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Abstract 

The analytical least-squares method has been generalized and extended for designing 16 types of two-dimensional FIR 
filters with quadrantally symmetric or antisymmetric frequency responses. By means of a closed-form transformation 
matrix, this fast design method can determine the filter’s coefficients very effectively without a recourse to an iterative 
optimization technique or matrix inversion. Design examples are presented to illustrate the simplicity and efficiency of 
the proposed method. 

Zusammenfassung 

Die analytische Kleinste-Quadrat-Methode wird verallgemeinert und erweitert zum Entwurf von 16 Arten von 
zweidimensionalen FIR-Filtern mit quadrantenweise gerade oder ungerade symmetrischen Frequenzgtingen. Mit Hilfe 
einer Transformationsmatrix in geschlossener Form kann man nach dieser Schnellen Entwurfsmethode die Filter- 
koeffizienten sehr effizient ohne Riickgriff auf eine iterative Optimierungstechnik oder eine Matrizeninversion bestim- 
men. Entwurfsbeispiele werden zur Erlaiiterung der Einfachheit und Wirksamkeit des vorgeschlagenen Verfahrens 
vorgestellt. 

La mtthode analytique par les moindres car& a Cti: gtntraliste et ttendue pour la rkalisation de 16 types de filtres FIR 
bidimensionnels a rksponse frequentielle symitrique ou antisymktrique. Par l’utilisation d’une matrice de transformation 
close, cette mtthode de conception rapide peut dCterminer les coefficients du filtre facilement sans avoir recours ti une 
technique d’optimisation ithrative ou g une inversion de matrice. Des exemples de rkalisation sont prksentis pour illustrer 
la simplicitC et I’efficacitC de la mtthode proposCe. 
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1. Introduction 

Recently, there has been increasing interest in 
using the two-dimensional (2-D) digital filters in 
processing a variety of 2-D filtering for processing 
seismic records, gravity and magnetic data. Two- 
dimensional filtering can also be used for the en- 
hancement of photographic data such as weather 
photos, air photos and medical X-ray images. Two- 
dimensional FIR filters are often used for all these 
applications, since it is easy to get the desired mag- 
nitude and linear phase responses in 2-D frequency 
domain, and also does not have the problem of 
stability to prevent overflow in computation. 

Many techniques for designing 2-D linear-phase 
FIR filters have been reported in the literature 
[2-71. Most of the design techniques employ some 
iterative optimization procedures or large matrix 
inversions to achieve the design solution. These 
algorithms suffer from heavy computation load and 
the slow convergence to the correct solutions. Re- 
cently, Ahmad and Wang Cl] presented an analyti- 
cal solution to the least-squares error design of 2-D 
FIR filters with quadrantally symmetric or anti- 
symmetric frequency responses. By means of simple 
closed-form transformation matrix, this novel de- 
sign technique allows the determination of filter’s 
coefficients directly from its frequency response 
specification. The unique advantage of this tech- 
nique is that it is very simple and fast without 
employing iterative optimization procedures and 
matrix inversion. However, Ahmad and Wang’s 
method is limited to two special types of 2-D FIR 
filter designs Cl]. This paper will show a general 
form for designing 2-D linear-phase FIR digital 
filters by analytical least-squares method, in which 
the general 16 types of 2-D filters can be easily 
designed, and the results are very satisfactory. 

2. Problem formulation 

The frequency response of a 2-D FIR filter with 
the impulse response h(nl, nz), nl = 0, 1,2, . . . , fit - 1, 
n2=0,1,2 )...) fi2-1, can be characterized as 

IV, - 1 ‘Q2 - 1 

B(ol, 0.12) = C 1 h(q, n2)e-jn1w1e-j”20z. (1) 
n,=o n*=O 

If h(nl, n2) satisfies certain symmetric condition 
[S], Eq. (1) can be rewritten as 

where 

x Hc% 9 02), (2) 

i 

0 for Type I filters, 

L = 1 for Type II and III filters, 

2 for Type IV filters, 

(3) 

and H(wl, 02) is a real-valued function. Notice that 
by excluding the linear-phase part in Eq. (2), the 
frequency responses are real-valued functions for 
Type I even-even and Type IV odd-odd sequences, 
and are imaginary-valued functions for Type II 
even-odd and Type III odd-even sequences. For 
example, if h(nl, n2) is a Type I even-even 2-D 
sequence, fil and f12 are odd integers, then 

H(o1302) 

(IQ, - I,/2 (is - I)/2 

= .so Jo 4n1, n2) cos(~1~l)co~(n2~2)~ 

which is a real-valued 
related to h(nl, n2) by 

a(O,O) = h(W, W), 

a(0, n2) = 2/l&+ w 

lo, - 1 n2 = 1, . . . ,2, 

(4) 

function and a(nl, n2) are 

- n2), 

U(rzl, 0) = 2h(W - Pal, +,, 

nl = 1, . . . ,v, (5) 

a(n1, n2) = 4h(“-’ z - nl, 
10 -1 
+ - n2), 

nl = 1, . . . ,w, 

io,-l n2=1,..., 2 . 

Therefore, according to the four types of 2-D se- 
quences and their even/odd lengths (fll x f12), there 
are 16 different kinds of H(ol, 02) which are 
tabulated in Table 1. The relationships between the 
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Table 1 

H(u,, %) of 2-D sequence with length fi, x fiz (Ni = t(fii - 1)) for odd fii and Ni = $fii for even fii, i = 1,2) 

Type 

I 

II 

III 

IV 

Subtype 67,) fi, 

1 i+, : odd, I$ : odd 

2 fi, : odd, &, : even 

3 RI : even, fiTz : odd 

4 IQ, : even, R, : even 

1 m, : odd, fi, : odd 

2 i?, : odd, 15, : even 

3 fi, : even, fiz : odd 

4 15, : even, io, : even 

1 fil : odd, fiz : odd 

2 IV, : odd, &, : even 

3 fi, : even, fiz : odd 

4 57, : even, 13, : even 

1 A, : odd, & : odd 

2 fl, : odd, fi2 : even 

3 fil : even, fiz : odd 

4 R, : even, 15, : even 

He%, 4 

C~:=O C~:=O a(nl, nz) Cos(nlwI)cos(n202) 

Ifi= C:i=i a(nl, nz) cos(nlW)cos(nz - 4)~~) 

Ct:= I C:~=O a(%, nz) cos((n, - +)ol)cos(nzwz) 

Ifi= 1 Ifi= I a(n,, n2) cos((n, - j)ol)cos((nz - +)q) 

CZ:=O CZ=l 01, n2)cos(n1w1)sin(n2w2) 

CZ=0 If= I ah, nz) cos(n,w,)sin((n, - f)oz) 

If= I C~Y~=I ah, nz) cos((n, - +)ol)sin(n,wz) 

CZ=l I;=1 01, n2) cos((n, - j)wl)sin((nz - +)q) 

C%= I En”:=0 a(nl, nz) sin(n1wI)cos(n202) 

Cf;=l CZl=l 01, n,)sin(n,wJcos((n, -&CO,) 

I?=1 x:=0 01, n2) sin((k - &)cos(n,wJ 

CZ:=l C%=l a@,, n2) sin((n, - j)w,)cos((n, - f)oz) 

x2=1 Cfi=l a(nl, n,)sin(n,w,)sin(n,o,) 

C?= 1 CZ_~=I ah, n2) sin(n,o,)sin((n, - j)w,) 

CZ=l C.“:=l a(nl, nz) sin((n, - t)w1)sin(n,w2) 

Cri= I CZ=I a(nl, nz) sin((nl - t)ol)sin((nz - j)uZ) 

coefficients a(nr, nz) in H(wi, w2) and h(ni, nz) are 
listed in Table 2. Although the four types of 
even/odd, symmetric/antisymmetric 1-D linear- 
phase FIR filters are well known [9], the above 16 
types of 2-D FIR filters have not been well studied 
and exploited in the open literature [S]. For 
example, Ahmad and Wang have only discussed 
the even-even quadrantally symmetric and odd- 
odd antisymmetric types of 2-D FIR filter designs 
[ 11. In this paper, we will extend the analytic least- 
squares method to design the above general 16 
types of 2-D FIR filters. 

Let the square error sum between the specified 
desired frequency response &(irr/M,j~/M) 
and the actual filter response H(ix/M, jx/M) be 
defined as 

= trC(f& - flTWd -WI 

= tr [HTH, - 2HTH + HTHJ, (6) 

where T denotes the transpose operation, 
Hd = [Hdij] and H = [HJ, (i,j = 0, . . ..M) are 
(M + 1) x (M + 1) matrices whose elements are 
given, respectively, by 

and 

Hij=H ;,J; . ( > 

(7) 

(8) 

Here an (M + 1) x (M + 1) rectangular grid 
is chosen for the evaluation of the amplitude 
response in the first quadrant of the (wr, wz)- 
plane. Generally, the matrix H can be repre- 
sented as 

H=PAQT, (9) 

where the matrix A = [aij] specifies the filter’s co- 
efficients, whose dimensions and element ranges 
are listed in Table 3. The frequency response 
transformation matrices P and Q depend on the 
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Table 2 
Relationships between a(nI, nz) in H(o,, 02) and h(n,, n2) in fi(w,, 02) 

Type Relationship between a(q, nz) and h(nI, n2) 

I-l 

I-2 

I-3 

I-4 

11-l 

II-2 

II-3 

II-4 

III-1 

III-2 

III-3 

III-4 

IV-1 

IV-2 

IV-3 

IV-4 

440) = h(N1, W 
~(0, n2) = 2h(N,, Nt - n2), n2 = 1, . . . , Nz 

a(nI,0)=2h(N1-nl,Nz), n,=l,..., NI 

a(nI,nz)=4h(N1-n,,Nz-nz), n,=l,..., N,, n2=1,...,N2 

a(0, nz) = 2h(N1, N2 - nz), nz = 1, . . . , N2 

a(nI, nz) = 4h(NI - nl, Nz - nz), nl = 1, . . . , Nt, nz = 1, . . . , Nz 

a(nI, 0) = 2h(NI - nl, N,), nI = 1, . , NI 

a(nl,n2)=4h(N1-nl,N2-nn2), n,=l,..., N,, n,=l,..., N2 

a(nl, nz) = 4h(NI - nl, N2 - n,), nI = 1, . . . , N1, nz = 1, . . . , N2 

h(nI, N,) = 0, nI = 0, . . . ,fi, - 1 

a(0, nz) = 2h(N,, N, - nz), nz = 1, . . . , Nz 

a(nl, nt) = 4h(NI - nI, Nz - nz), nI = 1, . . . , N1, n2 = 1, . . . , Nz 

a(0, nz) = 2h(N,, N2 - nJ, n2 = 1, , N2 

a(nl,nz)=4h(NI-n,,Nz-nz), n,=l,..., N,, n2=1 ,..., N2 

h(nI,Nz)=O, q=O ,..., 19,--l 

a(nI, n2) = 4h(N1 - nI, N2 - n,), n1 = 1, . . . , NI, n2 = 1, . . . , N2 

a(nl, n2) = 4h(N1 - n,, N2 - n2), n, = 1, . . . , N,, n2 = 1, . . . , N2 

h(N1,n2)=0, n2=0 ,..., &2-i 

a(nl,O)=2h(N,-nl,N2), nI=l ,..., N1 

a(nI,n2)=4h(N,-n,,N2-n2), n,=l,..., N,, n2=1 ,..., N2 

h(N1,n2)=0, n2=0 ,..., fiz-l 

a(nl, n2) = 4h(N, - n,, N2 - nz), nl = 1, . , N1, nz = 1, . . . , N2 

a(nl, 0) = 2h(N1 - nI, N2), nl = 1, , N, 

a(q, n2) = 4h(N1 - nI, Nz - n2), nI = 1, . . . , N1, n2 = 1, . . . , Nz 

a(nl, n2) = 4h(N, - nl, Nz - n2), nl = 1, . . . , N1, n2 = 1, . . . , Nz 

h(N1,n2)=0, n2=0 ,..., f12-1 

h(nl, Nz) = 0, n,=O,...,f?,-1 

a(nI,n2)=4h(N,-nl,N2-n2), n,=l,..., N1,nl=l ,..., Nz 

h(NI,n2)=0, n2=0 ,..., fi2-1 

a(n,,n,)=4h(N,-nI,N2-n2), n,=l,..., N1, n2=1 ,..., N2 

h(nI,Nz)=O, n,=O ,..., fi,-1 

a(nI. nZ) = 4h(N1 - nl, Nz - n2), nl = 1, . . . , N,, nz = 1, . . . , N2 

a(nI,n2)=4h(N,-nl,N,-n2), q=l,..., N1, n2=1 ,..., N2 
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Table 3 
Dimensions and element ranges of the matrix A and corresponding tables for S and V 

Type Subtype Dimension of A 
I$e;ent range Corresponding 

table for S 
Corresponding 
table for V 

I 1 

2 

3 

4 

II 1 

2 

3 

4 

III 1 

2 

3 

4 

IV 1 

2 

3 

4 

Wl + 1) x w2 + 1) i=O,l, . . ..N1 

j=O,l Nz , ...1 

WI + 1)xNz i = 0, 1, . . . , N1 

j=1,2 Nz , .,. 3 
N~x(Nz+l) i=1,2, . . ..Ni 

j = 0,l , . . . . N2 

N,xNz i = 1,2, . ,Ni 

j= 1,2, . . ..N2 

(N, + l)xN, i=O,l, . ..) N1 
j = 1,2 > .../ NZ 

WI + l)xN2 i=O,l, . . ..Ni 

j= 1,2 1 ..’ , N2 

N,xN, i=1,2, . . ..Ni 

j=1,2 N2 > ... , 
N,xN, i=1,2, . . ..N. 

j=1,2 N2 > ...1 

NIX@‘Z+~) i = 1,2, . ,Ni 

j=O,l Nz , “.> 
N,xN, i=1,2, . . ..Ni 

j=1,2 N2 > “, > 

Nix(Nz+l) i= 1,2, . . ..Ni 

j=O,l, . . ..N. 

NixNz i = 1,2, . . , N, 

j=1,2 N, > . . . . 

N,xN, i=1,2 ,..., N, 

j=1,2 Nz , .,, > 
NIXNZ i=1,2, . . ..N. 

j=l,2 N, 9 ... 3 
NIXNZ i = 1,2, . . , N1 

j=1,2 Nz 3 . ..1 
NlxNz i=1,2,...,N, 

j=1,2 N2 , . . . . 

IV 

IV 

V 

V 

IV 

IV 

V 

V 

VI 

VI 

VII 

VII 

VI 

VI 

VII 

VII 

IV 

V 

IV 

v * 

VI 

VII 

VI 

VII 

IV 

V 

IV 

V 

VI 

VII 

VI 

VII 

two separable functions in o1 and w2, respectively. but for Type II-4 filter design, 
For example, for Type I-l digital filter design, 

. . 
P= cos 5 ,i=O,l,..., M,j=O,l,..., N1 

[ 0 i=O,l, . . . ,M,j=l,2 ,..., N, 

, 

, (12) 

and 
. . 

Q= cos E ,i=O,l,..., M,j=O,l,..., N2 
[ 0 i = O,l, . . . ,M,j= 1,2, . . . . N2 

, 

, (13) 
(11) 
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where N1 and N2 are defined in Table 1. Substitu- 
tion of (9) into (6) yields 

E = tr [Hi& - WIPAQ’ + (PAQT)*PAQT]. (14) 

when &Y/&4 = 0, the minimum error is obtained 
and the closed-form solution for A is given by 

A = (P=P) - ‘P=&( (Q=Q) - ’ Q=)=. 

Let R = PTP and U = QTQ, then 

A = R-lPTHd(U-lQT)T. 

(is) 

(16) 

Moreover, let S = R- ‘PT and V = U- ‘Q’(S and 
V are called the inverse frequency response trans- 
formation matrices), then 

A = S&V=. (17) 

In Appendix A and [S], it will be shown that as 
a consequence of the symmetry and matrix pro- 
perties, the number of operations in the computa- 
tion of S and V is significantly reduced. Clearly, 
there are four cases for finding the matrix elements 

Table 4 
Elements of the inverse frequency response transformation 
matrix when the elements in the corresponding P or Q are 
cos(ilx/M) (0 C i C M, 0 $ I < Nk) 

0 
0 
even 
even 
odd 
odd 
odd 

0, M fl 
O<I<M Cfi +fi(L 0 - 2f,f,(WM 
0, M 2fi (i, r) 
O<I<M WI +fZ r) - 2f~fdOlIM 
0 f4 
M -f4 
O<l<M 2{fz(i, r) +hCf3(Q -fdOl~lM 

Table 5 
Elements of the inverse frequency response transformation 
matrix when the elements in the corresponding P or Q are 
cos(i(l - +)x/M) (0 d i c M, 1 Q I Q A$) 

i (1 $ i d NJ I (0 C I < M) T;, 

lCi$N, 0 
2 

M + Nk 
lgi<N, M 0 

1 <iiN, O<I<M 
2f2(i - tr) f&% r) 
___ - M(M + Wh(t, r) M 

of S and V, in which two of them involving 
cos(ijrr/jV) and sin(ijrc/M) elements have been ob- 
tained in [l], and the one with cos(i(j -&n/M) 
element is simplified in Appendix A, and the one 
with sin(i(j - &r/M) element can be derived in the 
same manner. The summary results are listed in 
Tables 4-7, and for each of the 16 types of 2-D FIR 
filter designs, the corresponding tables for both 
S and V are tabulated in Table 3. Notice that the 

functions_W&,j),f3(j),_W5(~) andfs(i,j), used to 
express the elements of the matrix S or V in Tables 
4-7, can be obtained from Table 8, and the ele- 
ments of different kinds of matrices S and V are 
denoted by Tij in general. Moreover, M > Nl, N2 is 
required. 

Once the elements of S and V have been evalu- 
ated using Tables 4-7, (17) can be used to compute 
the filter coefficient matrix A, and the 2-D FIR filter 
design is completed. 

Table 6 
Elements of the inverse frequency response transformation 
matrix when the elements in the corresponding P or Q are 
sin(ilrr/M) (0 < i d M, 1 < I< Nk) 

i (1 < i < Nk) l(O<l<M) Ti, 

l<i<N, 0, M 0 

l<i<N, O<l<M 
2f,(L I) 

M 

Table 7 
Elements of the inverse frequency response transformation 
matrix when the elements in the corresponding P or Q are 
sin(i(l -+)x/M) (0 G i < M, 1 < I< Nk) 

i (1 < i C Nk) I (0 < I < M) Tii, 

l<i<Nk 0 0 

even 
-2 

M 
M + N+. 

odd M 
L 

M + Nk 

even 

odd 

O<l<M 
Vk(i - !, r) + (-I)N”+lf&% I) 

M M(M + N&(&I) 

O<l<M 
2_M-tl) (- f)Nkfs(Nk, r) 

M + M(M + Ndh(ttl) 
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Table 8 
Expressions for the functions used in Tables 4-7 

Function Even Nk Odd Nk 

fi 
1 

M+N,+l 

1 

M + Nk 

fi(i, 0 cos(ilrc/M) cos(iln/M) 

f3U) 

cos(NJx/2M)sin((N, + 2)lrr/2M) cos((N, - l)ln/2M)sin((N, + l)l?r/2M) 

sin(lx/M) sin(lx/M) 
2 

k 
2 

M + Nk M+N,+l 

fd0 
cos(N,Jx/2M)sin((N, + l)lx/2M) cos(N&r/2M)sin((Nk + l)lx/2M) 

sin(Ix/2M) sin(ln/2M) 

f6k 0 sin(ikx/M) sin(ilx/M) 

Fig. 1. Desired magnitude response specifications for designing 
a 21 x 20 2-D Type IV-2 digital filter. 

3. Design example 

In this section, Type IV-2 2-D FIR filter is de- 
signed to demonstrate the effectiveness of this 
method. The desired filter specifications are shown 

Fig. 2. The magnitude response of the designed 21 x 20 2-D 
Type IV-2 digital filter. 

in Fig. 1, in which the regions with horizontal cross 
lines are the stopbands with desired response 0, and 
those with north-east diagonal line are positive 
passband with desired response 1, and those with 
north-west directional lines are negative passband 
with desired response - 1, and the others are the 
transition bands in which the magnitude varies 
linearly between 1 and 0 or - 1 and 0, respectively. 
When N, = NZ = 10 and M = 50 are used, Fig. 2 
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shows the resultant magnitude response, and 
the design only took about 0.18 s on VAX 8700, 
which are much faster than the other optimization 
techniques. 

4. Conclusions 

A general form for designing 2-D FIR filters with 
quadrantally symmetric frequency response is pre- 
sented in this paper. This analytical least squares 
method entails a number of closed-form transform 
matrices to simplify the filter design procedures 
greatly. Due to the simplicity of evaluating the 
functions in Table 8, another significant advantage 
of this design technique is that the design time 
increases very slowly as the filter order increases 
[ 11. The designed 2-D filter’s response is very satis- 
factory as illustrated through the presented numer- 
ical example. 

Appendix A. Derivation of inverse frequency 
response transformation matrix S or V when 
the elements in P or Q are cos(i(l - &T/M), 
i=O,l,..., M,1=1,2 ,..., N,(k=lor2). 

In this section, matrix notation Y is used to 
represent P or Q, and N is used instead of N1 or Nz. 
Hence Y = [Yir], where 

i(1 - f)n 
Yi, = COS ~ ( > M 

3 

i=O,l, . ..) M, 1 = 1,2, . . . , N. 

Let 

Z=YTY=[Zil,l<i,l<N], 

where 

(A-1) 

(A.2) 

M-l = c cos(k(‘~f)~)coS(k(lMt).)’ 
k=O 

i,l=l,2 ,..., N. (A-3) 

Depending on the location of Zil in the matrix, the 
derivation to obtain simplified expressions is 
divided into three cases. 
Case 1. 1 < i = 1 d N. Eq. (A.3) becomes 

M-l 

Zil = C COS2 
k=O 

=- ~+f~~~cos(2ky)~). 

By Eq. (A.l) of [l-J, 

so 

Z. =M+l 
II 

2 . 

(A.4) 

(A-5) 

64.6) 

Case 2. i # 1 and (i + 1) is even ((i - I) is even too). 
Eq. (A.3) becomes 

Similarly, by Eq. (A.l) of [l], 

for i + 1 even, 

and 

= 0, for i - 1 even, (A-9) 

so 

(A.7) 

64.8) 

(A.lO) 

Case 3. i # 1 and (i + l) is odd. Again, Zil can be 
expressed as in (A.7), but it can be shown that 

= 0, for i -t 1 odd (A.1 1) 
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and 

= 1, for i - 1 odd, 

so 

Zi’=5, 

Hence, 

z= 

&M + 1) 3 

3 QM + 1) 

f f 

f f 

3 . . . f 

f . . . 4 
*(M + 1) ... t 

3 . . . +(M + 1) 

where C is an N x N matrix represented by 

C= 

MOO 

0 M 0 

OOM 
. . . . . . . . . 

0 0 0 

and E is an N x 1 matrix given by 

(A.15) 

E = [l 1 1 . . . 11’. (A.16) 

BY Eq. (31) of VI, 

z-1 =2c-'-2C-'E(l +ETC-'E)-'ETC-' 

= [Ail, i, 1 = 1,2, . . . , N], (A.17) 

=$[C+EET], 

173 

(A.12) 

(A.13) 

(A.14) 

‘J 

LetT=Z-‘YT=[Til,i=1,2 ,..., N,I=O,l,..., 
M], then 

Ti, = w(M2+ N){(M + N)cos(w) 

- 

i 

2 

M+ 
I=0 

r 2 cos 

= sin (Nh)/M 

M - M(M + N)sin (k/2M) 

O<E<M, 

0, l= M. 

(A.19) 

where 
References 

’ 

--L 

M(M + N)’ 
i # 1. 
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