
Pergamon 
Pattern Recognition, Vol. 27, No. I 1, pp. 1475 1491, 1994 

Elsevier Science Lid 
Copyright (c) 1994 Pattern Recognition Society 

Printed in Great Britain. All rights reserved 
0031-3203, '94 $7.00 + .00 

0031-3203(94)00059-X 

RIGID M O T I O N  A N D  STRUCTURE FROM SEVERAL 
SETS OF PARALLEL LINES IN A M O N O C U L A R  

IMAGE SEQUENCE 

SoO-CHANG PElt and LIN-Gwo LIou 
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China 

(Received 7 September 1993; in revisedJorm 12 April 1994; received for publication 7 May 1994) 

Abstract An image line is a very reliable feature in the feature-based structure-from-motion (SFM) 
problem. It has at least three advantages: (1) it is not easily affected by occlusion. (2) It can achieve subpixel 
accuracy. (3) The correspondence problem is easier and less ambiguous. Although some generalized SFM 
algorithms using image line features have been recently developed, they usually suffer from high error 
sensitivity and large matrix size. Besides, in order to make their estimations more robust, many line 
correspondences (much more than the least requirement in theory) are usually needed. These shortages are 
not beneficial for practical use. 

Because many sets of parallel lines are frequently encountered in an artificial 3D environment and can 
be easily identified, we try to utilize these identified parallel lines to simplify the generalized SFM problem 
and improve the performance of parameter estimation. A fast and reliable algorithm is proposed in our 
paper. Both computer-generated and real-world images are tested and several satisfactory results have been 
obtained. In addition, its error sensitivity and data degeneracy will be discussed. 

Parallel lines Quaternion Perspective projection 

I. INTRODUCTION 

In the so-called structure-from-motion (SFM) problem, 
many kinds of image features such as points, line 
segments, lines and contours have been widely adopted 
for deriving the SFM algorithms. Here, line segments 
contain the information of their end-points but lines 
do not. An image line is considered as a fairly reliable 
feature for several reasons: (1) a line feature is not  easily 
affected by occlusion: even if some part of an image 
line is missed or occluded, the whole feature may be 
completely reconstructed from its remaining parts; (2) 
position measurements of line features can achieve 
subpixel accuracy; (3) the problem for solving line 
correspondences is easier than that for point corres- 
pondences because more information (line orientation, 
length of line segment) can be utilized. Some related 
research about tracking image line segments (or lines) 
are listed in references (1 4). Other related research 
about motion estimation from image line or line seg- 
ments are listed in references (5-15). 

However, it is not easy to solve the SFM problem if 
prior information or some special motion and structure 
constraints are not available. It is usually because of 
the nonlinearity of their key equations. Wong et al. ~5~ 

Liu and Huang tTj Spetsatis and Aloimonos ~6) indepen- 
dently proposed similar generalized linear algorithms 
using at least 13 line correspondences at three views. 
Although a closed-form solution can be obtained, it 

¢Author to whom correspondence should be addressed. 

has several disadvantages: (1) its error sensitivity is 
high; (2) in order to solve the problem linearly, a lot of 
intermediate variables are defined and some important  
rigidity constraints are ignored. That  is, many extra 
unknown variables need to be solved and the size of 
the linear system must be large; (3) in order to achieve 
a reliable estimate in practical application, the number 
of line correspondences is usually much larger than 13. 
If there are not enough line correspondences, a non- 
linear iteration method, such as (7, 9) should be adopted. 

In fact, the generalized SFM algorithms ~s'6~ are not 
very suitable for use in an artificial environment be- 
cause some additional constraints about structure or 
motion are usually available. For  example, there are 
some familiar constraints such as the ground planar 
constraint (GPC), ~16~ the Legoland constrain( 17~ (there 
exist three sets of parallel lines which are orthogonal  to 
each other), and the epipolar constraint (used in a 
stereo vision system). Chen ~1°) solves the motion pro- 
blem by using line-to-plane correspondences. Sarali 
and Jong Ill) and Zhang and Faugeras ~12~ use line 
segments. Faugeras  et al. ~13~ discusses differential 
motion est imation by using line correspondences.  
Henriksen and Arnspang ~14~ propose a method for 
solving the orientation of a translating straight line in 
3D space. These special SFM algorithms are usually 
simpler and much more reliable than the generalized 
ones. 

Recently, set of parallel lines which are frequently 
encountered in an artificial environment have drawn 
a lot of researchers' attention. They are usually utilized 
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in the applications of camera calibration, tl 7-23) Several 
methods about  detecting parallel lines or vanishing 
points in 3D space were also proposed, t24-26) In this 
paper, we extend the application of parallel lines to the 
area of motion estimation. After introducing this con- 
straint, we hope the SFM problem can be solved more 
reliably and easily. In our algorithm, at least two sets 
of parallel lines in 3D space are required to solve the 
motion parameters. Because such a requirement can 
be very easily satisfied in a man-made environment,  it 
is highly valuable in real applications. Experiments 
show a fairly good performance in estimating the 
desired motion and structure parameters. Both the 
computer-generated and real-world images are tested. 

Our  paper is organized as follows: Section 2, problem 
formulation; Section 3, description of the algorithm; 
Section 4, discussion about  the algorithm; Section 5, 
experiments of computer simulations and real-world 
images; Section 6, concliasion; and finally, the Appendix. 

2. PROBLEM FORMULATION 

By examining Fig. 1, it can be seen that a rigid object 
moves in 3D space which is observed by a steady 
camera that obeys the rule of perspective projection. 
The viewing field of the camera is small (explained 
later). Ne frames are recorded as a monocular  image 
sequence. In this image sequence, N image lines pro- 
jected by the line features on the rigid object can be 
continuously traced. We also assume that the corre- 
spondence problem has been solved previously. For  
the N line features on the rigid object, some unknown 
part of them belong to several sets of parallel lines in 
3D space. Now, our problem is: "How to solve the 
motion and structure of the rigid object by using the 
given N image line correspondences?". 

3. ALGORITHM 

Before introducing our algorithm, some variables 
are defined as follows for a more convenient description 
(also see Fig. 1). 

The j th  line feature on the rigid object at time ti is 
denoted by Lij. The orientation denoted by l o. The 
normal vector of the plane which passes through the 
focal center F and the image line l~j is denoted by ~# 
(11 ~aj II = 1). Here i = 0 to Nf - 1, j = 1 to N. 

Because some unknown part of the line features on 
the rigid object belong to several sets of parallel lines 
in 3D space, the N indices o f j  can be considered as a 
union of several sets. 

W =  H w S  1 kJS2k - ) " ' "  t,,.)S M, (1) 

Here, W is the universal index set {1,2 . . . . .  N } ,  Sk is 
the set of indices which are corresponding to the kth 
set of parallel lines on the rigid object. There are totally 
M sets of parallel lines on the object. The set H contains 
other indices which do not belong to any one set of 
parallel lines. Because every line belongs to the index 
set Sk has the same orientation vector tl~/(at a fixed time 
ti), we may define a new vector mik. 

m i k  =-- di j;  where j E S  k. (2) 

The coordinate transform between a point Po on the 
rigid object at time to and its corresponding point Pi 
at time t~ can be defined as 

P i  = R i  Po + Ti, (3) 

where the matrix R~ is a 3 x 3 orthogonal matrix, and 
T~ is a 3 x 1 translation vector (see Fig. 2). 

R 3 T3 

1 TII ,  O O O 

to  t l  t2  t 3 

Fig. 2. The definition of motion parameters between t o and 
I i . 

(lying on a 
unit sphere) 

y ~ 

the j-th line 
on the target 

x the target at time t i 

image plane 

Fig. 1. Projection of the line features on the target. Here e o is the normal vector of the plane passing through 
the focal point F and projected line I w 
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Our  algorithm is divided into three parts, described 
in the following three subsections. 

3.1. Identifying the sets of parallel lines in 3D space 

In the problem formulation, N image line features 
can be obtained at each one of the Nf frames. We also 
assume that some unknown portion is projected by 
several sets of parallel lines in 3D space (the image lines 
whose indices are in the index sets SkS). A method for 
identifying the sets of parallel lines is proposed here. 
In the other words, we try to determine the elements 
in the index sets SkS. 

For providing more concise concepts to readers, a 
standard cube shown in Fig. 3(a) (the 0th image frame) 
is utilized to illustrate several important  characters of 
our method. Figure 3(b) shows their corresponding 
vectors eojS on a unit hemisphere. Note the directions 
of coordinate axes drawn on this figure. The circular 
band on this hemisphere represents the possible region 
where the vectors eojS may exist (due to a small viewing 
field, see Appendix for more detail). 

Before formally introducing our method, the con- 
cepts used in previous clustering methods 124 26~ are 
briefly discussed. Consider frame No. 0 (the frame 
grabbed at time to). For  the image line loj whose index 
j belongs to the kth index set Sk, we have 

~o/mok = 0, jeSk. (4) 

This means that the cross-product (× )  of any two 
unit vectors ~oj, and ~oj2 (here jl, J2 6Sk) will be parallel 
to the direction vector rook. We may define this unit 
vector as 

nlO~ = unit vector of {~oj, × ~oj2}, (5) JlJ2 

where the superscript (0) means the 0th image frame. 
Therefore, previous clustering methods usually create 

an accumulation map on a unit hemisphere Z < 0 [see 
Fig. 3(c); please note the directions of the coordinate 
axes]. These methods pick every distinct pair of the N 
unit vectors eojS (say {eojl, eoj2 ]Jl,J2 E W}), calculate 
the unit vector n~.°! and add a constant value (say 1) "'Jr J2' 
to its corresponding position on the accumulation 
hemisphere. Besides, the unit vector n~°}~ can also be 
explained as the unit vector of [x, y, 1] r, where [x, y]~ 
is the intersecting point of the two image lines loj , and 
l o j : .  

Theoretically, M highly accumulated peaks corre- 
sponding to mo~s can be found on this hemisphere 
[M = 3 in Fig. 3(c), represented by a mark "o"]. Except 
for these high peaks, there are many widely spread 
lower peaks created by the cross-products of eojS from 
different index sets SkS (representec] by a mark " + ' ) .  
It is obvious that the detection of high peaks will be 
considerably affected by these low peaks if observation 
errors exist. However, especially when the numbers of 
elements in the index sets (SkS) are small, the perfor- 
mance of the accumulation hemisphere is very poor. 
See Fig. 3(a). It has 12 line features, and each one of 
the three parallel line sets has four lines. So we have a 

total of C~ 2 = 66 points on the accumulation hemi- 
sphere, and 3 x C~ = 18 points of them will correspond 
to the desired three high peaks (height = 6). The other 
66 - 18 = 48 points, quite a large fraction of the total 
66 points, are considered as clutters. The so-called 
clutters defined here are the clusters that do not contrib- 
ute to finding the desired peaks. Unfortunately, these 
clutters are not usually widely spread and low enough. 
They deteriorate the detection of the correct high peaks. 

From the discussion in Appendix, we know the 
projected image lines corresponding to the set Sk will 
look approximately parallel in a small viewing field if 
the angle 0ok is large enough. This angle is defined as 

0ok-COS l(Imok'[0,0,  l ] r l ) .  (6) 

It also means that the position of their vanishing 
point on the image plane is far from the image origin 
[0,0] 7'. In other words, a parallel line set having a very 
small angle Ook will apparently look different and their 
vanishing point is near the image origin. Obviously, 
the region near the equator of the accumulation hemi- 
sphere corresponds to a large value of 0Ok, and the pole 
corresponds to a small value Of 0ok [see Fig. 3(c)]. For  
example, in Fig. 3(a), the image lines corresponding to 
the same parallel line set approximately look parallel 
and their corresponding clustering positions (marked 
by "o ' )  are all near the equator. 

As to the wrong accumulating points (marked by 
"+") ,  we find that most of them are near the pole 
region. It is mainly because the intersecting point of 
two image lines loj , and Ioj2 coming from different sets 
of parallel lines in 3D space is usually located within 
a small circular region around the image origin [0, 0] 7. 
See Fig. 3(c) again, as we can see that a large part of 
the wrongly accumulated positions in the pole region 
is corresponding to the nodes of the cube on the image 
plane. Notice the nodes of the cube connect a lot of 
non-parallel lines in 3D space. 

After discussing the above concepts, it seems trouble- 
some to detect all the parallel line sets by using the old 
clustering method. For example, it will be very hard to 
detect the set of parallel lines having a very small OOk. 
In our method to be proposed, we try to detect first 
the parallel line sets which look approximately parallel 
on the image plane. Then we delete these identified 
parallel lines from the universal index set W and test 
the remaining set. Our method is divided into the 
following steps: 

Step 1. For every possible pair of the N image lines 
in frame 0, calculate their unit vectors noj~j2 [defined in 
equation (5)] if the following two constraints are satis- 
fied: (1) the length of the image line segments corre- 
sponding to ~oj, and ~o~2 must both be larger than a 
given threshold (say 30 pixels). It is because the vector 

of a short line segment is sensitive to image position 
errors. (2) A value p defined as ]1 ~oj, x ~oj211 must be 
larger than a given threshold (say sin 5'3. A larger value 
of p usually implies that the two image lines corre- 
sponding to go j, and Co j2 have a larger difference in 
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their positions or directions. The estimate of the vector 
nj~j~(°) will be poor if the positions of the two image lines 
are close together and almost parallel on the image 
plane. 

Step 2. For the pairs passing through step 1, we can 
calculate an angle 6~j: defined as 

6j,;: -= cos-  1 t in(.o! • [0,0, 1]TI), (7) 
\ I"J1J2 

where 6j~j~ is in an interval [0, n/2]. If the calculated 
angle is higher than a given threshold 0th (say 30°), 
add 1 to the corresponding position on the accumu- 
lation hemisphere. The pair not satisfying this constraint 
will be rejected. The final hemisphere will be similar to 
Fig. 3(d) - a very large part of the wrongly accumu- 
lating points near the pole are erased, and the perfor- 
mance of the clustering is highly improved. We call it 
the thresholded accumulation hemisphere. 

Step 3. Erase the accumulating points which seem 
isolated on the thresholded accumulation hemisphere. 
This means that the points having no neighbors in 
their vicinity (a given suitable range) are erased from 
the hemisphere, as shown in Fig. 3(e). Therefore, the 
remaining highly accumulated positions can be easily 
identified and we will have a primary identification 
[see Fig. 3(f)-(h)]. Note that only frame No. 0 is utilized 
here. 

Step 4. Because we have, in fact, Nf image frames, 
the results obtained by step 3 should be further tested 
in other frames to ensure the correctness of the identifi- 
cation. For  the ith image frame, we may calculate the 
unit vectors n~i~j:s whose indices Jl and J2 belong to a 
detected parallel line set from step 3. If the detected set 
is correct, all of the unit vectors nq). ~ will be parallel. UJlJ2~ 
If the detected set contains several wrong indices, the 
clustering analysis of the set at another frame should 
be performed and the wrong indices should be separated 
from the correct ones. 

Step 5. If the number  of the detected parallel line 
sets is larger than or equal to 2, the identification job is 
temporarily terminated because we do not need too 
many parallel line sets to estimate the motion and 
structure parameters (explained later). If the number  

is less than 2, another frame can be chosen instead of 
the 0th frame. 

Now, our identification method is completed. 

3.2. Rotation estimation from the sets of parallel lines 

After the sets of parallel lines are identified (at least 
two sets are needed), the motion parameters R i and T i 
can be easily determined. First, we have 

mik = Ri mok. (8) 

Therefore, a cost function J(qi) can be defined as 
M 

J(qi) --- ~ Imik -- Ri mokl 2, (9) 
k 1 

where the vector qi = [cos 0i/2, sin Oi/2(nix, nit, niz)] T 
is a 4 x 1 unit vector which is the quaternion expression 
of the rotation matrix Ri. The unit vector ni = (nix, nit, 
niz) T is the rotation axis of R and 0 i is the rotation 
angle. Sometimes, we may also represent the rotation 
matrix by a 3D rotation vector defined as coi -~ 0~ n i. 

Equation (9) can be rewritten in a new form 

J(qi) = 2q/TAiqi, (10) 

where 

M 

Ai= Y ~ ( f - ~  mik'mok 
~ ~ \ L -(mik x mok ) 

0 -- mik,Z F 
Wik = / mik'Z 0 

1 
- -  m i k , Y  m i k , X  

0 - -  m o k , z  

W O k  ~ ] mOk.Z 0 
L --mOk,Y mok,x 

-(mik x m°k)T ] ~  
T (mik m0k + Wik Wok)_[/ 

(11) 

mik'Y ] 

-- mik'X I ; 
0 

mOk'Y ] 

-- mOk,X/ .  (12/ 
0 

Obviously, the quaternion vector qi that will mini- 
mize the cost function J(qi) is just equal to the eigen- 
vector corresponding to the smallest eigenvalue of the 
matrix Ai. For  a unique solution, the number  M of the 
sets of parallel lines must be greater than or equal to 
2, and the first component  ofqi [that is cos(0j2)]  must 
be positive. It is easy to determine the matrix Ri from 
q~ by using the following relationship: 

~q~+q~--q~--q~ 

R =1 2q2q3 +2qlq4 
L 2q2q4- 2qlq3 

2q2q3 -- 2qlq4 
q~ +q~--q~ --q~ 

2q3q4 + 2qlq2 

2q2q4+ 2qlq3 ] 

2q3q4-- 2qlq2 1, 

q~ + q~-- q~ - q~J 

tl3) 

where q = [ql, q2, q3, q4] r. 
Because the rotation matrix can be solved by only 

two sets of parallel lines (at least), it does not matter 
whether we can identify all the M sets of parallel sets 
or not. Take the case of M = 5 for an example. If only 
the first two sets S~ and $2 are identified, the other 
three sets can be easily identified by solving their 

corresponding orientation vectors do~s ( j e ( W -  $1 - 
$2)}). dojs are determined by finding the eigenvector 
of the smallest eigenvalue of a matrix Bj defined as 

Nf 1 

Bj-- ~ (Ri t Eij)(R{lgij) T (14) 
i = 0  

(R o = I). Of no doubt, all of the lines having the same 
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orientation vector must belong to the same set of 
parallel lines. Then the rotation matrix R~ can be 
re-estimated by the total M sets of parallel lines, and 
the final estimation will be more accurate. 

3.3. Structure and translation estimation 

To specify the position of a line Loj in 3D space, its 
orientation vector doj and a point on this line must be 
given. Without  loss of generality, we may define a point 

Poi on the line Loj, where FPoj  = koj hoj. The three 
vectors {Co j, do j, hoj} form an or thonormal  basis in 3D 
space. Therefore, from equation (3), we have 

[ R i ( k o j h o j ) + T i ] ' c i j = a i j k o j + £ i j ' T i = O ,  (15) 

where a o - R i hoj. c/j, i = 1 to Nf - 1, and j = l to N. 
Because the size of the homogeneous linear system 

in equation (15) is large when N is larger, the compu- 
tation load of directly solving equation (15) may be too 
heavy for us. So we make a slight modification to this 
system for reducing the computat ion load: To the j th  
line at Nf different time instants, we have 

koj aj + E~ T = 0, (16) 

where 

aj - [ a l j  , a2j . . . . .  aNf_ 1 , j ]  T,  

r 0 ... O r 

/FCo¢l ... or 
Ej =---- IOT oT "'" oT 

k O r O r r 
" ' "  C N f -  1 , j  

(17) 

(18) 

and 

T = [ T r l T r l  ... I Tr~_ 1] r. (19) 

Because a~ is a (Nf - 1) x 1 vector, there must exist 
another N r - 2 unit  vector bi. s (s = 1 to Nf -- 2) such 
that they are a set of orthogonal basis in (Ne - 1) - D 
space. So we have 

( ] a j l ) b r s E j T = u r T = O  

for s = 1 to Nf -- 2; j = 1 to N, (20) 

where the additional multiplying scale I aj ] is a weight- 
ing factor which controls the contribution of equation 
(20). We may determine the vector T (to a scale factor) 
by finding the eigenvector corresponding to the smallest 

1. Loading the extracted feature lines of the given image 
sequence (correspondence problem is solved). 

2. From the method described in section III..1 (five steps), 
we can obtain a primary identification of parallel lines in 
3D space. 

3. From the above identification, rotation parameters R i s 
can be estimated by using eq.(9) and eq.(13). 

4. From the estimated rotation, we can approximately 
determine the orientation vector d0j of every feature 
lines on the 3D object. 

5. From the determined orientation vectors do' s, we 
may detect the remaining parallel line sets (if t rey 
exist) which were not successfully'detected by step 2. 

6. If new sets of parallel lines are detected, rotation 
parameters R .. s can be re-estimated for a more I 
accurate result. If  no new set exists, go to step 7. 

7. Estimate the translation vectors T 1 , T 2 . . . . .  
and depth values k0j s by using eq.(20) and eq.(22). 

Fig. 4. Summary of the whole algorithm. 



Monocular image sequence 1481 

eigenvector of a matrix C defined as 
N N f -  2 

C -  Z Z uj, u~. (21) 
j = l  s = l  

Equation (20) is a homogeneous linear system with 
3(Nf - 1) unknown variables and N ( N f  -- 2) equations. 
The vector T can be solved to a scale factor if Nf ~ 3 
and N > (3Nf - 4)/(Nf -- 2). Then the value koj can be 
easily determined by using 

ko j _ a r Ej T (22) 

a f  a j  

The whole algorithm is completed here. Figure 4 
shows an overview of it. 

4. D I S C U S S I O N  

4.1. H o w  many  lines and f r a m e s  are needed? 

Theoretically, from equation (8), at least two sets of 
cor responding  vectors { (roOk, mik) l k = 1, 2 . . . . .  M. 
M _> 2} are needed to uniquely specify the rotation Ri 
between two time instants to and t i. F rom the known 
rotation, the orientation vectors dojs of the lines on the 
3D object can be easily reconstructed. That  is to say, 
it is enough to solve the rotation and line orientations 
of the object by using only two frames and two parallel 
line sets. Besides, every parallel line set contains at least 
three lines (otherwise, the method for identifying the 
parallel lines would fail). Therefore, the smallest total 
number  N of lines on the 3D object is 6. 

However, from equations (15) and (16), the trans- 
lation T and the line depths k0js cannot  be solved by 
using only two frames. It needs at least three frames 
(Nf  _> 3) and usually more than five line features on the 
object [in fact, N > (3N f  - 4 ) / (N f  - 2)] .  

From the above discussion, at least six image line 
correspondences at three frames are needed to solve 
the SFM problem completely. These six image line 
correspondences must belong to two sets of parallel 
lines in 3D space (three for each one). 

4.2. Error sensi t iv i ty  

In our algorithm, rotation matrices Ris must be first 
solved. What factors will affect their estimations? From 
equation (10), we know the rotation R i can be directly 
calculated by its corresponding quaternion qi, the 
eigenvector corresponding to the smallest eigenvalue 
of the matrix Ai. Because matrix A i is constructed by 
the orientation vectors of parallel lines in 3D space 
(that is { (mok, mik)l k = 1, 2 . . . . .  M }), the relationship 
between these orientation vectors directly influence 
the error sensitivity of qi. For  simplicity, if only two 
sets of parallel lines (M = 2) are considered, we have 
the following rules: (1) the estimation is least error- 
sensitive when the opening angle between m o t and m 02 
is 90°; (2) the smaller the opening angle between mo~ 
and too2, the more error-sensitive the estimation be- 
comes; (3) the estimation fails when moi = mo2 (singular 
case). The above rules will be proved in the experiments. 

While estimating the translation T defined in equa- 
tion (19), there exists a situation which will let the 
estimation fail. Take Nf = 3 for an example. From 
Section 3.3, we know at least three frames are needed 
for solving the translation T T = [Tlr IT2 r]  by using the 
homogeneous linear system described in equation (20). 
If T1 = 0 (only rotation between to and tt), is there any 
possibility that we can still obtain T 2 by using equation 
(20)? The answer is NO! Because T1 is equal to zero, 
the constant al js  defined in equation (15) are all equal 
to zero for j -: 1 to N. Although a2js a r e  not zero, the 
translation T 2 is still unsolvable. So it is a data de- 
generacy caused by no-translation. In fact, we may 
consider the image frame captured at t ~ as a null frame 
which has no contr ibution to the estimation of trans- 
lation. This means that the effective number  of the 
given image sequence is only 2, not  enough for the 
estimation (at least three are needed). Therefore, we 
think that translation vector T is solvable if the effective 
number  of frames Neff( = Nf  --  Nnull ) is greater than or 
equal to 3. Experiments support the above thoughts. 

5. E X P E R I M E N T S  

In this section, two kinds of image data are tes ted- -  
computer-generated data and real-world image data. 
Several things need to be proved in the following 
experiments: (1) our algorithm is exactly accurate if no 
observation errors exist; (2) our algorithm can handle 
the real-world image data and obtain a satisfactory 
estimation; (3) our algorithm is robust and not  easily 
affected by observation errors; (4) error-sensitivity 
depends on the structure of feature lines on the object; 
(5) data degeneracy happens when the effective number  
Nef  f is less than 3. 

Before introducing these experiments, we first specify 
the method of adding simulated observation errors on 
the image feature lines. In Section 3, we know an image 
line lij can be represented by a unit vector Eij. Assume 
Uia, Via and eij form an or thonormal  basis in 3D space. 
The error-perturbed version of eij is defined as 

error-perturbed E i j -  unit vector of 
{Eij + ~71 Uij + tT2 Vij}, (23) 

where a 1 and tr 2 are random variables of uniform 
distribution [ -  ~, a]. In later experiments concerning 
adding observation errors, the value of tr controls the 
magnitude of these errors. If the opening angle of 
the camera is 30 ° and the image plane's resolution is 
512 × 512, a=0.001 will correspond to a maximum 
position deviation of one pixel. Because a is usually 
small, the tr value can be represented by rad or degree. 
For  examples, a=0.001 is equivalent to a=0.001 rad 
or ~r = 0.0586 °. 

5.1. Compu te r  s imulat ion 

In this subsection, a computer-generated rigid object 
is adopted. Here N = 20 and N f  = 4. Its motion para- 
meters R i and Ti (for i =  1-3) are randomly assigned. 
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Monocular image sequence 

Table 1. Error-free estimation (a = 0 °) for the line structure shown in Fig. 5(a) 

1483 

Parameters Real Estimate Error(~o) 

~1 (0.3000, -0.2000,0.1000) 7̀  (0.3000, -0.2000,0.1000) r 0.3798 × 10 11% 
f~2 (0.6000, -0.5000,0.2000) 7. (0.6000, -0.5000, 0.2000) r 0.5470 x 10-11% 
f~3 (0.8000,-0.7000,0.3000) r (0.8000, -0.7000,0.3000) r 0.5317 x 10-11° o 
T 1 (3.6108,6.0587, --0.7151) r (3.6108,6.0587, --0.7151) r 0.1798 × 10 1°°/0 
T 2 (7.8149, 11.6886, 1.7767) r (7.8149, 11.6886, 1.7767) r 0.5712× 10- 1°? L 
T 3 (9.1563,14.8344,5.1969) r (9.1563,14.8344,5.1969) r 0.6704×10 lo% 
mol (0.2833,0.4721, --0.8348) r (0.2833,0.4721, --0.8348) r 0.0854 × 10- Sdeg 
mo2 (--0.0729,0.8785,0.4721) r (--0.0729,0.8785,0.4721) r 0.1207 × 10- Sdeg 
mo3 (0.9563, --0.0729, 0.2833) r (0.9563, 0.0729, 0.2833) r 0.0854 × 10- 5 deg 

Table 2. Estimation of the line structure shown in Fig. 5(a) when observation errors exist (a = 0.25 °) 

Parameters Real Estimate Error(~) 

f12 
f13 
T1 
T2 
T3 
mol 
mo2 
mo3 

0.3000, -0.2000,0.1000) r 
0.6000, - 0.5000, 0.2000) r 
0.8000, - 0.7000, 0.3000) r 
3.6108, 6.0587, -0.7151) r 
7.8149, 11.6886, 1.7767) r 
9.1563, 14.8344, 5.1969) r 
0.2833, 0.4721, - 0.8348) 7. 
- 0.0729, 0.8785, 0.4721) r 
0.9563, - 0.0729, 0.2833) r 

(0.3084, --0.1957,0.0971) r 
(0.6013, - 0.5063, 0.2004) r 
(0.8014, -- 0.7029, 0.2997) r 
(3.5943, 6.1872, - 0.739~,)T 
(7.8681, 11.7453, 1.5090) r 
(9.1705, 14.8814,4.7171) r 
(0.2803, 0.4663, -- 0.8391)7" 
( -- 0.0732, 0.8782, 0.4727) r 
(0.9583, -- 0.0727, 0.2764) r 

2.6441% 
0.8033~% 
0.2913~o 
1.8601 ~o 
1.9666~o 
2.6510~, ~, 
0.4513 deg 
0.0400 deg 
0.4099 deg 

The test object is shown in Fig. 5(a). Its accumulation 
behavior is shown in Fig. 5(b) (e) which are similarly 
defined as in Fig. 3(b)-(e). The detected sets of parallel 
lines are shown in Fig. 5(f)-(h). Table 1 lists the esti- 
mation of mot ion and line orientations without adding 
any observation errors. The estimation is very accurate, 
which proves our algorithm. Table 2 lists the estimation, 
purposely adding observation errors (a=0.25°). The 
results shown in Table 2 are still quite satisfactory. 
Notice that the estimation of translation vectors are 
appropr ia te ly  scaled, and the es t imated ro ta t ion  
matrices Ris are represented by their corresponding 
rotation vectors toi for reducing the size of the tables. 

5.2. Real-world image tests 

In this subsection, a real-world image sequence (three 
frames) is tested. They are shown in Fig. 6(a)-(c). This 
image sequence is acquired by a moving camera which 
passes through a corridor (a large rigid object). This 
camera is translating to the Z direction and rotating 
about  the Z-axis. 

Because the image line extraction and tracking algo- 
rithm is not the main consideration in this paper, we 
only briefly describe our process of line extraction in 
the following steps: (1) the image is first smoothed to 
reduce the effect of noise; (2) apply an edge operator  
to this smoothed image and preserve the edges which 
are stronger than a threshold; (3) the edge points sup- 
port ing a physical line segment are collected together 
and the best-fitted line equation is then determined by 
linear regression. Notice that the edges shorter than a 

threshold will be discarded; (4) although there have been 
a lot of successful automatic line-tracking methods 
recently, ~3's'9'23) the image line features showing up in 

every frame of the image sequence are manually selected 
and corresponded for simplifying our processing. It is 
because the final 3D motion estimation will not be 
affected by method we use to determine the correct 
correspondences; (5) from the results of camera calibra- 
tion, the length unit of these line equations can be 
changed from one image pixel to one focal length for 
matching our mathematical  derivations. The image 
line equations with new length units are then stored in 
computer  as our input data. Figure 6(d) shows the final 
extracted line features in frame No. 0. 

After applying the input image data to our algorithm, 
we first determine two sets of parallel lines I-m01 = 
(0, 1,0) r and mo2 = ( - 1,0, 0) r, denoted by "o"]  from 
the thresholded accumulation hemisphere shown in 
Fig. 6(e). We can find that a very large part of the 
wrongly accumulated points (denoted by " + " )  are 
rejected by the threshold circle (0th = 30°). Although 
only two sets of parallel lines are identified, our algo- 
rithm still works and the third parallel line set [mo3 = 
(0, 0, 1) r ]  can be recovered later. The final estimation 
results are listed in Table 3. The estimation errors for 
orientation vectors rookS are very small (about 1°). 
Because the magnitudes of the rotation vectors to~s are 
not large, it is quite natural that the percentage esti- 
mation errors for ols  will become larger. For  example, 
to1 corresponds to the rotating around the Z-axis by 
8 °, and co 2 by 18 °. The percentage errors of 15.6~o and 
7.7~ separately correspond to the errors of only 1.25 ° 
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Fig. 6. (a) F rame  No. 0. 

Fig. 6. (b) F rame  No. 1. 

Fig. 6. Ic) F rame  No. 2. 
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Fig. 6. (d) Extracted line features of frame No. 0. 
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Fig. 6. (e) Thresholded accumulation hemisphere. 

Fig. 6. The test for the real-world image sequence described in Section 5.2. 
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a n d  1.39 ° , respect ively,  wh ich  are  in  fact very  small .  
N o t e  the  e s t i m a t i o n  for t r a n s l a t i o n  vec to r s  T~ a n d  T 2 
have  been  a p p r o p r i a t e l y  scaled.  

T w o  k inds  of  e r ro rs  m a y  affect ou r  results:  (1) image  
pos i t i on  er rors ;  (2) c a m e r a  c a l i b r a t i o n  errors .  T h e  in-  
f luences f rom the  ca l ib ra t ion  er rors  shou ld  be especially 
not iced.  Besides,  the  p r o v i d e d  ' t rue  answers '  l is ted on  
T a b l e  3 a re  n o t  precisely accu ra t e  because  they  are  
m e a s u r e d  quant i t i es .  So, the  e s t i m a t i o n  e r ro rs  l is ted 
on  T a b l e  3 are  jus t  ca l cu la t ed  for  a n  a p p r o x i m a t i o n .  

5.3. Error sensitivity and data degeneracy 

In  this  subsec t ion ,  we w a n t  to  ana lyze  the  e r r o r  
sensi t iv i ty  of  o u r  a l g o r i t h m .  T w o  e x p e r i m e n t s  a re  
executed.  

T h e  first e x p e r i m e n t  tests  the  e r r o r  p e r f o r m a n c e  of  
a va r i ab l e  s t r u c t u r e  s h o w n  in Fig. 7. Th i s  s t r uc tu r e  has  
two  sets of  para l le l  l ines wh ich  are  ly ing o n  the  s ame  
plane .  E a c h  set has  five l ines of  equa l  l eng th  2. The i r  
in te r sec t ing  angle  a n d  wid th  are  sepa ra t e ly  d e n o t e d  by 

Table 3. Estimation of the line structure shown in the real-world image sequence 

Parameters Measure Estimate Error(~o) 

f~t (0.0000, 0.0003, 0.1396) r 
f~2 (0.0000, 0.0000, 0.3140) r 
T 1 (0.0000, 0.0000, - 6.9204) r 
T 2 (0.0000, 0.0000, - 13.8409) r 
mo i (0.0000, 1.0000, 0.0000) r 
mo2 (1.0000, 0.0000, 0.0000) r 
mo3 (0.0000, 0.0000, 1.0000) r 

( -  0.0118, 0.0181,0.1366) r 15.626~o 
( -  0.0138, 0.0192, 0.3089) r 7.7034~ 
( - 0.3782, - 0.4184, - 6.9854) r 8.2035~ 
(-- 0.7132, - 0.5079, - 13.7254) 7 6.3807~o 
(0.0145,0.9996, -0.0241) r 1.612deg 
(0.9997, 0.0147, -0.0179) ~ 1.327 deg 
(0.0033, - 0.0062,1.0000) ~ 0.402 deg 

t= t  o 

i *'4, • 
' ~ \ , t  , - .  t = t l  

(o,o,zo)  (i ,,'" 
,,L)/~gL~ \ ' ~ , t .  x rottionabout 

, , r A ~ I  ~ ' , / ' ~  ~ e  X -axis 

*''q" i 

Fig. 7. The test structure used in the error analysis described in Section 5.3. Both of the two parallel line 
sets are lying on the same plane in 3D space. The center of the structure is kept at (0, 0, Zo) during the motion. 

Table 4. Motion estimation of the two cases which have different effective frame numbers 
(Noff = 3 and Nef f = 2) 

Case Parameters Real Estimate 

Case 1 

Case 2 

~ (0.0000, 0.0000, 0.3000) (0.0000, 0.0000, 0.3000) 
f~2 (0.0000, 0.0000, 0.600O) (0.0000, 0.0000, 0.60OO) 
fl 3 (0.3000, 0.2000, 0.8000) (0.3000, 0.2000, 0.8000) 
T~ (0.0000, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000) 
T2 (0.0000, 0.0000, 3.0000) (0.0000, 0.0000, 3.0000) 
T 3 ( - 5.7560, 3.7592, 6.2187) ( - 5.7560, 3.7592, 6.2187) 

fl I (0.0000, 0.0000, 0.3000) (0.0000, 0.0000, 0.3000) 
n2 (0.0000, 0.0000, 0.6OOO) (0.0000, 0.0000, 0.6O0O) 
f~3 (0.3000, 0.2000, 0.8000) (0.3000, 0.2000, 0.8000) 
T~ (0.0000, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000) 
T 2 (0.0000, 0.0000, 0.0000) (0.0000, 0.0000, 0.0000) 
T 3 ( -- 5.7560, 3.7592, 6.2187) (Not unique) 
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Fig. 8. (a) Error performance analysis of the test object shown in Fig. 7. Here, the width D is fixed to I; 
however, the intersecting angle a varies from IO‘ to 90‘. It is obvious that the structure corresponding to 90. 

has the best error performance. 

Noise level U 

Fig. 8. (b) Error performance analysis of the test object shown in Fig. 7. Here, the intersecting angle z is lixed 
to 90”; however, the width D varies from 0.5 to 1.4. II is obvious that the structure corresponding to D = 1.4 

has the best error performance. 
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ct and D. The center of the structure is fixed at (0, 0, 8) r. 
At time to, the normal vector of the plane is (0,0, 1)r; 
at t ime tl, we rotate this plane structure around the 
point (0, 0, 8) r by a rotation vector (1,0,0) r. Only the 
percentage errors of rotation estimation are considered 
here. 

Figure 8(a) shows the error performance of the cases 
when D is fixed to 1.0 and ct is changing from 10 ° to 90 °. 
It is easy to find that the error performance is best 
when ct = 90 °. Figure 8(b) shows the error performance 
of the cases when ~ is fixed to 90 ° and D is changing 
from 0.5 to 1.4. The case when D = 1.4 has the best 
performance. Every point on the curves shown in Fig. 8 
are calculated by averaging 100 iterations. 

The second experiment shows that the translation 
vector T can be solved if and only if the effective frame 
number Nef f is greater than or equal to 3. The test 
object used here is the same as that used in Section 5.1. 
However,  we purposely assign some of the translation 
T~ to zero in order to change the effective frame number 
Nef f. See Table 4. The translation T~ is set to zero in 
the case 1 (Neff = 4 -  1 = 3); however, both the trans- 
lations T 1 and T 2 are set to zero in the case 2 (Nef f = 
4 - 2  = 2). In both cases, their rotation parameters are 
successfully recovered. But, only the estimation of 
translation vectors in case 1 succeed. The matrix C 
[defined in equation (21)] in case 1 has only one zero 
eigenvalue, but the matrix C in case 2 has three zero 
eigenvalues. That  is why case 2 fails to determine the 
translation uniquely. It proves the statement made in 
Section 4.2. 

6. CONCLUSION 

Although some algorithms for solving the generalized 
SFM problem by using line correspondences have been 
developed, they suffer from the high error-sensitivity 
and large number of required correspondence sets. In 
real applications, these shortages usually puzzle us. In 
this paper, the sets of parallel lines frequently en- 
countered in an artificial environment  are utilized for 
simplifying the generalized SFM problem. After ident- 
ifying at least two sets of parallel lines, we can solve 
an initial guess of rotation parameters by utilizing the 
expression of quaternion. F rom this initial solution, 
the other unidentified sets of parallel lines can be 
determined and the solution of rotation parameter can 
be further modified. After that, the translation and 
structure of the object can be obtained. In our algorithm, 
the computat ional  complexity is greatly reduced and 
the reliability of the estimation is highly improved. 
Simulation and real-world image experiments prove 
these results. Therefore, our algorithm seems quite 
valuable in real applications. 

In future, we hope to develop some similar algo- 
rithms using other kinds of special constrains encoun- 
tered in the daily environment  for preventing the 
difficulty and high error-sensit ivity when using a 
generalized SFM algorithm. 
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APPENDIX: PARALLEL LINES IN 3D SPACE AND 
T H E I R  P R O J E C T I O N S  

In the daily experiences, the projected lines of parallel lines 
in 3D space often look parallel on the image plane (within a 
small range of angle deviation). Of course, in some special 
cases, these projected image lines may look very different 
from each other. In this Appendix, we will explain this pheno- 
menon quantitatively. Furthermore, this phenomenon is uti- 
lized for helping the job of identifying parallel line sets in 3D 
space. A similar analysis about the viewing variation of pro- 
jected line segments is proposed by reference (27). 

Let's consider a camera which has a small viewing field. 
For convenience, the image plane is assumed to be a circular 
area of radius a. The defined ~ vector of any parallel lines (in 
3D space, orientation vector = d) which can be observed by 
the camera must fall on an are AB (on a unit sphere). It is 
shown in Fig. A.1. Notice the circular band region near the 
plane Z = 0  is confined by radius a. The width of the band is 
2 ,  tan-  i a rad. 

The equation of a projected line I can be written as 

e, xX + ~:rY + ~z = 0. (AI) 

The projected line can also be equivalently represented by 
a pair (r, ~b) shown in Fig. A.2. Therefore, a set of approximately 
parallel-looking on the image plane must have very similar 
values of angle ¢. 

Because the unit vector of [ex, t r ]  r represents the ortho- 
gonal direction ~b of an image line, we define a new arc A'B' 
on the great circle lying on the Z = 0 plane. First, the point 
A projects a point A" on the Z = 0  plane along the Z-axis. 

Fig. A.2. A line on the image plane can be represented by a 
pair (r, q5). Here the vector OP is orthogonal to this line. 
Obviously, the ~ values of a set of lines which look approx- 
imately parallel on the image plane will be very close to each 

other. 

I 

Then the unit vector of FA" is defined as FA', similar to FB'. 
The opening angle /_ A'FB' is just the maximum possible 
direction deviation of the projected image lines. Without loss 
of generality, the orientation vector d can be defined as 
[sin 0, 0, cos 0] r. So we have 

L A , F B , = { 2 s i n - l ( l a . c o t O I )  i fcotO< l/a 
ifcot 0 > 1/a, (A2) 

where 0 < 0 < n/2 and the domain of the inverse sine function 
is defined in the range ( - M2, n/2]. Obviously, the larger the 
angle /_ A'FB' is, more different the projected image lines 
look like. Two factors play important roles on it--viewing 
field a and line orientation d (that is 0). Figure A.3 shows the 
influence from these two factors. Smaller a and larger 0 
always induces a smaller angle deviation. Figure A.4 shows 
the image lines which are projected by a parallel line set with 
different 0 values. Readers may check them with the results 
shown in Fig. A.3. 

This concept can be utilized for helping the task of identify- 
ing the sets of parallel lines in 3D space. Because we use a 
camera of small viewing field, it is highly possible that a set 
of approximately parallel-looking lines on the image plane 
may correspond to the actual set of parallel lines in 3D space. 
So we can make an initial guess about the parallel lines. In 
a man-made environment, this initial guess is usually good 
enough. Of course, several post-tests are still needed for the 
final identification. They are described in the main text. 

c i rcular  band  resulted 
~ / from the size of camera 's  

(orientat ion vect  d / ~ ~ ' ~  v i e l / ~ ' ~  wing 

field 

of parallel lines ~ 3D space) '~ , [ / I (camera 's  focal 

t \ k , /  I cen,er) )z  

I possibl~¢ _ [ "X  
I r a n g e J f  E | 

I J ( f a l ~ g  on _ L  

J_5 
Fig. A.1. Because of the limited viewing field, the possible positions of the unit vectors e must fall on an 

arc AB. 

PR 27:11-D 



490 Soo-CHANG PEI and LIN-Gwo LIOU 

ex0 

e-, 
.,.q 

150 

100 

50 

0 

0.05 

. . . . . . . . . . . . . . . . . . . . .  '_ . . . . . . . . . . . . . . . . . . . .  '__0 °_ . . . . . . . . . . . . .  , 

0" 

. .° ..  ° . . . ° " " " ° "  

. . , . . ° . °  

~ ..... . . . . . . . . . . . . .  30" " ..................... 
. ° . . . , . ~ . - - ° ° ' ~ ° ' °  ~ _ _ , _  . . . . . . . . . . . . . . . . . . .  

I I I 

0.1 0.15 0.2 0.25 

the radius of  viewing field at 

Fig. A.3. The angle deviations of the image lines which are projected by a set of parallel lines in 3D space. 
The angle 0 varies from 0 to 90 °. We know the set of parallel lines corresponding to 90 ° has the smallest 

angle deviations. 
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Fig. A.4. The image lines projected by the set of parallel lines corresponding to different 0 ( =0, 30, 60, 90°). 
Readers may check it with the results shown in Fig. A.3. 
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