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AIBtract--A smoothing procedure is proposed, where the Gaussian filter is used with an adaptive mechanism 
to suppress the noise effect and quantization error of a digital curve. Those points of the smoothed curve 
where curvature changes abruptly are detected as breakpoints. Circular arcs are suitably designed between 
breakpoints to fit the input curve. Experimental results indicate that our curve-fitting method provides good 
approximations of the input curves. 

Curve-fitting Circular arc Gaussian f i l ter  Breakpoint 

1. INTRODUCTION 

Many methods for constructing polygonal approxi- 
mation of planar curve have been proposed, u - 7) which 
are based on the local maximum points of curvature 
detected by various techniques. They provide good 
approximations of the input curves subject to the con- 
straint that the fundamental elements of approximation 
are straight line segments. 

In some situations, we are not satisfied by these 
approximations even though a nearly optimal one 
under the constraint is given. For example, the boundary 
of a ball image can hardly be approximated by a 
polygon unless a large number ofbreakpoints are used. 
To improve the performance of approximation, the 
constraint should be suitably relaxed. That is, it should 
be permitted to choose some high-order curves as the 
fundamental dements. 

In this paper, a subset of second-order curves, the 
circular arcs, are chosen as the fundamental elements. 
The reason for this choice is that it can provide satis- 
factory results and keep low computational complexity. 
Of course, the technique of breakpoint detection should 
be reconsidered under the newly defined constraint. 
Furthermore, unlike the polygonal approximation, 
where the polygon is constructed by connecting consecu- 
tive breakpoints directly, the design of circular arcs 
between breakpoints is a little more complex task. A 
technique is introduced in this paper to do that. 

Owing to the noise effect and discrete nature of 
digital curve, spurious breakpoints along the curve are 
introduced. An adaptive smoothing procedure is pro- 
posed to preprocess the input curve. 

The overall system block diagram is shown in 
Flow-chart 1. 

In Section 2, the proposed adaptive smoothing pro- 
cedure for noise reduction is described. The rationale 
and algorithm of breakpoint detection are given in 
Section 3. In Section 4, a technique of designing cir- 
cular arcs between breakpoints is introduced. Experi- 

mental results are presented in Section 5. Our method 
is compared with the Teh and Chin algorithm t3) in 
Section 6. Finally, we provide a conclusion in Section 7. 

2. ADAPTIVE GAUSSIAN FILTERING 

To reduce the noise effect and quantization error of 
a digital curve, Gaussian filter is usually used with a 
suitable standard deviation. The conventional Gaussian 
filter is defined by 

1 - 292~ 
Go(n) = ~rx/~ exp 

where a is the standard deviation. 
There is a tradeoffin selecting the value ofa. A larger 

value of tr will remove small details of the curve, while 
a smaller value will permit false breakpoints. A solution 
of the tr value selecting problem is to smooth the curve 
adaptively. A larger value of a is chosen to smooth the 
coarser portions of the curve and a smaller value is 
chosen to smooth the finer portions. 

In general, if the Gaussian filter with a fixed value 
of tr is applied to smooth a curve, those points at 
coarser portions of the curve will result in less shift 
than those at finer portions. That is, the amount of shift 
resulting from the Gaussian filtering with a fixed value 
of tr gives an index to coarseness. The Gaussian filter 
can thus-be applied to smooth the curve with the value 
of a adapted according to this index. 

The adaptive smoothing procedure we proposed is 
summarized as follows: 

(1) Smoothing the curve using the Gaussian filter 
with a fixed value of a. 

(2) Calculating the shift function by subtracting the 
original curve from its smoothed version point by 
point. 

(3) Defining a monotonously decreasing function. 
Selecting tr value for each point by mapping its corre- 
sponding shift value via the chosen function. 
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Flowchart 1. The overall system block diagram. 

(4) Smoothing the original curve adaptively using 
the Gaussian filter with the a value selected in the 
previous step for each point. 

Remarks: 

• The result of this procedure is insensitive to the 
fixed value of tr chosen in Step 1 within reasonable 
range. 

• If the input curve is highly fluctuant, the shift 
function will behave in a similar manner. Which will 
result in an undesirable fluctuant output curve. To 
reduce this effect, we use a smoothed version of the 
shift function instead of itself to select a value in Step 3. 

3. B R E A K P O I N T  D E T E C T I O N  

The best advantage of choosing the circular arcs to 
construct approximation of the input curve is that the 
curvature along a circular arc is constant. Therefore, 
fitting a curve using circular arcs is equivalent to 
making a piecewise constant approximation of its cur- 
vature function. The method proposed in reference (8) 
is capable of doing this but very time consuming. 
In this paper, we propose a simple method which is 
similar in spirit to it but requires less computing time. 

The breakpoint detection method we proposed is 
described as follows: 

(1) Calculating the curvature function of the smooth- 
ed curve. 

(2) Calculating the absolute value of derivative of 
the curvature function. 

(3) Detecting local maxima of the resulting function. 

The method proposed in reference (8) repeatedly 
convolves the signal with a very small averaging mask 
weighted by a measure of the signal continuity at each 

point. A possible choice of the weight is 

w(n) = exp( IS'(n)12~ 
2k 2 //' 

where S'(n) is the derivative of the signal S(n), and k is 
a parameter. 

Notice that, the weight is a decreasing function of 
the derivative of the signal. Local maxima of the deriva- 
tive of the signal will be sharpened by convolving 
with the mask. After convergence, these local maxima 
will be the breakpoints of the resulting piecewise con- 
stant signal. The result is exactly the same as our 
simple method. 

4. C I R C U L A R  A R C  D E S I G N  

Based on the breakpoints detected in the previous 
section, the approximation can now be constructed by 
designing a circular arc between each pair of adjacent 
breakpoints. The circular arc used to approximate the 
digital curve segment between a pair of adjacent break- 
points should, of course, have them as the two end 
points, tg~ In order to uniquely specify the circular arc, 
we constrain that the angular difference between tan- 
gents of the two end points should be preserved. Our 
circular arc design technique is summarized as follows: 
(see Fig. 1) 

(1) Input a pair of adjacent breakpoints B1, B2 and 
the angular difference between tangents of them 0. 

(2) If the angular difference 0 is smaller than a given 
threshold, use a straight line segment to approximate 
the input curve between the two breakpoints Bt, B 2 
and go to (1); otherwise, go to the next step. 

(3) Calculate the radius of the circular arc by the 
equation 

r = (1 - cos 0)' 

where I is the length of the vector B~ B2. 
(4) If - n < 0 < 0 or n < 0 < 2n, the center of the 

circular arc O is at B 1 + r[cos(~b-  $),sin(q~ - $)]; 
otherwise, it is at B~ + r[cos (~b + $),sin(~b + $)]. Where 

BI 

/. 

B2 
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| 0  
I 
I 

Fig. 1. Illustration of the circular arc design. 
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4b is the angle of the vector R i B  2 and ~, is the angle 
(g - 0 ) / 2 .  

(5) The following point sequence is used to approxi- 
mate the input curve between the two breakpoints Bl, 
B2. 

C81.n2(n) = O + r[cos(q~ + nO/N),sin(~o + nO/N)], 

n =  1 , . . . ,N .  

Where the value of N can be chosen arbitrarily and ~o 
is the angle of the vector OB1. 

(6) go to (1). 

The radius and center of the circular arc used in the 
above technique are defined as the radius and center 
of the contour circle where the arc lies upon, respectively. 

Notice that, if a polygon-like curve is given, the 
design of most arcs will be terminated at Step 2. Thus, 
the computational complexity remains the same as 
those polygonal approximation methods. 

5. EXPERIMENTAL RESULTS 

The boundary of a digital wrench image is plotted 
in Fig. 2. To reduce the quantization error, the Gaussian 
filter is applied to smooth the digital boundary. The 
result of convolving the boundary with the Gaussian 
filter is plotted in Fig. 3, where the tr value is set to 3. 
Small details of the boundary are removed by this 
process. Figure 4 shows the result of convolving with 
the adaptive Gaussian filter, where the a value is adapt- 
ed between 0.7 and 6. Small details are preserved and 
quantization error is largely reduced. The approxima- 
tion designed by our method is plotted in Fig. 5, where 
breakpoints are marked by crosses. The monotonously 
decreasing function used in this experiment is plotted 
in Fig. 6, which is defined by the equation 

O"ma x - -  O 'mi  n 
O" = O'mi n d -   o,o ) 

dma x --  dmi n / 
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Fig. 2. A wrench boundary .  
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Fig. 3. The Gauss i an  filtered wrench boundary .  
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Fig. 4. Adaptive Gaussian filtered wrench boundary.  
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Fig. 5. The breakpoints and designed curve. 
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Fig. 7. The boundary of an industrial part. 
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Fig. 8. The breakpoints and designed curve. 
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where the values of O'mi n and O'ma x are set to 0.7 and 6, 
respectively, in this experiment, dmj, and dma ~ are the 
global minimum and maximum values of the shift 
function. 

Figure 7 shows the boundary of an industrial part, 
the experimental result of this input is plotted in Fig. 8. 

6. C O M P A R I S O N  AND D I S C U S S I O N  

In order to get into a deeper sense about the perform- 
ance of the present method, we have applied our method 
to the four digital curve used in reference (3), namely, 
a chromosome-shaped curve (Fig. 9a), a leaf-shaped 
curve (Fig. 10a), a figure-8 curve (Fig. 1 la), and a curve 
with four semicircles (Fig. 12a). The results of the Teh 
and Chin algorithm are shown in part (b) of Figs 9-12 
by solid lines and the results of our method are shown 
in part (c). The k cosine measure is selected as the 
measure of significance, which is required in the Teh 
and Chin algorithm. 

Some features of our method and the Teh and Chin 
algorithm are tabulated in Table 1, including the num- 
ber of dominant  points, the integral square error, and 
the maximum error. The error between a point of a 
digital curve C and the approximating curve C designed 
by our method is defined as e l  = d i  - r i  where d~ is the 
distance between the point and the center of the contour 
circle that the approximating arc lies on, and r~ is the 
radius of the contour  circle. The two error norms 
between C and its approximating curve C" are defined by 

(a) Integral square error 
n 

E2: L 
i = l  

(b) Maximum error 

E~o = max e~. 
l<_i<_n 

As shown in the table, our method outperforms the 
existing methods in applying to those smooth curves, 
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Fig. 9. (a) A chromosome-shaped curve. (b) The result of the Teh and Chin algorithm (k cosine). (c) The 
result of the present method. 
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Fig. 10. (a) A leaf-shaped curve. (b) The result of the Teh and Chin algori thm (k cosine). (c) The result of the 
present method. 
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Fig. 11. (a) A figure-8 curve. (b) The result of the Teh and Chin algorithm (k cosine). (c) The result of the 
present method. 
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Fig. 12. (a) A curve with four semi-circles. (b) The result of the Teh and Chin algorithm (k cosine). (c) The 
result of the present method. 



116 S.-C. PEI and J.-H. HORNG 

Table 1. Results of the present method and the Teh and Chin algorithm 

Digital curve Fig. 9(a) Fig. 10(a) Fig. 1 l(a) Fig. 12(a) 

Number of points 60 120 45 102 

Results of the present method 

Number of dominant points 15 31 9 12 
Integral square error 6.18 19.66 4.24 10.91 
Maximum error 1.13 1.14 0.72 0.85 

Results of the Teh and Chin algorithm 

Number of dominant points 15 29 13 22 
Integral square error 7.20 14.96 5.93 20.61 
Maximum error 0.74 0.99 1.00 1.00 

the results shown in Figs 11 and 12 are two examples. 
For  polygon-like curves, our approximations are slightly 
worse than those polygonal approximations. In fact, 
most of the integral square error are contributed by 
sharp corner points and, of course, the maximum error 
results from one of them. Except for these sharp corners, 
our approximation fits the curve well. 

7. CONCLUSION 

We have proposed a method for the design of circular 
arcs to approximate digital curves. Unlike the domi- 
nant points for polygonal approximation, a completely 
different set of dominant  points are detected using a 
new proposed method to satisfy the new demand. In 
addition, we have proposed an adaptive smoothing 
procedure to remove noise while preserve details of the 
input curve. Our method has been tested on a number  
of digital curves and satisfactory results have been 
obtained. 
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