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Abstract 

Besides the design of quadrantally symmetric linear-phase 2-D filters, various linear-phase 2-D filter designs are 
proposed in this paper. We will start from the discussion of the symmetric properties of 2-D sequences to disclose their 
applications for designing linear-phase 2-D FIR digital filters. It is shown that there are 16 types of cases to be considered 
according to the symmetry/antisymmetry of 2-D sequences in both directions and their filter lengths (even or odd). The 
corresponding types of amplitude responses are tabulated into a complete table if these 2-D sequences are used to realize 
2-D FIR filters. Also, the definition of quadrantal-plane, half-plane and full-plane filters are described along with 
numerical examples designed by the eigenfilter approach. 

Zusammenfassung 

Neben dem Entwurf von linearphasigen, beziiglich der Quadranten symmetrischen 2D-Filtern werden in dieser Arbeit 
verschiedene Entwiirfe linearphasiger 2D-Filter vorgeschlagen. Wir beginnen mit der Diskussion der Symmetrie-Eigen- 
schaften von 2D-Folgen, urn ihre Anwendung zum Entwurf von 2-D-FIR-Filtern zu verdeutlichen. Es wird gezeigt, daR 
sechzehn verschiedene FHlle beziiglich der Symmetrie/Antimetrie von 2D-Folgen in beide Richtungen und beziiglich ihrer 
Filterhingen (gerade oder ungerade) zu betrachten sind. Die zugehorigen Typen von Frequenzgiingen bei Nutzung der 
ZD-Folgen zum Entwurf von 2D-Filtern werden tabellarisch dargestellt. Weiterhin werden die Definitionen von Quadranten-, 
Halb- und Vollebenen-Filtem angegeben und durch numerische Beispiele anhand von Eigenhlter-Losungen voranschaulicht. 

Dans cet article, outre la conception de filtres 2D a phase lineaire symetriques par quadrant, on propose plusieurs 
conceptions de filtres 2D a phase lineaire. Nous commencerons par discuter les proprittes de symetrie des sequences 2D 
pour reveler leurs applications dans la conception de filtres numeriques FIR 2D a phase lintaire. On montre qu’il existe 
16 cas-types a considerer, d’aprts la symetrie/disymttrie des sequences 2D dans les deux directions et la longueur de leurs 
filtres (pair ou impair). Les types de reponse d’amplitude correspondants sont places dans un tableau complet si ces 
sequences 2D sont utilisees pour rialiser des filtres FIR 2D. De m&me, on trouvera les definitions des filtres quadrant, 
demi-plan et plan, accompagnts d’exemples numtriques calcules par l’approche des filtres propres. 
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1. Introduction 

Conventionally, the design of linear-phase 2-D 
FIR digital filters is concentrated on the class of 
quadrantally symmetric filters, such as circular fil- 
ters, fan-type filters, etc. [ 11. A 2-D sequence, which 
is symmetric in both directions, is required to real- 
ize such quadrantally symmetric filters. 

In this paper, we will start from the discussion of 
the symmetric properties of 2-D sequences to dis- 
close their applications for designing linear-phase 
2-D FIR digital filters by the eigenfilter approach, 
which has been used successfully to design linear- 
phase 1-D filters [2,3] and 2-D quadrantally sym- 
metric filters [4]. It is shown that there are 16 types 
of cases to be considered according to the sym- 
metry/antisymmetry of 2-D sequences in both di- 
rections and their filter lengths (even or odd). The 
corresponding types of amplitude responses are 
tabulated into a complete table if these 2-D se- 
quences are used to realize 2-D FIR filters. Also, the 
definitions of quadrantal-plane, half-plane and 
full-plane filters are described along with several 
numerical design examples. 

2. Symmetric properties of 2-D sequences 

Let X represent an N 1 x Nz 2-D sequence in matrix 
form with its elements being denoted by x(nl,nz), 
nl = O,l, . . . ) N1 - 1, n2 = O,l, . . . , N2 - 1, i.e. 

x(0,1) .*. 4O,N2 - 1) 

x(1,1) ... x(LN2 - 1) : ... ! (1) 

x(N, - 1,O) x(N1 - 1,l) ... x(N1 - 1,N2 - 1) 

the sequence is called an odd-symmetric 2-D se- 
quence in the n,-direction; similarly for the 
n2-direction. Then symmetric or antisymmetric 
2-D sequences can be divided into four major 
types. 

Type I: Even symmetry in both the nl- and 
n2-directions, i.e. 

~(~1~~112) = x(N, - I - nl,n2) 

= x(nl, N2 - 1 - n,), 

O<nl<N1-1,0<n2<N2-1. (4) 

Such an even-even sequence is denoted by X,,. 
Type ZZ: Even symmetry in the nl-direction and 

odd symmetry in the n2-direction, i.e. 

x(nl,n2) = x(N, - 1 - n1,n2) 

= -x(n1,N2- 1 -n2), 

0 < nl < N1 - 1, 0 < n2 < N2 - 1. (5) 

We denote such an even-odd sequence by X,,. 
Type ZZZ: Odd symmetry in the nl-direction and 

even symmetry in the n2-direction, i.e. 

x(nl,n2) = - x(N1 - 1 - n1,n2) 

= x(n,, N2 - 1 - n2), 

0 < n, < N1 - 1, 0 < n2 < N2 - 1. (6) 

We denote such an odd-even sequence by X0,. 

If 

x(nl,n2) = x(N1 - 1 - n1,n2), 0 < nl < N1 - 1, 

0 < n2 < N2 - 1, (2) 

we call X an even-symmetric 2-D sequence in the 
nl-direction, and if 

x(nl, n2) = - x(N, - 1 - nl, n2), 

0 < nl < N1 - 1, 0 < n2 Q N, - 1, (3) 

Type IV: Odd symrfletry in both the nl- and 
n,-directions, i.e. 

x(nl,n2) = - x(N1 - 1 - nl,n2) 

=- x(n1,N2 - 1 - nz), 

0 < n, < N, - 1, 0 d n2 d N2 - 1. (7) 

We denote such an odd-odd sequence by X0,. 
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For any N1 x Nz 2-D sequence X, it can always 
be decomposed into the above four types of 2-D 
sequences, i.e. 

X = X,, + X,0 + X0, + X00, (8) 

and X,,, X,,, X0, and X0, can be calculated from 

Xby 

x.&,,nz) = +Cx(n~,nz) + x(N1 - 1 - n~,nz) 

+ x(n,, N2 - 1 - nz) 

+x(Nl-l-nl,Nz-l-nz)], 

O<nldN,-1, Odna<N2-1, (9) 

.x,,(nr, nz) = $Cx(n~> nz) + ~(NI - 1 - no, Q) 

- x(n~,N, - 1 - ~2) 

- x(N, - 1 - n,,N, - 1 - n2)], 

0 d n1 < N, - 1, 0 < n2 6 N2 - 1, (10) 

x,,(nI, nd = $lIxh, 4 - ~(NI - 1 - nl, n2) 

+x(n,,N,- 1 -nz) 

- x(N, - 1 - n,,N, - 1 - n2)], 

Odnl<NN,-I, Odn2<N2-1 (11) 

and 

.xoo(nl, n2) = bCx(nr , n2) - x(Nr - 1 - n,, n2) 

-x(nr,NZ-1-n2) 

+ x(N1 - 1 - nl,N2 - 1 - n2)], 

0 G n, 6 Nl - 1, 0 G n, < N2 - 1, (12) 

where x,&r,, nd, x,,h, nd, x,,h , n2) and 
x,,(nl,nz) are the elements of X,,, X,,, X0, and 
X,,,, respectively. We can also find that 

X, = X,, + X00 (13) 

and 

X0 = X,0 + X0,, (14) 

where X, is a centro even-symmetric 2-D sequence 
whose elements satisfy 

x,(nI,nz) = ~,(NI - 1 - nl,N2 - 1 - n2), 

0 < n, 6 N1 - 1, 0 < n2 < N2 - 1, (15) 

and where X0 is a centro odd-symmetric 2-D 
sequence whose elements satisfy 

x,(nl,n2) = - x,(N, - 1 - nl, N2 - 1 - n2), 

O<n,dN,-1, Odn2<N2-1. (16) 

For example, if X is given by 

n2 

r 
8 0 8 0 1 
3 6-10-5 

X= n, 
11 -8 -8 7 

’ (17) 

then 

-2 -6 10 21 

n2 

2 3 32 

4 -5 -5 4 
X,, = nl 

2 3 32 

n2 

-6 6-l 

X,, = nl 

-6 6-l 

X0, = nl 

n2 

2 1 1 2 

-5 3 3 -5 

5 -3 -3 5 

-2 -1 -1 -2 

n2 

(18) 

(19) 

I 2 (20) 

r 3 2 -2 -31 

1 4-4-l 
X0, = nl 

-1-4 4 1’ 
(21) 

1 -3 -2 2 31 
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and 

x, = n1 

X0 = n, 

n2 

5 5 l-l 

5 -1-9 3 

3 -9-l 5 

-1 1 5 5 

n2 

3 -5 7 1 

-2 7 -1 -8 

8 l-7 2 

-1 -7 5 -3 

3. Properties of frequency responses of 2-D 
sequences for designing linear-phase FIR 
digital filters 

Type I and Type IV sequences, and are imaginary- 
valued functions for Type II and Type III se- 
quences. For example, if h(q) n2) is a Type I 2-D 
sequence and Ni, N2 are odd integers, then 

The frequency response of a 2-D FIR digital filter 
with its impulse response h(nl,n2), nl = 0, 1, . . . , 
N1 - 1, n2 = O,l, . . . , N2 - 1, can be characterized 
as 

N,-1 N,-1 

H(ol, 02) = 1 1 h(nl, n2)e-j”‘ole-jn~w2 . 
n,=O n2=0 

(24) 

If h(nl, n2) is one of the four types of 2-D sequences, 
Eq. (24) can be rewritten as 

f(N,-1) fW-1) 

= .Co .zo 4nl, n2) cos(n~dcos(n2~2)9 

I 

(27) 

(23) 

which is a real-valued function and a(nl, n2) are 
related to h(nl,n2) by 

where 

A(co,,w~), (25) 

i 

0, Type 1, 
M = 1, Type II and Type III, 

2, Type IV, 

(26) 

and fi(w, , w2) is a real-valued function. Notice that 
by excluding the linear-phase part in (25), the fre- 
quency responses are real-valued functions for 

N2 - 1 
n,=l, . . ..- 

7 ’ 
(28) 

N, - 1 
nl = 1, . . . ,- 

2 ’ 

N2 - 1 
19 ~- 

2 

Nl - 1 
nl = 1, . . . ,- 

N2 - 1 

2 
, n2 = 1, . . . ,- 

2 . 

Therefore, according to the four types of 2-D se- 
quences discussed above and their even/odd 
lengths (N, x N,), there are 16 different kinds of 
fi(o,, 02) which are tabulated in Table 1. The rela- 
tionships between the coefficients a(nl,n2)‘s in 
fi(ol, w2) and h(nl, n2) are listed in Table 2. 

As in the spatial-domain case, any magnitude 
response fi(o, , w2) can be similarly decomposed 
into four parts in frequency domain as below: 

fi(Wl, 02) = &,(w 9 w2) + fL(w 3 02) 

+ Rx(w42) + &(~1,~2), (29) 

where 

fiee(%,~2) = %(-%,~2) = fL(% -w2) 

= m-m, -w2), (30) 
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Table 1 

h(w,,~+) of 2-D sequences with length N1 x N2 (Li = 4 (Ni - 1) for odd Ni and Li = 4 Ni for even Ni, i = 1,2) 

Type Sub-type 

I 1 

2 

3 

4 

III 

1 N, : odd, N2: odd 

IV 

N, : odd, Nz: odd 

N,: odd, NZ: even 

N, : even, NZ: odd 

N,: even, N,: even 

N,: odd, Nz: even 

N,: even, Na: odd 

N, : even, N2 : even 

N, : odd, N2: odd 

N,: odd, Nz: even 

N, : even, N2: odd 

N, : even, NZ: even 

NI : odd, N,: odd 

N1: odd, N2: even 

N, : even, N2: odd 

N, : even, N2 : even 

1 2 ah, n2)cos((n, - f)w )cos(n202) 
n,=, n,=ll 

L, L, 

C C 4n,,ndcos(h - fh)cos((n2 - h2) 

L, Li 

1 C a(n,,n2)cos(n,w,)sin(n202) 
n,=on,=, 

L, L, 

1 C a(n,,n2)cos(n,o,)sin((n2 - t)02) 

“,=I e=, 

fjj 5 a(n,,n,)cos((n, - +)wl)sin((nz - +)wz) 
n, = 1 n,= L 

1 C a(n,.n2)sin(n,w,)cos((n, - ikd 

C C ah,n2)sin(h - th)cos(n2w2) 
n,=, n,=o 

? z a(nl, n,)sin((n, - +)ol)cos((n2 - f)W2) 
I, = 1 “>= L 

L, L2 

C C ah, n,)sin(n,w,)sin(n,o,) 
nl=* “,=I 

.$, jl a(n,,n,)sin(n,o,)sin((n, - ib2) 

.z, jl ah,n2bin(h - thbin(n2~2) 

“i,“!, ( a n,,n2)sin((n1 - +)ol)sin((nz - +)w,) 
I 1 

= -R7e(-W1, -wz) (32) = ~,,( -WI, -wz). (33) 



266 S.-C. Pei, J.-J. Shyu 1 Signal Processing 42 (1995) 261-271 

Table 2 
Relationship between a(nl, n2) in fi(o,, co*) and h(n,, nz) in H(o,, 02) 

Type Relationship between a(n, , n2) and h(n, , n2) 

I-l 

I-2 

I-3 

I-4 

11-l 

II-2 

II-3 

II-4 

III-1 

III-2 

III-3 

III-4 

IV-1 

VI-2 

IV-3 

IV-4 

440) = h&U 
a(0, n2) = 2h(Ll,Lz - n2), n2 = 1, . . , L2 
a(nI,O) = 2h(L1 - nl,L,), n, = 1, , L1 

a(n,,nJ = 4h(L1 - q,L, - nl), n, = 1, . . . ,L1, n2 = 1, . . . ,L1 

a(O,nJ = 2h(L,,Lz - n2), n2 = 1, . , L2 
a(n,,nl) = 4h(L, - nI,L, - n2), nI = 1, . . . .L1, n2 = 1, . ,Lz 

a(n,,O) = 2h(L, - nI,L2), nI = 1, .L1 
a(n,,n2) = 4h(LI - n,,L, - n2), nI = 1, ,L1, n2 = 1, . . . ,L2 

a(n1,n2) = 4h(L1 - n,,L, - n2), n, = 1, . . . ,L1, n2 = 1, . ,Lz 

h(nl,Lt) = 0, n, = 0, . . . ,N1 - 1 
a(O,n*) = 2h(L,,Lz - n2), n2 = 1, . ,Lz 
a(nt,n2) = 4h(LI - n,,L, - n2), n, = 1, ,L1, n2 = 1, . . ,Lz 

a(O,n,) = 2h(LI,L2 - n2), n2 = 1, . , L2 

a(n,,n*) = 4h(L1 - n,,L, - n2), nI = 1, . . . ,L,, nz = 1, , L2 

h(n,,L,)=O,nI =0, . . . . N1 - 1 
a(nl,n2) = 4h(L1 - nl, L, - nl), n, = 1, . . . .L1, n2 = 1, . . . , L2 

a(n,,n*) = 4h(L1 - nI, L, - n2), nl = 1, . . . , L1, nz = 1, . . . , L2 

h(LI,nz)=O,nz=O ,..., N2-1 
a(nI,O) = 2h(L1 - nl, L2), nl = 1, . . , L1 

a(nI,n2) = 4h(L, - nI, L, - n2), nI = 1, . . . , LI, n2 = 1, . . . , Lz 

h(LI,nl)=O,nz=O ,..., N1--1 
a(n,,nl) = 4h(L, - nl, L, - n2), nl = 1, . ,LI, n2 = 1, . , L2 

a(n,,O) = 2h(LI - q,L,), n, = 1, . . . ,LI 

a(nI,n2) = 4h(L1 - nI, L, - nz), n, = 1, . . . , L1, n2 = 1, . . , L2 

a(nl,n,) = 4h(L1 - n,, L, - n2), n, = 1, , L1, n2 = 1, , Lz 

h(LI,n,)=O,n,=O ,..., N2-1 
h(nl,Lz)=O,nI =O, . . . . N1 - 1 
a(nl,n,)=4h(LI-nI,L,-n2),n,=1 ,..., L,,n*=l,..., L2 

h(L,,nl)=O,nz=O ,..., Nf-1 
a(nI,n2) = 4h(LI - nI,L2 - nz), n, = 1, . .L,, n2 = 1, . . . , L2 

h(nIrL2)=0, n, =0, . . . . N1 - 1 
a(nl.nz) = 4h(LI - nl, L2 - nz), nI = 1, . . . , LI, n2 = 1, . . . , Lz 

a(nl,nl) = 4h(L1 - nI, Lz - n2), nI = 1, . . , L1, n2 = 1, . , L2 

Also, fiee(ol, 4, &&t~ 0~1, fi,,h, ~2) and 
fi,,(ol, 02) can be found from Z?(o,, 02) by 

&(%~2) =dC&wz) + fiwh~,) 
(35) 

fioe(%W2) =aCfih,QJ2) - m-w42) 

+ fih, -02) + fib% -0211, + fib, -02) -m-m, -02)l 

(34) (36) 



S.-C. Pei, J.-J. Shyu J Signal Processing 42 (1995) 261-271 261 

- m% 3 -w2) + l+Ol, -02)]. 

(37) 

It is noted that fi,,(01,m2), E?,,(ol,oJ, 
&,,(ol,~J and Z?,,&U~, w2) can be realized by 
Type I, II, III and IV 2-D sequences, respectively. 
Hence given a desired magnitude response, we can 
realize it by either a single type 2-D sequence or 
several mixed type 2-D sequences. In this paper, the 
linear-phase 2-D FIR filters are divided into three 
classes as below. 
Quadrantal-plane jilter: The filters which can be 
realized by only a single type of 2-D sequence. 
Half-plane jilter: The filters which can be realized 
by synthesizing two types of 2-D sequences. 
Full-plane jilter: The filters which can be realized 
by synthesizing three or four types of 2-D sequences. 

In the remainder of this paper, we will focus on 
the applications of four major types of 2-D se- 
quences for designing linear-phase 2-D FIR digital 
filters using the eigen-filter approach, which has 
successfully been used to design linear-phase 1-D 
filters and quadrantally symmetric 2-D filters 
[2-41. 

4. Design of quadrantal-plane linear-phase 2-D FIR 
filters 

When the desired frequency response, by exclud- 
ing the linear-phase part, is a real-valued function, 
it can be realized by Type I or Type IV 2-D se- 
quences. On the contrary, if the desired frequency 
response is an imaginary-valued function, Type II 
and Type III 2-D sequences are suitable for these 
designs. For example, the typical 2-D circular filters 
and fan-type filters can be realized by Type I 2-D 
sequences, which has been discussed in [4]. 

Example 1. In this example, we want to design 
a filter with the desired magnitude response 

D(w 3 w2) = 
i 

1, W1’02 > 0, 

- 1 01’02 <o. (38) 

Fig. 1. Example 1: Amplitude response of a 23 x 23 2-D lin- 

ear-phase filter designed by a Type IV-1 2-D sequence. 

Fig. 2. Example 2: Amplitude response of a 27 x 26 2-D lin- 

ear-phase filter designed by a Type II-2 2-D sequence. 
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Here, we use a 23 x 23 Type IV-l 2-D sequence to 
design it, and the eigenfilter approach in [4] can be 
applied after slight modification. The resultant am- 
plitude response is shown in Fig. 1 in which the 
cutoff frequencies are 0.1~ and 0.9n in both the wl- 
and ml-axis. 

Example 2. A third-order partial differentiator is 
designed in this example. Excluding the part of 
linear phase, the desired frequency response is 

D(wl,oZ) = -jo102, --x < 01,02 GR. (39) 

When a 27 x 26 Type II-2 2-D sequence is used, the 
amplitude response is shown in Fig. 2. 

5. Design of half- and full-plane linear-phase 
2-D FIR filters 

The half-plane filters can be divided into two 
categories, i.e. ‘non-neighbor symmetric/antisym- 
metric half-plane filters’ and ‘neighbor symmet- 
ric/antisymmetric half-plane filters’. Four typical 

half-plane filter examples are given in Fig. 3. 
Fig. 3(a) presents a non-neighbor symmetric half- 
plane filter, and the realized sequence is organized 
by a Type I sequence and a Type IV sequence. The 
example of a non-neighbor antisymmetric half- 
plane filter is shown in Fig. 3(b) which can be 
implemented by combining a Type II sequence and 
a Type III sequence, so the filter coefficients are 
pure imaginary. Fig. 3(c) presents the example of 
a neighbor symmetric half-plane filter, and Type I 
sequence plus a Type III sequence can realize it, so 
the filter coefficients are complex. Fig. 3(d) shows 
a neighbor antisymmetric half-plane filter which 
can be implemented by using a Type II sequence 
and a Type IV sequence, hence the filter coefficients 
are also complex. 

Example 3 (Design of a non-neighbor symmetric 
half-plane Jilter). This example deals with the 
design of a filter with the desired magnitude response 

W) 

Fig. 3. Illustrated examples to explain the type of half-plane 2-D filters: (a) non-neighbor symmetric half-plane filter, (b) non-neighbor 

antisymmetric half-plane filter. 
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Fig. 3. (c) Neighbor symmetric half-plane filter, (d) neighbor antisymmetric half-plane filter. 

By Eq. (29), D(oi , w2) can be obtained by summing 
the four parts as 

+ R&l 9 4 + nmh, %I, 

and from (34)-(37) we can get 

De&i, ~2) = 0.5, 

(41) 

and 

Doo(~, ~2) = 
i 

0.5, W1’02 > 0, 

- 0.5, wi ‘02 < 0. 

Hence, two types of 2-D sequences are needed, i.e. 
Type I sequence realizes D,, and Type IV sequence 
realizes D,,. Since Dee(q) 02) corresponds to a unit 
impulse response in the spatial domain and 
Doo(wl,w2) is similar to Example 1, we only add 
a unit impulse to the origin of the resultant impulse 
response in Example 1, and then normalize the 
amplitude response to unit. The overall amplitude 
response is shown in Fig. 4. 

Fig. 4. Example 3: Amplitude response of a 23 x 23 non-neigh- 
bor symmetric half-plane filter. 
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Fig. 5. Example 4: (a) Desired amplitude response and its ingredients, (b) the act ual amplitude response. 

(b) 
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As to the design of full-plane filters, the four types 
of 2-D sequences are required. For simplicity, an 
example is presented to demonstrate the design 
procedures. 

Example 4. This example presents the design of 
a full-plane filter with the desired response and its 
ingredients as shown in Fig. 5(a). D,, and D,, can 
be synthesized by using Type I and Type IV 2-D 
sequences, respectively, and D,, and D,, can be 
approached by using Type II and Type III 2-D 
sequences. Fig. 5(b) shows the resultant amplitude 
response with filter length 27 x 27, if the above 
synthetic method is used. 

6. Conclusions 

In this paper, we have presented the symmetric 
properties of 2-D sequences and their applications 
for designing linear-phase 2-D FIR filters. It is 
shown that there are 16 types of cases to be con- 
sidered according to the symmetry/antisymmetry 

of 2-D sequences in both directions and their filter 
lengths (even or odd). The corresponding types of 
amplitude responses are tabulated into a complete 
table if these 2-D sequences are used to realize 2-D 
filters. Also, the definitions of quadrantal-plane, 
half-plane and full-plane filters are described along 
with numerical examples designed by the eigenfilter 
approach. 
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