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In general, there are four basic forms of distortion in the 
recognition of planar patterns: translation, rotation, scaling 
and skew. In this paper, a normalization algorithm has been 
developed which transforms pattern into its normal form such 
that it is invariant to translation, rotation, scaling and skew. 
After normalization, the recognition can be performed by a 
simple matching method. In the algorithm, we first compute 
the covariance matrix of a given pattern. Then we rotate the 
pattern according to the eigenvectors of the covariance matrix, 
and scale the pattern along the two eigenvectors according to 
the eigenvalues to bring the pattern to its most compact form. 
After the process, the pattern is invariant to translation, 
scaling and skew. Only the rotation problem remains 
unsolved. By applying the tensor theory, we find a rotation 
angle which can make the pattern invariant to rotation. Thus, 
the resulting pattern is invariant to translation, rotation, 
scaling and skew. The planar image used in this algorithm 
may be curved, shaped, a grey-level image or a coloured 
image, so its applications are wide, including recognition 
problems about curve, shape, grey-level and coloured patterns. 
The technique suggested in this paper is easy, does not need 

much computation, and can serve as a pre-processing step in 
computer vision applications. 

Keywords: affme transform, image normalization, pattern 
recognition 

INTRODUCTION 

Pattern recognition has been an important area in 

computer vision applications. In the case of a planar 
image, there are four basic forms of geometric distor- 
tion caused by the change in camera location: transla- 
tion, rotation, scaling and skew. So far, a number of 
methods have been developed to solve these distortions, 
such as moment invariants’, Fourier descriptor233, 
Hough transformation4, shape matrix’ and the 
principle axis method6. All of the above methods can 
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be made invariant to translation, rotation and scaling. 
However, they become useless when pattern is skewed: 
when the direction of the camera is not vertical to the 
planar image or the sampling intervals in the x - JJ 

directions are not equal, the image is skewed. 
A tensor-based moment function method has been 

developed to recognize objects under distortion of 
translation, rotation, scaling and skew7. The method 
applies the tensor-based moment function to compute 
the affine transformation between the two images 
according to the inverse of the calculated afline trans- 
formation. No knowledge of point correspondence 
between images is required, but the method needs to 
compute fourth-order moments; however, we know that 
higher-order moments are more sensitive to noise and 
digitization effectss. Another defect is that the method is 

not efficient when patterns are large, as the method 
must compute the afline transformation between the 

input pattern and each of the reference patterns until 
the pattern is identified. In this paper, we introduce the 

concept of image normalization, which normalizes all of 
the images before recognition. Thus, we just compare 
the input normalized pattern with the reference patterns 
using a matching method, which is very simple and fast. 

A block diagram of pattern recognition by image 
normalization is shown in Figure 1. This method first 
extracts features from the input patterns, then 
normalizes the input pattern with a normalization 
algorithm. Here, we define normalization as a process 
which transforms the input pattern into a normal form 
that is invariant under translation, rotation, scaling and 
skew. We call the transformed image a normalized 
image. Since the normalized image is invariant under 
translation, rotation, scaling and skew, we can recognize 
patterns just by a simple matching method. 

A good method proposed by Leu’, can solve skew 

pattern Normalization 
Pattern 

identification 

Figure 1 Pattern recognition by normalization and matching. 
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distortion efficiently. It first rotates the pattern 
according to the eigenvectors of the covariance matrix, 
then rescales the pattern along the eigenvectors 
according to the corresponding eigenvalues. The 
resulting pattern becomes compact, which we call the 
compact image. We shall prove that only the rotation 
problem remains unsolved through the process. In this 
paper, we extend the method to achieve rotation invar- 
iance. By the tensor theory, we derive a simple equation 
from which an angle can be calculated to make the 
pattern invariant to rotation. Thus, the resulting pattern 
is invariant to translation, rotation, scaling and skew. 

Over the years, a large number of existing recognition 
methods have only made use of the geometrical proper- 
ties among various patterns. In fact, the information 
inside patterns is also important in pattern recognition. 
For example, as we show in Figure 2a, these two 
patterns are in the shape of a square, but their content 
is different, so they should be classified as different 
patterns. Unfortunately, most of existing algorithms 
cannot distinguish one from the other. 

Another method, proposed by Ming Fang and Gerd 
Hanslet-“, can solve the problem of different contents. 
Their algorithm is based on a general transformation 
where the kernel itself contains the function to be 
transformed; thus, the invariance is achieved by a kind 
of self-mapping. In other words, their algorithm utilizes 
the contents of patterns instead of the geometrical 
characteristics of patterns. The transform is a many-to- 
few mapping; it can happen that two patterns have the 
same mapping. Their method fails when the patterns 
have the same contents but the relative positions of the 
component parts are different. For example, as in 
Figure 2b, the shapes and contents of these two 
patterns are the same, but the relative positions of the 
component parts in each pattern are different. Thus, 

a 

b 

Figure 2 (a) Two patterns with different contents; (b) two patterns 
with different relative locations among sub-images 

they should be classified as 
paper, we utilize information 
to recognize a pattern and 
mentioned above. 

different patterns. In this 
on both shape and content 
to solve all the problems 

In the next section we show how to extract features 
which contain information on geometry and content 
simultaneously. We then review the compact algorithm 
analyse the properties of the compact image, apply the 
tensor theory to a normalized image, and summarize the 
normalization algorithm. Finally, we draw conclusions, 
which discuss how efficient the matching method 
performs using image normalization. 

To unify the syntactic notation we use bold lower 
case letters to denote a vector, bold upper case to denote 
a matrix and text to denote a variable. 

FEATURE EXTRACTION 

In this section we introduce a moment representation 
that contains both the geometrical and internal infor- 
mation of patterns. We first show how to define the 
moments which contain the geometrical and internal 
information simultaneously. Then, we derive a theorem 
which is important in this paper. 

Definition Let p(x, y) denote the 
location (x, y). For example: 

1: object, 0: background 
p(x, JJ) = grey-level value 

image signature at 

for curve or shape 
for grey image 

\ brightness or chrominance for coloured image 

(1) 

Denote the probability density function by f(x, y): 

f(x, y)= Ax2y) 

&&>y)dxdy 
(2) 

where fl is the region we consider. 
Hence, we can calculate the mean of the image; let 

c = [C,, CYIT denote the mean vector: 

c, = 
J 

xf (x, Y) dxdy 
R 

s 

(3) 
C, = yf (x, Y) dxdy 

R 

Lete ukr denote the central moments of k + r order: 

ukr = E{(X - CX)k( Y - C$} 

= 
J 
R (x - CJkg, - CJf(x, y)dxdy 

(4) 

Since f (x, y) contains the internal information of patterns, 
the moments defined above contain both geometrical and 
internal information on the patterns. 

Properties 
Consider a pattern which is distorted by the change of a 
camera’s location. the distortion may be translation, 
rotation, scaling or skew, all of which are special cases 
of affine transformation. Hence, we can express the 
geometrical distortion by an affine equation: 

712 Image and Vision Computing Volume 13 Number 10 December 1995 



Image normalization for pattern recognition: S-C Pei and C-N Lin 

(5) 

where [u, vlT denotes the transformed position corre- 

sponding to point [x, ylT: 

[ %:: zlt] and [ii] are affme coefficients 

Definition The covariance matrix of a given image is 

defined as: 

u20 Ull 

[ 1 UII uo2 

and is denoted by M where uii is the jointly central 

moment defined in equation (4). 

By the above definition, we derive the following 
theorem: 

Theorem 1 Let M be the covariance matrix of the 

original image and M’ be the covariance matrix of the 

distorted image, which is distorted according to equation 

(5); then the relationship between M and M’ is. 

M’=AMAT 

where.. 

(6) 

Proof By equation (5): 

u = allx + al2y + bl 

v = a2 1 .x + az2y + b? 

Thus: 

c, = E(u) 

= 
.I 

u ..fuy(u, v)dudv 
c 

= 
s 

R (al 1.x + al2y + 61) .fi,(x, y)dxdy 

= E{allx+al2y+bl} 

= all C,, + alzC’, + bl 

where fuy(u, v) is the p.d.f of the distorted image and C 
denotes the region we consider in the distorted image. 

Similarly: 

C, = a21 C, + a22C! + b2 

Let U; denote the covariance of the distorted image; 
then: 

uio = E{(u - CU)‘] 

= E{(allx + alzy + bl - allCx - al2C, - bl)‘} 

= E{[alI(x - C,) + al2Oi - C,,>12} 

= ai, f40 + af2u02 + 2allal2ull 

Similarly: 

z& = allmu + al2a22u02 + (alla22 +al2azlhl 

ub2 = &u20 + a:,u02 + 2a2lal2ull 

Combine these variances into vector form: 

I= 
2 7 

all alla12 allal2 ai 

alla21 alla22 al2a2l al2a22 

alla21 a2lal2 alla22 al2a22 

2 
a21 a2la22 a2la22 

2 
a22 i 

u20 

Ull 

Ull 

uo2 

-u20 

Ul1 .uo21 Ull 

I 
(7) 

For kronecker products, equation (7) may be rewritten 
in the form: 

I[ alI a21 
a12 a22 

(8) 

Consequently, M’ = AMAT. We have proved Theorem 1. 

ALGORITHM FOR COMPACTING AN IMAGE 

In this section. we review the method proposed by Leu’ 
which describes how to compact an image. This 
procedure has three steps: 

1. Computing the covariance matrix M of a given 
pattern. 

2. Aligning the coordinates with the eigenvectors of M. 
3. Resealing the coordinates according to the eigenva- 

lues of M. 

Compacted by the algorithm, the pattern is invariant 
to translation, scaling and skew. Only rotational 

problem remains unsolved, which we prove in the next 
section. 

We discuss the above three steps in detail in the 
following subsections. 

Computing the covariance matrix of an image 

The goal of the algorithm is to adjust an image through 
a sequence of two linear transformations so that the 
covariance matrix of the compacted image becomes a 
scaled identical matrix. 

By equations (3) and (4) we can calculate the 
covariance matrix: 

IV= u”:: uii uo2 1 
In pattern recognition, we use the covariance matrix 

to decouple correlated features and to scale the features 
to make the clusters compact. 

Aligning the coordinates with eigenvectors of M 

In this step, we first find the eigenvalues and eigenvec- 
tors of M, then rotate the coordinate parallel to the 
eigenvectors of M. 

Image and Vision Computing Volume 13 Number 10 December 1995 713 



Assume J.1 and & are the eigenvalues of M, they can 
be found by solving the equation: 

The two roots of the above equation are: 

u20 + uo2 + 

1, = 4 (u20 - uo2>2 + 4u;, 

(11) 

122 = 
,o+uo2-ii;;'b 

m 
L Consequently, the pattern becomes uncorrelated to the 

new coordinate system. 

Rescale the coordinates using eigenvalues of M 

Hence the eigenvectors corresponding to each eigen- 
value can be determined. 

Let el = [elxelyJT be the eigenvector associated with 
II, and e2 = [eh e2,1T the eigenvector associated with AZ. 
These eigenvectors satisfy the following equations: 

u20-Ai 41 eix 
Ull uO2 - Ai I[ 1 eiy 

=0 for i= 1,2 (12) 

and setting the norm equal to 1: 

e; +ek = 1 for i = 1,2 (13) 

solving equations (12) and (13), we get: 

r. u’l 1 

eix = 

‘I I 2/ (Ai- U2012 + uf1 

ei = 

eiy {S 

I 

(14) where: 

In the previous step, we rotated the coordinate system 
so that the image becomes uncorrelated in the new 
coordinates. Hence, we can scale each component 
independently. The objective is to get an image whose 
covariance matrix is equal to a scaled identical matrix. 
So, we modify the scales of the two new coordinates 
according to the corresponding eigenvalues: 

[;::I = w[;:] 

w= [--I A0 
O k 

c.c= 1,c=(J1,;/2)1’4 

’ fix& 

(23) 

Consequently, we can construct a rotational matrix E: 

E = ;;I ;; 
[ 1 (19 

In the procedure, we transform the coordinate system 
by first translating the origin to the image centre and 
then multiplying the coordinates with matrix E. Thus, 
the new coordinates are lying on the eigenvectors of M. 
Let [~‘y’]~ denote the new coordinates, then: 

(16) 

Since the matrix M is real and symmetric, both 
eigenvectors are orthonormal to each other. Hence, the 
inner product of the two eigenvectors is zero: 

elxeiy + e2xe2y = 0 (17) 

There are two solutions for the above equation: 

e2x = ely 

e2, = -1, 

or: 

e2x = -ely 

eg = el, 

(18) 

(19) 

If the [ezX e2,1T found in equation (14) is the case of 
equation (18), the transformed pattern will be reflective 
to the original pattern. To avoid the reflection, E must 
be rewritten in the form: 

Image normalization for pattern recognition: S-C Pei and C-N Lin 

E= [:xy :::I (20) 

By Theorem 1 and equation (16), the covariance matrix 
of transformed pattern becomes: 

M’=EMET=h (21) 

where: 

A= 11 0 
[ 1 0 A2 

is a diagonal matrix 

(22) 

In this paper, we call W a scaling matrix, which 
preserves the overall size of the normalized shape. 

In the above transformation, the covariance matrix 
becomes: 

where Z is an identical matrix 
Combining equations (16) and (22): 

(24) 

Thus, we get the most compact image after the transla- 
tion in equation (24). 

Experimental results 
1. Curve 
Figure 3a is the original curve and Figure 3b is the 
compact form of Figure 3a by the transformation of 
equation (24) with c = 100. 
2. Shape 
Figure 4a is the original shape and Figure 4b is its 
compact form with c = 30. 
3. Grey-level image 
Figure 5a is the original image and Figure 5b is its 
compact form with c = 30. 
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a 

‘AL . . . . . . . . . . . . . . . . . . ..__. i . . . . . . . . .____.__._______.... 

C 

b 
Figure 3 (a) Machine tool; (b) compact curve of Figure 3a; (c) 
normalized curve of Figure 3a 

Note that all the original images are not in their most 
compact form. Thus, the compact procedure will 
deform and normalize the original images. 

PROPERTIES OF THE COMPACT IMAGE 

In general, there are five basic forms of shape distortion 
caused by the change in the viewer’s location: transla- 
tion, rotation, scaling, skew and reflection. All of these 
can be represented by the affine transformation: 

[:I = [z: :I:] [:I + [ii] (25) 

El lb) 

Figure 5 (a) Wai-wai; (b) compact image of (a); (c) normalized image 

of (a) 

or expressed in vector form: 

u=Ax+b (26) 

The purpose of this paper is to find a normalization 
algorithm that can make patterns invariant under 
translation, rotation, scaling and skew. We do not 
consider the problem of reflection. 

The purpose of the image normalization procedure is 
to redescribe an image such that the new descriptor is 
invariant under translation, rotation, scaling and skew. 
Then, we may apply the descriptor for discrimination. 

In the following, we discuss how these distortions 
affect the compact image. 

Translation 

Since the compact algorithm translates the origin of the 
coordinate system to the image centre (see equation 
(16)), we can easily prove that the method is invariant to 
translation. 

Experimental results 
Figure 6a is the translation of Figure 3a and Figure 6b is 
its compact form. Compared with Figure 3b, the two 
compact curves are the same, thus the algorithm is 
invariant under translation. 

Scaling 

Since the compact algorithm rescales the image to its 
most compact form with a constant scale, (see equation 
(22)), it is easy to prove that the method is invariant to 
scaling. 

Experimental results 
1. Curve 
Figure 7a is the scaling of Figure 3a and Figure 7b is its 
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v 
a b 

~ 

._ . . . . . . . . . . . . . . _.. . _i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6 (a) Translation of Figure 3a; (b) compact curve of Figure 6a 

a 

~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . 

b 
Figure 7 (a) Scaling of Figure 3a; (b) compact curve of Figure 7a 

compact form. Compared with Figure 3b, the two 
compact curves are the same. 
2. Shape 
Figure 8a is the translation and scaling of Figure 4a, and 
Figure 86 is its compact form, which is the same as Figure 
4b. Thus, the algorithm is invariant under scaling. 

Rotation 

If a pattern is rotated clockwise by an angle 0, the 
relation between the rotated and original images is: 

p-p-l 
I 1 

I tb) I 
I J 

Figure 8 (a) Scaling and shifting of Figure la; (b) compact image of 
(a); (c) normalized image of (a) 

I.4 [I=[ cos e sin8 x 
V -sin8 cos0 I[ 1 y (27) 

which in vector form is: 

u=Ax 

where: 

A = case sin 8 
-sin8 cos6 

(28) 

1 is an orthogonal matrix 

Since A is an orthogonal matrix, and by Theorem 1, 
the relationship between their covariance matrices is: 

IV,, = AMxAT = AM&’ (29) 

Consequently, MU is orthogonally similar to MU. 
Both MU and M, have the same eigenvalues, but their 
eigenvectors are not equal. 

Let E, and E, denote the rotational matrix corre- 
sponding to MU and M,, respectively. For the decom- 
position of eigenvalues and eigenvectors (see equations 
(19) and (21)): 

E,M,E,T = A, = A, 

= E,,M,,E,T 

= E,,AMxATE,T 
(30) 

= (EuA)MdEuA)T 

Consequently, we get: 

E,, = E,A-’ or E,, = -E,A-’ (31) 

The meaning of the above equation is that when the 
pattern is rotated clockwise by an angle 8, the eigenvec- 
tors of the covariance matrix are also rotated by an 
angle 0 or 8 + 7~. Hence, we can rotate the pattern back 
to the original location, or over n by aligning the 
coordinates on the eigenvectors of the covariance 
matrix. In the compact algorithm, according to 
equation (26), the location of the rotated image in 
compact form is: 

U” = W,E,(u - c,) 

= W,(fE,A-‘)(Ax - AC,) 

= kFVxE,(x - c,) 
(32) 

= fX” 

Thus, the compact algorithm makes the rotated image 
turn back to the original location, or over n. 

Experimental results 
1. Curves 
Figure 9a is the rotation of the Figure 3a and Figure 9b 
is its compact form which is the same as Figure 3b. 
Figure 1Oa is the rotation of Figure 3a and Figure 10b is 
its compact form, which is differentiated from Figure 3b 
by the angle n. 
2. Shapes 
Figure Ila is the rotation of Figure 4a and Figure Ilb is 
its compact form, which is the same as Figure 4b. 
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a b 
Figure 9 (a) Rotation of Figure 3a; (b) compact curve of Figure 9a 

#< . . . .~. . . . . . 

a b 
Figure 10 (a) Rotation of Figure 3a; (b) compact curve of Figure 10a 

1 (a) 11 (cl ] 
, 

I (b) I 
I I 

Figure 11 (a) Rotation of Figure 4~; (b) compact image of (a); (c) 
normalized image of (a) 

3. Grey-level images 
Figure 12a is the translation, rotation and scaling of 
Figure 5a and Figure 12b is its compact form, which is 
the same as Figure 56. 

Figure 13a is the rotation of Figure 5a and Figure 13b 
is its compact form, which is differentiated from 
Figure 5b by the angle IZ. 

Thus, the compact algorithm makes the rotated 
images turn back the same location, or over rr. 

El (b) 

Figure 12 (a) Shifting, rotation and scaling of Figure 5~; (b) compact 
image of (a); (c) normalized image of (a) 

) (4 11 6) 1 

cl (b) 

Figure 13 (a) Rotation of Figure 5~; (b) compact image of (a); (c) 
normalized image of (a) 

Skew 

The model of the skew transformation is: 

[:I = [II E][zE3 ::sq [-:I (33) 

or in vector form: 

u=Ax=BCx (34) 

where: 

a 0 

[ I [ 

cos 0 sin0 
B= 

0 b 
and a#b C= 

-sin0 cost9 1 
A=BC 

The matrix C determines in which direction the image is 
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skewed, and the matrix B determines how severely the 
image is skewed. 

Since A is a general matrix, the rotational and scaling 
matrices of the skewed and original images are not 
equal, respectively. By equation (21), we get: 

M = ETRE (35) 

and by equation (23), the relation between the scaling 
matrix and the eigenvalues of M is: 

w = CA-‘/2 (36) 

The location of the skewed image in compact form is: 

U” = W,,E(u - c,) 

Combined with equation (36), we get: 

u” = A;‘12 &,AE,Th;~2xN (37) 

Define G = A-‘12E AErALi2. U u XX’ combined with equation 
(35), we can prove: 

GGT=Z (38) 

Consequently, G is an orthogonal matrix. 
We know that any two-dimensional orthogonal 

matrix may be written in the form: 

cos a sin u 
-sinol cosc~ 1 (39) 

or: 

[ 

cosa sinu 
sin a -cos a 1 (40) 

We confine the rotational matrix to be equal to 
equation (20), to avoid the reflection of the pattern. 
Thus, G is of the form of equation (17), not as equation 
(40). Hence, the compact algorithm turns the skew 
problem into a rotational problem. 

Experimental results 
1. curve 
Figure 14a is the skew of Figure 3a and Figure 14b is its 
compact form, which is different from Figure 3b by 
rotation. 
2. Shape 
Figure 15a is the skew of Figure 4a and Figure 15b is its 
compact form, which is different from Figure 4b by 
rotation only. 
3. Grey-level image 
figure 16a is the skew of Figure 5a and Figure 16a is its 
compact form, which is different from figure 5b by 
rotation only. Thus, the compact algorithm turns the 
skew problem into a rotational problem. 

FINAL STEP FOR IMAGE NORMALIZATION 

Concluding the discussion in the preceding sections, the 
pattern is invariant under translation, scaling and skew. 
After the compacting process, only the rotational 
problem remains unsolved. In this section, we propose 
two methods to solve this problem. 

Method 1: Find the furthest point 

We may easily determine the point that is furthest from 
the centre of mass of the shape. As shown in Figure 17, 
let point A be the furthest point in the shape. We can 
measure the angle between the directions of OA and the 
x-axis, then rotate the shape clockwise by this angle. We 
call the rotated compact image a normalized image, 
which is invariant under translation, rotation, scaling 
and skew. 

a b 

I 

C 

Figure 14 (a) Skew of Figure 3a; (b) compact of Figure 14a; (c) 
normalized curve of Figure 14a 

I I 

I tb) I 
Figure 15 (a) Skew of Figure 4~; (b) compact image of (a); (c) 
normalized image of (a) 
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Figure 16 (a) Skew of 
normalized image of (a) 

Experimental results 
1. Curve 

Figures 3c, 14c and 
Figures 3a, 14a and 

Figure 5~; (b) compact image of (a); (c) 

18b are the normalized curves of 
18a, respectively. Observe that all 

the normalized curves are the same, hence, the normal- 
ized curves are invariant under translation, rotation, 
scaling and skew. 

Although this method is simple, it fails when the 
shape is noisy or the furthest point is not unique. 
Another defect is that this method is only suitable for 
curve or shape. When the image is a grey-level or 
coloured image, it becomes difficult to determine the 
object’s region; consequently, it is difficult to determine 
which is the furthest point. 

Method 2: Normalization by tensor theory 

As the method makes use of some tensor theories, we 
present the tensor representation of an image and some 
theories’@‘* and apply the tensor theories to normal- 
ized images below. 

P 

I A 

--c&J.-. 
I 

Figure 17 Find the furthest point A for rotation normalization 

a b 
Figure 18 (a) Translation, rotation and scaling of Figure 3a; (b) 
normalized curve of Figure 18a 

Formulation of moment tensors 
In the above sections, we express the affine transforma- 
tion as: 

[:I = [z:: z:] [;I + [i:] (41) 

the first order moments of the image are denoted by 
[C, CYIT and the jointly central moments are denoted by 
Ukr. If we translate the coordinates to the centre of the 
image, equation (41) becomes: 

u - c, 
[ I v-c, = 

a11 a12 x - c, 
a21 a22 I[ I 4’ - c, 

(42) 

Apparently, the above equation is invariant to transla- 
tion. 

In the following discussion, the original point of 
coordinates is assumed to be at the centre of the image 
to simplify the notation. 

In tensor notation, the coordinate variables are 
different by an index, so that X’ here is equivalent to 
the x-coordinate, and x2 is equivalent to the y-coordi- 
nate. Thus, the above equation becomes: 

where: 

(43) 

In a tensor expression, equation (43) is denoted by: 

yj = Afx’ for i = 1,2 (44) 

Hence, we may define the inverse affine transformation: 

.Xi=U:_$ for i=1,2 (45) 

with the property: 

Ajaj, = (46) 
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The central moment tensors are defined as: 

Tijk- = s R xixjxk . . $(x1, x2)dx’dx2 (47) 

This type of tensor is the case of contravariant tensor 
operators. We derive a theorem: 

Theorem 2 Let: 

Tijk- = 
J 

xixjxk . . .f(x’, g)dx’dx2 
R 

pjk... = yiy.iyk.. ~~~~,+4,,14,2 
J c 

if (xixjxk) and (y ‘yjy k, are related as tensors, i.e.: 

y’v’yk . . . =A;Aj,Af:...x’~~x”... 

then (TiTiTk) and (T’T-‘Tk) are also related as tensors, 
i.e.: 

-‘-‘-k T’T*T : . . =AjAi,A;...T’T”T”... 

Another type of tensor is the case of convariant 
tensor operators; we denote the index in the subscript, 
i.e.: 

Tijk . e . = 
s 

xixjxk . . J-(x’, x2)dx1 dx2 (48) 
Cl 

Tijk . . . = J yiy’yk . . .f(y’, y2)dy’dy2 (49) 
c 

It also has a theorem: 

Theorem 3 Zf b$jYk . . . ) and (xixjxk . . . ) are related as 
tensors, i.e.: 

ij k xixjxk.. . = aja,a, . . . yly,y,. . . 
_ - - 

then (TiTjTk...) and (TiqTk. ..) are also related as 
tensors, i.e.: 

TiqTk.. . = aiaiaf:. . . T,T,T,. . . 

Another important feature in tensors is the permuta- 
tion tensor, which is defined as cii with: 

( 

El1 =o 
El2 = 1 
&2i = -1 (50) 

E22 = 0 

It has the property: 

Eij = Jaia,? E[,,, (51) 

where J is the Jacobian of the afline transformation: 

(52) 

For the case .I = 1, Ed = a!ajmel,. Hence ~0 and Eu are 
related to tensors 

By combing the permutation tensors, we may reduce 
the higher order tensors to lower order ones. For 
example, we define a tensor: 

tm = TV 8ik~j, Tk”“/A2 (53) 

where A is the area of an object’s image. - 
Let i” = TY&Ejl Tkrmla2. By Theorems 2 and 3, we 

can derive that: 

im = A;tk (54) 

Thus, we reduce the second and third order tensors to a 
first order tensor; a linear equation. 

Normalization of a compact image 
Since the only problem remaining is rotation, we just 
find an angle by which we may rotate the compact 
image into a normalized range which is invariant under 
rotation. The diagram of this is shown in Figure 19. 

In tensor notation: 

Hence the Jacobian J = 1. 
Since the Jacobian J = 1, Eij and cij are related to 

tensors. We define a first-order tensor: 

tm = TijcikEjl Tk’” (55) 

By Theorem 2, it has the property: 

i” = AT tk (56) 

Since the covariance matrix of a compact image 
becomes a scaled identical matrix c2 Z, the second order 
tensor in equation (47) becomes: 

T12 = T2’ = 0 (57) 

and: 

T” = T22 = C2 (58) 

Substituting equations (57) and (58) in equation (56) we 
get: 

tm = ,2(T22m + T”m) (59) 

Rewriting equation (57) by the central moments defined 
earlier we get: 

t’ = c~(T~~’ + T”‘) = ~~(2.4,~ + ujO) (60) 

t2 = c2(T222 + T’12) = c2(uo3 + u2,) (61) 

Note that Uii is the central moment of the compact 
image. 

Since t”’ is the 
equivalent to: 

cos c( 

-sin a 

first-order tensor, equation (56) is 

since t’ I[ 1 cosa t2 (62) 

Figure 19 Find an angle a for rotation normalization 
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where t’ and t* are the tensors of the normalized image, 
and t ’ and t * are the tensors of the compact image. 

For the normalization algorithm, we rotate the 
compact image around the centre point of the image 
such that the tensor t’ becomes zero. Thus, by setting 
t’ = 0, we get: 

t’=O=t’cosa+t*sina (63) 

Substituting equations (60) and (61) into equation (58), 
we get the relation: 

I 

tana = -L, - w2 + u30 

t2 uo3 + u21 
(64) 

Apparently, there are two solutions to the above 
equation, say 4 and I$ + rc. 

Substituting 4 or 4 + ‘II into equation (62), we get: 

t*(4) = -12(4 f rc) (65) 

The meaning of the above equation is that one of the 
solutions of equation (64) makes t* > 0, and the other 
makes i* < 0. Thus, in the algorithm we choose @o in 
{4,4 + 7c} such that f* > 0. By this option, we may 
uniquely determine the rotational angle. 

Combining with equation (24), we get the transfor- 
mation equation from the original to the normalized 
image: 

(66) 

By the transformation, we can get the normalized 
image which is invariant under translation, rotation,- 
scaling and skew. The normalized procedures for affne- 
distorted pattern recognition are consistent with the 
mental transformation theory in psychology and 
psychophysics. Shepard and Cooper13 provide 
empirical evidence in support of the mental transform 
theory in human perception. 

SUMMARY OF NORMALIZATION 
ALGORITHM 

In this section, we summarize the normalization 
procedure. The steps are: 

1. Computing the mean vector c and the covariance 
matrix M of the original image: 

c = [C, C,]7 

and: 

(67) 

M = s: u” [ 1 uo2 

2. Aligning the coordinates with the eigenvectors of M: 

(69) 

3. Resealing the coordinates according to the eigenva- 
lues of M: 

(70) 

To save computation time, we may combine step (2) 
with step (3): 

X" 

‘I I ilo 
y”=O - k2 J 

(71) 

We call the image transformed by equation (71) a 
compact image. 

4. Computing the third-order central moments of the 
compact image, say: 

u30, U2I 9 u12, uo3 (72) 

Calculating the tensors t ’ and t2: 

t’ =U1*+U30 (73) 

t* = uf33 + 2421 (74) 

Finding the angle ~1, which satisfies the equation: 

t’ 

tancl = -ti 
(75) 

Calculating the tensor i*: 

i* = -t’sina+t*cosa (76) 

if t* < 0, then tx = LX + rc. 

Rotating the compact image clockwise by LY angle: 

x [I J = [ 

cos a 

-sin tL 

Thus, we get the normalized image which is invariant 
to translation, rotation, scaling and skew. 

Since the data of the image is large, the fetching and 
storage of image data in memory takes much of the 
computing time. By combining steps (2) (3) and (4), we 
may compute the third-order moments of the compact 
image directly from the original image. Consequently, 
we may save computing time in the fetching and storage 
of the compact image. Another advantage is that, since 
the location and content of the image is stored in a 
digital way, we may avoid the quantization error of the 
moments which is caused by the data of compact image. 
The details of combining steps (2) (3) and (4) are as 
follows. 
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Consider equation (71), which may be expanded as: 

+h 
[- 0 

[ a11 a12 
= 

a21 a22 

VA2J 

X I[ 1 + 

Y 

bl 

.h 
(78) 

where: 

Let u30~21U12%3 be the central moments of the original 
image, and u$~u;,u’,~u~~ be the central moments of the 
compact image. By Theorem 1 and equation (78), we 
get: 

ui2 = w:p30 + (&a12 + 2alla2la22)~21 

+ (2a12u21a22 + 42a2&12 + a12a;2uO3 
(81) 

uiO = &“30 + 3aila22u21 + k2lai2ul2 + aG2uO3 (82) 

Hence, the real algorithm is that: 

1. Compute the following moments of an original 
image 

i; 
mean vector c 
covariance matrix M 

(c) third-order central moments ~30~21~12~03. 

2. Calculate the eigenvalues AlA2 and eigenvectors 
k~xe~ylT of M. 

3. Compute the matrix: 

41 a12 L I a21 a22 

in equation (78). Then compute the moments of 
compact image from equation (79) to equation (82). 
Calculate the tensors t’ and t2: 

t 1 = d12 +uio 

t2 = ud3 + z& 

Find the angle CI, which satisfies the equation: 
1 

tanx= -k 

Calculate the tensor t2: 

t2 = -t’sina+ t2cosU 

If i2 < 0 then tl = a + n. 
Consequently, the normalized image may be found 
directly from the original image by the transforma- 
tion: 

(83) 

Experimental results 
1. Shape 
Figures 4c, 8c, llc and 1.5~ are the normalized shapes of 
Figures 4a, 8a, lla and 15a respectively. Observe all the 
normalized shapes, they are the same. Thus the normal- 
ized shapes are invariant under translation, rotation, 
scaling and skew. 
2. Grey-level image 
Figures 5c, I2c, 13 and 16~ are the normalized images of 
Figures 5a, 12a, 13a and 16a, respectively. Observe that 
all the normalized images are the same. Thus, the 
normalized images are invariant under translation, 
rotation, scaling and skew. 

1 (4 W 1 

I (b) I 
1 I 

Figure 20 (a) Chinese word ‘stream’; (b) compact image of (a); (c) 
normalized image of (a) 
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Figure 21 (a) Shifting, rotation and scaling of Figure 200; (b) 
compact image of (a); (c) normalized image of (a) 

resulting normalized colour images obtained by experi- 

mentation are quite satisfactory. 

CONCLUSION 

Over the years, a large number of recognition methods 
have been developed to solve the distortion of transla- 
tion, rotation and scaling. The method most used has 
been the statistical method, which first calculates the 
values of moment invariants’, then recognizes by 
statistical classification’4. This method is only suitable 
when patterns are not large. When patterns are large, 
the decision rule will become complex and the error of 
recognition will increase. 

Image normalization for pattern recognition: S-C Pei and C-N Lin 

The matching method is very easy and suitable for 
large patterns, but the method must previously 
normalize the image for matching. In this paper, we 
have expanded the compact algorithm proposed by 
Leu’ to a more perfect and realizable method which 
can normalize the image under the distortion of 
translation, rotation, scaling and skew. There are some 
advantages of this method: 

1. The method is suitable when patterns are large. 
2. The normalization algorithm is easy and does need 

not much computation. 
3. The similarity measure by matching is rapid. 
4. The searching in the database is efficient, 

In summary, image normalization is very useful in 
image understanding systems. 

Figure 22 (a) Skew of Figure 20~; (b) compact image of (a); (c) 
normalized image of (a) 

3. Figures 20-22 are other examples. By observing the 
results, we confirm that this normalization algorithm is 
very useful and may be applied widely. 

The above experiments are simulated on a Microvax 
model 3600 computer, and the normalized procedures 
can be done very quickly within 1 min. In real image 
experiments, one must first extract and isolate the object 
from the background and place the object for normal- 
ization and recognition. For the normalization of 
colour images, since the RGB components of the 
original image are not the same, the normalized image 
of each component is different. Hence, these compo- 
nents cannot match together. One solution is to 
transform the RGB system into the YIQ system. The 
Y-component is the luminance of the coiour image; we 
normalize the Y component only, and fix I and Q. The 
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