utilized for recognition. 
2. Shape normalization, which says that two 2D 

shapes different by an arbitrary affine transforma- 
tion can be both transformed to a normalized shape. 

We feel that these ideas can also be utilized for 

correspondenceless motion estimation, especially for 
the affine motion model. 

Related research on correspondenceless motion esti- 
mation has been published. For example, Chaudhuri 
and Chatterjee14 proposed a method which can solve 
the generalized motion parameters of a uniformly- 
deformable 3D object with the knowledge of several 
subsets of corresponding points. Although this method 
solves some difficulties in finding correspondences, it is 
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not convenient to use because we still need to know 
several subsets of correspondences. Faber and Stokely” 
solve a similar problem about medical application by 
moments. Pei et ~1.‘~. ” propose several corresponden- 

celess method to estimate the 3D motion of a planar 
patch in 3D space. The heart of these methods is the 
calculation of moments and the linear-deformation 
motion models. 

The very early ideas of our methods come from 2D 
shape normalization’2. Leu began his derivations from 
2D shapes and used them in 2D shape recognition. In 

this paper, we extend his concept to correspondenceless 
motion estimation of linearly-deformable 2D shapes 
and 3D objects. The methods proposed here are easy 
and computationally efficient. To reduce the cost of 

moment calculation, Green’s theorem” or another 

similar method” can be adopted in our calculations. 
Finally, to complete the theory of motion estimation, 

several difficult cases such as ambiguities and degen- 
eracy are discussed. A theoretical error analysis of the 

motion estimation is also proposed. 
Our paper is organized as follows. The next section 

discusses correspondenceless motion estimation in the 
2D case. Correspondenceless motion estimation in the 
3D case is then examined, and a theoretical error 
analysis carried out. Several simulation experiments are 
outlined to prove the validity of the methods described, 

and conclusions are finally drawn. 

CORRESPONDENCELESS MOTION 
ESTIMATION IN 2D SPACE 

In this section, we derive a method for correspondence- 
less motion estimation in 2D space. The object of 
interest considered here can be a 2D continuous shape 

or just a collection of several discrete points. Without 
loss of generality, only equations about a continuous 
2D shape are listed here. The derivations about the 

discrete-point structure are very similar. All we have to 
do is change the definitions of continuous moments to 
discrete moments. 

Problem formulation 

Consider a 2D shape S. It moves to another new 
position S’ according to the following formula (see 

Figure I): 

p’- [;:I =“[-;] +t=Hp+r (1) 

where H is a 2 x 2 transform matrix, and p and p’ 
separately stand for the corresponding points before 
and after motion. Equation (1) defines the afline motion 
model which includes translating, scaling, rotating and 
skewing in 2D space. 

All we know as input data are two 2D shapes, S and 
S’. However, the one-to-one point correspondences 

normalized 
shape 

7 different by a 
fl 2D rotation \ 

normalized 
shape 

Figure 1 Normalization process of two 2D shapes that are different 
by an affine transformation 

between them are entirely unknown. We also assume 

that both these shapes are complete, and there are no 
missing parts. Under the above conditions, our final 
goal is to determine the unknown transform matrix H 
and translation vector t. 

Before describing our main algorithm, some points 
must be considered: 

1. 

2. 

Camera effects, such as perspective projection or 

distortion, are not considered here, i.e. we do not 
consider how the 2D input data is obtained. 
Only the case that det(H) > 0 is considered here. 
The problem of mirror projection, det(H) < 0, can 
be solved by a slight modification to the equations, 
and they are not discussed in this paper for 

simplicity. 

Main algorithm 

Because the 2D shape S undergoes an affine motion, the 
mass centre c of S must correspond to the mass centre c’ 
of the new shape S’. Here the mass centres are defined 

as: 

c =+, spdS; c’ =+-,, 
ss ss 

s,p’dS’ (2) 

Therefore, without loss of generality, the points on the 
object can be represented by an object-centred coordi- 
nate system. To simplify the notation, we assume that 
the position vectors p and p’ have been separately 
expressed by their own object-centred coordinate 

systems. So, we have c = 0, c’ = 0 and t = 0. The 
transform described in equation (1) can now be 
simplified to: 

p’ G Hp (3) 

The 2 x 2 dispersion matrices M and M’ of shapes S 
and S’ can be separately defined as: 

M = +, JJ s pprdS; M’ = &, JJ s, p’p’TdS’ (4) 

where ISI and IS’/ are separately the areas of S and S’, 
and the superscript T denotes the transpose operation. 
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Notice the elements of the dispersion matrices; they are 
just equal to the second-order moments of the shapes. 

After substituting equation (3) into equation (4), we 

have: 

M’ = HMH7 (5) 

The two dispersion matrices M and M’ can be 
separately decomposed by similarity transformation, 
defined as follows: 

M = QAQ’ = (Qh,,2)I(QA,/2)‘- = ZIZT (6) 

M’ = Q’A’QIT = (Q’R;+(Q’h;,JT = Z’ZZ’T (7) 

Here Q and Q’ are orthogonal matrices and their 

determinants must be equal to +1 (avoiding the mirror 
projection). A and A’ are two diagonal matrices with 
non-negative elements. A = IZ,/~A,/? and A’ = R’,,,2h’,,z. 
I is a 3 x 3 identity matrix. 

After substituting equations (6) and (7) into equation 

(5), we have: 

Z’Z’r = HZZT H’ = (HZR ‘) (HZR T)T (8) 

where R is a 2 x 2 orthogonal matrix. It is easy to 
observe that: 

H = Z’RZ-’ (9) 

Equation (9) is the most important equation in this 
algorithm. In fact, equation (9) can be more clearly 
interpreted by the concept of normalization. Let us 
again see Figure 1. If we change the two original shapes 

(S and 5”) to new shapes (3 and 3’) by the following 

transforms: 

p=z ‘p: $_z’-‘p’ (10) 

it is easy to prove that the dispersion matrices of the two 
new shapes 5 and i’ are both equal to an identity 
matrix. We may call 3 and >’ the normalized shapes. 

From the description in Leu”, we know that the two 
normalized objects are only different by a 2D rotation 

matrix R. i.e.: 

fi’ = Rf, (11) 

Combining equations (3), (10) and (1 l), we have: 

p’ = (Z’RZ ~‘)p = Hp (12) 

Comparing equation (12) with equation (9), we find 
that both of them represent the transform matrix H by 
the same form Z’RZ--‘. On the other hand, the physical 
meaning of the orthonormal matrix R is now clearly 
defined. Matrix R is just the rotation difference between 
the two normalized objects. Because we do not consider 
the case that det(H) < 0 (the mirror projection). the 
value det (R) must be equal to 1. 

Once the rotation matrix R is determined, the 
transform matrix H will be obtained easily by equation 
(9), and the whole problem is completely solved. The 
methods of determining R will be described later. 

The above derivations can be extended directly to the 

discrete-point 2D structures by slightly modifying the 
definitions of dispersion matrices M and M ‘: 

(13) 

The key equation (9) is then usable 

Determine the 2D rotation matrix 

In this subsection, we consider two main approaches: 

the weighting method and the modified method. 
Basically. these two methods are very similar. The 
differences between them come from the different 

utilization of the normalized shapes. .$ and s’. 

Weighting method 

Consider a single-valued weighting function g(r). From 

equation (1 I). we can immediately obtain the following 
equation: 

g(r’) fi’ = Rk(r)fi) (14) 

where Y E 11fi11 = llfi’ll = Y’ and g(r) = a. 

If we separately integrate both sides of equation (14) 
within the regions of 3 and s’, we will have: 

E Rv, (15) 

To solve the 2D rotation R, at least one weighting 
function I: is needed. Be sure that the function I: will not 
make the weighted summation vector v,~ vanish. iFrom 
this nonzero vector vR, we can directly estimate the’angle 
H representing the rotation matrix R. Figuw Z shows 
these ideas. 

Is there any constraint that g(v) must satisfy? Here is 
a rule: ‘Theoretically, any single-value bounded 
function g(r) that will not let the weighted summ’ation 

vector v,? become zero will work’. For example, 
g(r) = YA. sin(r) or e’ are valid candidates; but 
g(r) = constant or l/r are inappropriate forms. Most of 

the time, we adopt simpler forms such as g(r) = I;’ or 
g(r) = Y’,2, Readers may have found that equation (I 5) 
is in fact a relationship .among higher (or fractional) 
order moments. This result seems reasonable when 
compared with published papers about moment invar- 
iants. 

Figure 2 In the weighting method. the difference angle 0 between the 
two weighted-integration vectors vy and Y: can be used to estimate the 
rotation matrix R 
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When the object of interest is a discrete-point 2D 
structure, the weighted-integration in equation (15) 
should be changed to the weighted-summation, defined 
as: 

Modified method 
The method described here still uses the property of 

normalized objects (equation (11)); however, different 

to the weighting method, we no longer calculate any 
weighted-integration (or summation) vectors of normal- 
ized objects. On the contrary, we try to find the best 
matching between the two normalized shapes S and S’, 

then the best rotation matrix R is substituted into 
equation (9) to determine H. The matrix R estimated 
here is usually more reliable than that done by the 

weighting method, because the reliability of the 
weighting method depends upon the amplitude of vK 
and any position errors will directly affect the values of 
weighting function g(r). Therefore, we may call this new 

method the modl3ed method. Experiments will show its 
excellence in error performance. 

An initial best matching guess can be obtained using 
several simple methods (e.g. the weighting method). 
However, the simplest method is to detect the furthest 
(or the nearest) points of S and S’ and calculate their 
angle difference (Figure 3). Of course, we have to test 
several initial guesses if the furthest point of a normal- 
ized is not unique. 

If the object of interest is a discrete-point 2D 
structure, it will be better to determine directly the one- 

to-one point correspondences between its normalized 
objects, because the number of corresponding points is 
finite, not like the infinite number in a continuous 2D 

shape. Once the correct one-to-one point correspon- 
dences are found, it will be straightforward to determine 
H by solving: 

[P’, I . . . /P’,l = H[P, I . IPNI 

Discussion 

(17) 

In this subsection, we discuss the benefits and shortages 
of the two methods described above. 

In the weighting method, the reliability of the 
estimate of 2D rotation R depends upon the amplitude 

Figure 3 In the modified method, the best rotation R can be 
estimated by maximizing the matching ratio between R 3 and 2’. We 
may use the furthest points PF and P> of the two normalized shapes to 
guess an initial solution 
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of vector vn. It no longer works if its amplitude is zero. 
For example, vector vR of a centre-symmetrical normal- 
ized 2D shape is always zero, no matter what kind of 
function g is used. This makes the weighting method 
break down. However, because the modified method 
does not use weighted integration at all, the singular 
cases breaking the weighting method do not cause any 
problem when using the modified method. Of course, 
these improvements are only obtained by paying the 

price of greater computational cost. 
If the normalized shape S (or 3’) is fold-symmetric 

(Figure 4) multiple solutions of R (and then matrix H) 
should be discussed. The weighting method usually fails 
in these cases, but the modified method does not. 

CORRESPONDENCELESS MOTION 
ESTIMATION IN 3D SPACE 

In this section, we derive a method for correspondence- 

less motion estimation in 3D space. The object of 
interest considered here can be a 3D solid volume or 
just a collection of several discrete points. Without loss 

of generality, only the equations about a discrete-point 
3D structure are listed here. The derivations about 3D 
solid volume are very similar; we just need to change the 
definitions of discrete moments to continuous moments. 

Problem formulation 

Consider a discrete-point 3D structure S. It moves to 
another new position S’ according to the formula: 

(18) 

where His a 3 x 3 transform matrix, and P; and P: (for 
i= l,... , IV) separately stand .for the corresponding 
points on S and S’. Equation (18) defines the affne 
motion model, which includes translating, scaling, 
rotating and skewing in 3D space (Figure 5). 

All we know as input data are the 3D coordinates of 
P;s and Pis, which have been recognized as the points 
on the same moving object. However, the one-to-one 
point correspondences between S and S’ are unknown. 

Figure 4 One of the ambiguity cases. If the normalized shapes are 
rotationally-symmetric, there may exist several possible solutions for 
H 
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B different by a 3D rotation y normalized 
object 

Figure 5 Normahzdtion process of two 3D objects that are different 
by an afline transformation 

The problem of missing points is not considered here. 
Under the above conditions, our final goal is to 
determine the unknown transform matrix H and 

translation vector T. 
Before beginning our main derivations, some points 

must be considered: 

1. 

2. 

We do not consider how the 3D point data is 
obtained (range camera or computer-aided tomo- 

graphy). 
Only the case where det(ff) > 0 is considered here. 

Similar to the 2D case, the problem of mirror 
projection (det(H) < 0) can be solved easily by a 
slight modification to the equations, so they are not 

discussed in this paper. 
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Readers must have found great similarity between the 

2D and 3D cases. Therefore, the 3D objects, S and S’, 
can also be normalized to two new objects. 3 and 3’ by 

defining: 

k, 5 z-‘p,; p: E z’-‘p’ I (23) 

Here the dispersion matrices fi and h’ of the two 
normalized objects 3 and 3’ must be equal to a 3 x 3 

identity matrix Z (Figurr 5). 

From the description given by Leu”. we know that s 
and &?’ are different by a 3D rotation matrix R. i.e.: 

k: = RF, (24) 

Combining equations (19), (23) and (24), we also derive 

the same key equation as that in equation (9): 

H = Z’RZ-1 (25) 

The value det (R) must be equal to + I because det(H) is 
positive. 

Once the rotation matrix R has been determined, the 

transform matrix H will be obtained easily by equation 
(25), and the whole problem is solved. The methods of 

determining R are described later. 
The above derivations can easily be extended to a 

continuous 3D solid volume by slightly modifying the 
definitions of dispersion matrices M and M’: . . 

Ill 
I 

PPTtIS: M’ = P’P”dS’ 
.Y Ill .Y’ 

(26) 

Here, /S( and IS’1 are separately the volumes of the 

objects S and S’. After this modification, equatio,n (25) 
can also be used to determine the transform mat&x H. 

Main algorithm 

Without loss of generalization, we may assume that the 
position vectors P,s and Pis have been expressed by 
their own object-centred coordinate system, and 
equation (I 8) can now be simplified to: 

Determine the 3D rotation matrix 

In this subsection, we also consider two .main 

approaches. the weighting method and the modified 
method. as in the 2D case. 

P:=Hp, for i= l....,N (19) 

The 3 x 3 dispersion matrices, M and M’, of S and S’ 

can be separately defined as: 

(20) 

Weighting method 

where the superscript T denotes the transpose operation. 
The two dispersion matrices M and M’ can be 

decomposed separately by similarity transformation, 
defined as follows: 

Consider a single-valued weighting function g(v). ‘Here 
the function g should satisfy the thumb’s rule described 
above. From equation (24). we can immediately obtain 

the equation: 

R(@: = R(g(r,)p,) (27) 

where r, e lip,ll = Ile:il c r: and ,g(r:) = g(r,) for 
i= l,...,N. 

M = QAQ’ = (QA/2)Z(QA,,2)T = .U.2TT (21) 

If we sum both sides of equation (27) from 
i= l,...,N.wehave: 

M’ = Q’A’Q’* = (Q’A;/2)Z(Q’A;,2)T E Z’ZZ’T (22) 

Here Q and Q’ are orthogonal matrices and their 
determinants must be equal to +l (preventing mirror 
projection). A and A’ are two diagonal matrices with 
nonnegative elements, and Z is a 3 x 3 identity matrix. 

(28) 

To solve the 3D rotation R, at least two different 
functions (e.g. gl and g2) must be specified to acquire 
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two different sets of vectors, say {V,,, Vx2} and 
{Vh,, Vi,}. In each set, we must also make sure that its 
two element vectors will not be zero or parallel to each 
other (Figure 6). 

If subset correspondences are available, as mentioned 

by Chaudhuri and Chatterjee14, we do not have to sum 
up all the weighting vectors from index 1,. , N. For 
example, if K( > 1) subsets of correspondences are 
available, we just need to sum up the g-weighted 
vectors in the same subset. Therefore, K different pairs 
of vectors, like {V,,Vh} can be obtained. So the 3D 
rotation estimate based on these K corresponding 
vectors will be more reliable. It seems that the 

weighting method has a greater flexibility. 

Figure 7 In the modified method, the best rotation R can be 
estimated by maximizing the matching ratio between R s and 3’. We 
may use the furthest and nearest points {PF, PN, Pk., Pj,} of the two 
normalized objects to guess an initial solution 

When the object of interest is a continuous 3D volume, 
the weighted-summation in equation (28) should be 

changed to the weighted-integration defined as: 

rotation R, which causes a best matching between its 
normalized objects. This is because the number of 

corresponding points is infinite in this case. 

v; ,L 
P’I SSJ g(r')P& .!?I 

Discussion 

In this subsection, we discuss the benefits and short- 
comings of the two methods described above. 

Modified method 
Because the discrete-point 3D structure has a finite 

number of one-to-one point correspondences, the 
modified method described here will focus on finding 
the correct one-to-one point correspondence between 9 
and 3’. Once the correct one-to-one point correspon- 
dences have been determined, the transform matrix H 

can be estimated directly by solving: 

[P’, / IP’N] ‘= H [P, 1 . . . IPN] (30) 

Many methods can serve to provide an initial guess of 

The weighting method will fail when (1) any one of V,, 

and VR2 is zero, or (2) V,, is parallel to Vg2. For example, 
the weighted-summation vector V, of a centre-symme- 
trical normalized object is always zero no matter what 
kind of function g is used, which makes the weighting 
method break down. On the other hand, the two 
functions, gl and g2 should be chosen appropriately for 

not making the opening angle between V,I and VR2 too 
small. However, the modified method does solve these 
singular cases, because it never uses Ihe weighted 
summation (or integration). Of course, these improve- 
ments are obtained only at the cost of more computation. 

the correct one-to-one point correspondences. The 
weighting method described earlier is one of them, but 
the simplest way is to find the corresponding furthest 
and nearest points on the two normalized objects ,$ and 
3’. These points can be separately denoted by PF, P,,,,, 
P> and Ph (Figure 7). From these points, we can obtain 
an estimate of R, which helps the later work of finding 

the correct correspondences. Of course, we have to test 
several initial guesses if these extreme points are not 
unique. 

If the normalized 3D object 3 and i’ have some kind 
of rotational symmetry (Figure 8), we may have multiple 

solutions for R (then matrix H). In this case, the 
weighting method usually fails, but the modified 
method can solve all the possible solutions. 

ERROR ANALYSIS 

When the object of interest is a continuous 3D solid 
volume, the modified method will focus on finding the 

In this section, we discuss what factors will affect the 
error performance of the weighting and modified 

6 possible 
solutions 

Figure 6 In the weighting method, two pairs of weighted-summation 
vectors are used to determine the unknown 3D rotation R between 2 
and L?’ 

Figure 8 One of the ambiguity cases. If the normalized objects are 
rotationally-symmetric in 3D space, there may exist several possible 
solutions for H 
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methods. Because of the great similarity between the 2D 

and 3D cases, we only consider error analysis of the 3D 
case here. If we first assume an ideal case, where the 

correspondence between P,s and P:s is known, then we 
have: 

[P’l/...iP’J = H[PiI~..IPX] (31) 

If N 3 3. the transform matrix H can be solved by the 
equation: 

IIow will the estimate of H be affected if the position 
vectors P,s and P:s are perturbed by noise? If the 

perturbed forms of these position vectors are repre- 
sented by P,s and Pis, then we have the perturbed 

forms of B, M, H: b=B+AB,n-i=M+AM, 
I? == H + AH and fi = BI%-‘. Substituting them into 
equation (32) we have: 

AHEI&Hz -H(AM)M-’ + (AB)B-‘H 

= -H(AM)K’ + (AB)M-’ (33) 

where the second-order errors are neglected. 
We further define the relative estimation error of H as 

IIAHIIFlllHllF~ where ll.IIF is detined as the Frobenius 
norm. Finally, an upper bound of this relative error can 
be derived as: 

!s G IW~II,II~~‘lI,. + II~BIIFI~B~‘IIF (34) 
I 

From equation (34) it is easy to see that if matrix M 
or B has an eigenvalue which is very close to zero, then 
the final estimated motion matrix will be very error- 

sensitive. A close-to-zero eigenvalue of M means that 
the object structure is degenerate, such as a planar patch 
in 3D space or a 1D line in 2D space. When the correct 
correspondences are available, the error performance 
only depends upon the structures before and after 
motion, which also means that the error performance 
will not be affected, no matter how the correct 

correspondences are obtained. So we know that the 
performance of the modified method must be the same 
as this ideal case. 

As for the weighting method, the error sensitivity of 
the estimated motion matrix His quite different. Let us 
begin from the error-perturbed form of equation (25), 
i.e.: 

r$=z’RZm’ 
(35) 

where Z’=Z’+AZ’, R=(AR)R=(Z+AW) Rand 
Z == Z + AZ. 0 = (Q,., R,., O,)T is the rotation vector 
representing the 3 x 3 matrix R. A W is an anti- 
symmetric matrix defined as: 

0 -AR, AR, 
AWz AR, 0 -A% 

I 

(36) 
-An,, AR, 0 

After substituting equations (25) and (36) into the 
definition of AH, we have 

AH- fi- Hx [(AZ’)(Z’))‘] H+ H[(Az,(Z) ~‘1 

+ Z’[(AW’)R]Z-’ (37) 

Similar to equation (34), we derive an upperbound of 
the relative error, llAHllF/ilH~iF, as follows: 

relative error G w 6 /IAZ’]lF]]Z’- ’ IIF 
f 

+ Il~-w~-‘IlF + IIAWF (38) 

From equations (21) and (22) we know /IZ-‘II, = 

llA,‘211, and l/Z’-‘II, = IIA~~;~ IIF. Obviously, because 
M = ZZr and M’ = Z’Z’T. the estimation will be also 

very error-sensitive when the dispersion matrix M or 
M’ has a close-to-zero eigenvalue. There is also an 
additional rotation-error term that can affect our final 

results. 
Therefore, from equations (34) and (38), it is easy to 

realize that there exist some special cases whose motion 
parameters are inherently hard to estimate. However, 

readers should realize that the motion estimation of 
these special cases fails because the object of interest is 

allowed to move in 3D space in a linearly-deformable 
manner. For example, a moving rigid planar patch in 
3D space will have an undefined expansion along its 
normal direction, which causes singularity. 

SIMULATION EXPERIMENTS 

To test our derivations described above, several simula- 
tion experiments are designed here. The main objectives 
of these experiments are to prove that our methods are 

absolutely accurate when no position errors exist, to 
show that the error performance of the modified 
method is superior to the weighting method, and to 
show how the modified method solves the ambiguity 
problem. 

Only position errors are considered in the following 

experiments. 

Error-free cases 

In this experiment, two kinds of structures are tested: a 

2D continuous shape and a 3D discrete-point structure. 
Our main objective is to show the validity of the 
algorithms derived above when no position errors are 
introduced. 

Figures 9a-d show the normalization process of 2D 
shapes S and S’. The shape S is contained in a rectangle 
of 1.6 x 1.4. Figure 9a is the shape before motion (S). 
Figure 9h is the shape after motion (S’). Figure 9c is the 
normalized shape of S, that is 3’. Figure 9d is the 
normalized shape of S’, that is S. Table I lists the real 
and estimated motion parameters. It can be easily 
observed that the estimation of H is accurate. Notice 
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Figure 9 Normalization process of a 2D continuous shape. 
(a) Unmoved shape S; (b) moved shape S’; (c) normalized shape S of 
S; (d) normalized shape S’ of S’ 

that the name ‘Weight: (k)’ on this table represents that 
the weighting function g(r) used in the weighting 
method is defined as g(r) = rk, 

Figure lOa-d show the normalization process of a 
discrete-point 3D structure (only vertices are consid- 
ered). The whole structure of this car-like structure is 
contained in a rectangle volume whose size is 4 x 2 x 2. 
Figure IOa-d separately represents the object S, S’, 3 
and 3’. Table 2 lists both the real and estimated motion 

parameters. It can easily be observed that the estimation 
is accurate. Notice the name ‘Weight: (a, b)’ represents 
that the two weighting functions g,(r) and gz(r) used in 
this weighting method are separately defined as 
g)(r) = ra and g*(r) = rh. 

From the results shown in Figure II, we find that the 
error performance of the modified method (assuming 
that correct correspondences are obtained) is consider- 
ably better than that of the weighting method. In fact, 
when the object structure is more asymmetric, the 
performance of the weighting method,may be better. 

This means that the structure of the object has a critical 
influence to the weighting method. Cases when position errors exist 

In this experiment, we try to show how the moditied 
method is superior to the weighting method in error 

=k 50 

performance. Here, we use the 3D discrete-point 
r 45 
1 

structure in Figure 10. Position errors are added to > 40 

each point, and these errors are assumed to be 35 

uniformly distributed in a small cubic whose edge 
$ 

= 
30 + 

0 

& 
25 

Table 1 Listing table of the estimated motion for Figure 9 
J 20 

Methods Hor k AH (10@5) % error z 
,u 

15 

$ 10 
Real answer 

b 5 

Modified [ 0.7 -0.2 
k 

-0.6 1.8 
I [ 0.11 

0.22 
-0.08 1 
-0.22 

1.7 x IO_‘4 Lu 0 

Weight: (1) 0.7 -0.2 1 [ -0.22 1.06 
-0.6 1.8 -1.67 -0.67 

1 1.0 x lo-‘3 

Weight: (2) 0.7 -0.2 -0.22 0.61 
-0.6 1.8 

1 [ 
-0.89 -1.11 

1 7.7 x lo-l4 
Figure 11 Error performance of the weigtiting and modified 
methods. We can observe that the modified method is significantly 
better than the weighting method in error sensitivity 

0 

t4 1 
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Figure 10 Normalization process of a 3D discrete-point structure. 
(a) Unmoved object S; (b) moved object S’; (c) normalized object S of 
S; (d) normalized object 3’ of S’ 

lengths are all 26. In Figure 11 four curves are plotted. 
Each point of the curves comes from the averaging of 
100 different tests under the same error level 6. The 
lowermost curve is the result of the modified method; 
the higher three curves are the results of the weighting 
method, whose weighting functions are gl(r) = ra and 

gl(r) = rh. (a, b) represents the weighting functions in 
this experiment. Notice that the error percentage of the 
estimation is defined as IIAHIIF/IIHIIF x 100%. 

0 0.02 0.04 0.06 0.08 0.10 

Position error deviation 6 
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Table 2 Listing table of the estimated motion for Figure 10 

Methods Hor 6 AH ( 10-‘4) % error 

1.1008 
Real answer 0.2069 

-0.4307 

Modified 

Weight: (0.5. I) 

1.1008 
[ 0.2069 

-0.4307 

[ 

1.1008 

0.2069 
-0.4307 

Weight: (2. I) 

I.1008 
0.2069 

-0.4307 

-0.0101 
0.5504 
0.2387 

-0.0101 
0.5504 
0.2387 

-0.0101 

0.5504 
0.2387 

-0.0101 
0.5504 
0.2387 

0.5967 
-0.5384 

1.2665 I 

0.5967 
-0.5384 
1.2665 1 
0.5967 

-0.5384 
1.2665 1 
0.5967 

-0.5384 
I .2665 1 

0 

[ -0.00 0.00 0.02 -0.02 0.04 0.00 -0.07 0.02 0.00 I 4.2 x IO I4 

[ -1.1 -I 0.44 .68 I -0.08 0.86 2.45 -1.58 4.03 0.63 I 7 _. 7 x IO_ ‘? 

-0.60 1.42 

0.19 0.08 0.31 

-0.87 0.32 2.11 I I4 x IO_” 

-0.80 

To provide a more clear sense about the motion 
estimation, some numerical results are listed in Tables 3 

and 4. Notice that the performance of the weighting 
method in Table 3 is not so sensitive to position errors as 

that in Table 4, because the tested 2D shape is quite 
asymmetric, and only one weighting function is used in 
the 2D case, and the final summation vector and then the 
estimated rotation R will not be influenced by other 
summation vectors (comparing it only with the 3D case). 

Cases when ambiguities exist 

We know from earlier that the weighting method fails 
when ambiguity or a degenerate case happens. This 

Table 3 Estimation result of the 2D shapes displayed in Figure 9. 
Here, the error level 6 is set to 0.02 

Meth0d.s H or k % error 

Real answer 0.7 -0.2 1 
-0.6 I .8 

0 

Modified [ 0.7096 -0.1928 
-0.578 I I .7799 

1 1.58 

Weight: (I ) [ 0.7168 -0.1981 
-0.5806 I .7623 

1 2.24 

Welyht: (2) 0.7175 -0.2081 
-0.5788 I .765l 

I 2.49 

Table 4 Estimation results of the 3D object displayed in Figure 10. 
Here, the error level 6 is set to 0.01 

Methods H or fi % error 

I.1008 -0.0101 0.5967 
Real answer 0.2069 0.5504 -0.5384 

-0.4307 0.2387 I .2665 
I 0 

I .0983 -0.0103 0.5964 
Modified [ 0.2084 0.5500 -0.5370 

--0.4332 0.2430 I .2677 

I 0.3016 

1.0869 0.0256 0.6250 
Weight: (0.5. I) [ 11.2092 0.5539 

-0.4449 0.2432 

-0.5320 I 2.56 
1.2561 

I ,086 I 0.0342 0.6210 
Weight: (2. I) 0.2071 0.5572 -0.5327 1 2.75 

m~O.4430 0.238 I I .2577 

experiment shows how the modified method solves the 
ambiguity problem. Figure 12u-d are similarly defined as 

in Figure 9a-d. Notice that the 20 shape we use here is 
symmetric to its centre. When the weighting method is 
used (g(r) = rk), both of the weighted summation vectors 
vK and vi are zeros, which makes the weighting method 
fail. However, the modified method can solve two 
possible solutions listed in Table 5. One of them 
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Figure 12 Normalization process of a 2D symmetric shape. 
(a) Unmoved shape S; (b) moved shape S’; (c) normalized shape S of 
S: (d) normalized shape S’ of S’ 

Table 5 Listing table at the estimated motion. Note the failure of the 
weighting method 

Methods Her fi 

Real answer 

Modified # I 

Modified # 2 

Weighting 

0.7 -0.2 
PO.6 I .8 1 

[ 0.7 -0.2 -0.6 I.8 1 
[ -0.7 

0.2 
0.6 -1.8 1 

fail 
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corresponds to the true answer; the other is an 
ambiguous solution. 

CONCLUSION 

In this paper, we have attempted to find the motion 
parameters of a uniformly-deformable object in 2D or 

3D space. The features representing the object of 
interest are allowed to be discrete points, continuous 

2D shapes or a 3D solid volume. The so-called affine 
motion model is defined as a linearly-deformable one 

which must be satisfied everywhere on the object (as 
described in equations (1) and (18)). 

As we know, we often need to solve the correspon- 
dence problem before we want to estimate the motion 
parameters of an object. However, this problem has 
been hard enough in the case of rigid motion, and is 
even harder in the case of deformable motion. To 

prevent such a difficulty, we have theoretically 
developed a method without using one-to-one point 
correspondences, and a closed-form solution has been 
derived. The concept of normalization is the key idea in 
our method. 

However, it is not enough to just know that this 
method is accurate when no position errors exist. We 

should notice many other important things. For 
example, if position errors exist, how robust are our 
methods? How do the structure of the object and its 
associated motion parameters affect the error perfor- 
mance? Can our method solve all kinds of object 
structure and motion parameters? If not, in what cases 

will our methods break down? If they break down, is 
there any other method which can solve it? All those 
questions are discussed and answered in our paper. 

Here, we summarize our final conclusions: 

According to the derivations discussed earlier, we 
know that the position error sensitivity of motion 

parameters depends upon the dispersion matrices of 
the object before and after motion. The error 
performance is inherently bad when there exists a 
close-to-zero eigenvalue of the dispersion matrices. 
This means that the object structure is almost 
degenerate, and no method can estimate its motion 
parameters. For example, a 2D plane object in 3D 
space and a 1D line object in 2D space are 
degenerate structures. (Notice the deformation mo- 
tion model we used here.) 
We presented the weighting method and the mod- 
ified method; the former uses distance weighting of 
the normalized object as its main idea, while the 
latter uses the characters of normalized object to 
solve the correspondence problem. Both the theory 
and experimentation indicate that the error perfor- 
mance of the modified method is better than that of 
the weighting method. However, the modified 
method needs more time and computational cost to 
determine the best matching of the normalized 
objects. 

The modified method (especially to the discrete- 
point structure) can perform as well as those 
methods which previously know the correct corre- 
spondences. 
If the normalized structure of the object of interest is 
symmetric to its centre, the weighting method will 

fail because the weighted summation vector vg (or 
V,) is always zero no matter what kind of weighting 
function g is used. But the modified method can 
solve this singular case, and provide all possible 
solutions. 
Some methods using high-order moments or tensors 
to solve the motion parameters are in fact similar to 

our weighting method. We can thus predict that the 
error performance of such tensor methods should be 

comparable with the weighting method. 

Although only theoretical research is presented in our 
paper, we can apply this result to many real applications 
that need point correspondences and where the objects 

satisfy the aftine transformation. For example, if a 
moving rigid planar patch is placed at a distance far 
from the camera, its two image shapes projected on the 
image plane at two different time instants will approxi- 
mately satisfy the 2D aftine relationship, and we can 

estimate the correspondence by obtaining their best- 
fitted aftine transformation. Another example is to 
estimate the 3D motion of the heart by obtaining the 
3D data from CAT (computer-aided tomography), as 
done by Faber and Stokely”. 
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