
ELSEVIER Signal Processing 48 (1996) 123- 134

In-place in-order mixed radix fast Hartley transforms

Soo-Chang Pei*, Sy-Been Jaw

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC

Received 2 September 1994; revised 10 March 1995 and 3 October 1995

Abstract

This paper presents two Fortran programs that calculate the mixed radix discrete Hartley transform (DHT) using
a general odd length p-point DHT module and several short length Winograd DHT (WDHT) modules. Each program
has its own advantages such as simplicity for implementation or minimum arithmetic complexity. New efficient radix-3,
odd radix-p FHT algorithms and short WDHT modules have been developed to be incorporated into a general FHT
algorithm. It allows a much wider selection of transform sizes, and calculates the DHT in order.

Zusammenfassung

Diese Arbeit stellt zwei Fortran-Programme vor, die die diskrete Hartley-Transformation (DHT) fur gemischte
Basiszahlen (mixed radix) berechnen. Dabei werden ein allgemeiner p-Punkte DHT Modul fur ungerade Langen und
einige Winograd DHT (WDHT) Module fur kurze Llngen benutzt. Jedes Programm hat seine eigenen Vorteile wie die
Einfachheit einer Implementierung oder minimale arithmetische Komplexitlt. Es wurden neue Radix-3, sowie FHT
Algorithmen fur ungerade Basiszahlen p und kurze WDHT Module entwickelt, die in einen allgemeinen FHT-Algorith-
mus eingearbeitet werden konnen. Dies erlaubt eine vie1 grol3ere Auswahl von Transformationslangen und berechnet die
DHT in der richtigen Reihenfolge.

Ce papier presente deux programmes en Fortran qui calculent la transformee de Hartley discrete a rayon melanges
DHT en utilisant un module DHT p-point general a longueur impaire et plusieurs modules DHT de Winograd
a longueur courte. Chaque programme a ses propres avantages tels que la simpliciti d’impltmentation ou la complexite
arithmitique minimum. De nouveaux algorithmes FHT p-rayon impair, rayon-3 et de courts modules WDHT ont ete
developpi: pour Ctre incorpores dans un algorithme FHT general. 11 permet une selection bien plus large des tailles de
transformee et calcule la DHT dans l’ordre.

Keywords: Hartley transform; Mixed radix; Fast algorithm

* Corresponding author.

0165-1684/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved

SSDI 0165-1684(95)00129-8

124 S.-C. Pei, S.-B. Jaw / Signal Processing 48 (1996) 123-134

1. Introduction with

Recently, the discrete Hartley transform (DHT)
has been considered as an interesting alternative to
the Fourier transform for spectrum analysis and
convolution of real signals [2]. Hence it is very
desirable to have fast algorithms for its realization;
several fast Hartley transform (FHT) algorithms
have been developed in these years for efficient
transformation of real data. Bracewell [3] demon-
strated a radix-2 decimation-in-time FHT algorithm
for transform lengths equal to a power of 2. Pei [S]
developed a split-radix FHT algorithm to reduce its
complexity. Sorensen et al. [9] further showed that
most FHT algorithms closely resemble their FFT
counterparts. In particular, they suggested a prime-
factor mapping technique [S, 93 to construct a prime
factor FHT using short length modules. Recently,
Lun and Siu proposed a new prime factor FHT
without extra additions [6]. These prime factor algo-
rithms still limit the available transform sizes to
products of the small DHT module sizes. This paper
aims to expand the range of sizes available by devel-
oping two mixed radix FHT programs. Several effi-
cient radix-2/3/4/p FHT algorithms and short
Winograd DHT modules have been integrated to
become a very general and useful software tool.
It allows a much wider selection of transform sizes,
and calculates the DHT in order. A special section
on the Hartley transform and its applications has
been recently reported in 171 for good overview.

N,N;’ = 1 (modNl), (4)

N1 NC ’ = 1 (mod NJ, (5)

for nl,kl =O,l, N1-1 andn,,kz=O,l ,...,
N2 - 1. This gives from (1)

H(N,N;’ kl + N1 N; ‘k,)

Defining the two-dimensional arrays fi and 2 gives

fi(k,, k,) = H(N,N,-‘k, + NIN;lkZ), (74

%, n2) = x(&n1 + NlnJ G’b)

and

fi(k,, W
NI-lNz-1

=.;o.;o (
2nl,n2)cas[27r(F$+e)].

This prime factor mapping is very unique that
the original length N transform kernel can be de-
composed into a pure two-dimensional Nr x N2
DHT kernel without generating any coupling
twiddle factors.

2. Prime factor index mapping

The discrete Hartley transform of the N-point
sequence x{n) is given by

N-l

By direct analogy with the two-dimensional
FFT, one takes the one-dimensional DHTs of the
rows one by one, and then transform the columns.
The temporary output T(kl, k,) is of the form [4]

N,-lNz-I

H(k) = 1 x(n)cas(2xnk/N),
n=O

case = costl + sine, (I)

for k = 0, 1, . . . , N - 1. If the sequence length can
be factored into two mutually prime factors
N = N1 NZ, then the following substitutions [S, 91
can be made:

T(h,b) = c 1 ~(nl,n;?)cas(2xn,kllNl)
nl=OnZ=O

x cas (2m2k2/N2). (8)

Eq. (8) is not the two-dimensional Hartley trans-
form; however, the result can be converted to the
desired two-dimensional Hartley transform of Eq.
(7~) as follows:

Since

n = Nznl + Nlnz (modN),

k = N2N;‘kl + NIN;‘kZ (modN),

(2)

(3)

2cas(a + b) = casacasp + cascrcas(-B)

+ cas(- 01)casP

(6)

(7c)

- cas(- ol)cas(- /I), (9)

S.-C. Pei, S.-B. Jaw 1 Signal Processing 48 (1996) 123-134 125

the desired Hartley transform Z?(k,, k,) can be
expressed as a sum of four temporary transforms:

2fi(k,, k,) = T&l, kz) + T&r, Nz - kz)

+ T(NI - kl, k,)

- T(Nr - kl, N2 - k2). (10)

Finally, we use the index mapping (Eqs. (2) and (3))
to recover H(K) from A(K,, K,).

3. Radix-3 FHT algorithm

When the number of data samples is close to
a power of 3, rather than a power of 2 or 4, the
radix-3 FHT algorithms [l, lo] can be used effec-
tively. Anupindi et al. [l] have developed an effi-
cient radix-3 FHT algorithm, which is not in-place
and needs some special “trit-reversed” input data
ordering [l]. Zhao [lo] proposes another novel
radix-3 algorithm which requires less arithmetic
complexity than the above algorithm; however, this
new algorithm is actually partially in-place and
needs extra data transfer load at each decomposi-
tion stage. This is due to the fact that the two
N/3-point DHTs H1 (k) and H_ 1(k) in Zhao’s algo-
rithm [lo] need to be subtracted from each other
and time-reversed to get B(k) = H,($N - k) -
H_,(iN - k) [lo]. These time consuming data
transfer or time-reversal operations are carried out
in the “Arrange” unit of Figs. 1 and 2 in [lo]. For
fast transform performance analysis, data transfer
load is also a critical and important factor to be
considered as well as multiplication and addition
complexity. In this paper, a truly in-place in-order
radix-3 algorithm is presented. This algorithm
eliminates the time-consuming data transfer load,
needs only conventional radix-3 digit-reversed in-
put ordering, and keeps the same arithmetic com-
plexity as Zhao’s algorithm [lo].

Assume the DHT of Eq. (1) for a real N-point
sequence x(n) needs to be computed with N = 3*.

A radix-3 decimation-in-time (DIT) FHT algo-
rithm is found by decomposing (1) as follows:

H(k) = “‘5 ’ x(3n) cas j2rrnk)
n=o \l*IJ /

TTck N/3-1

+ cosN C x(3n + 1)cas
n-0

2,rk N/3- 1
+ siriN C x(3n + 1)cas

n-0

&k N/3-1

+ cosN C x(3n + 2)cas
n-0

drrk N/3-1
+ siriN 1 x(3n + 2)cas

n=o

(11)

Define

N/3-1

H,(k) = C x(3n)cas
n=O

N/3-1

H,(k) = C x(3n +
n=O

N/3-1

(1-N

H*(k) = 1 x(3n +
n=O

and

(124

(13)

then Eq. (11) becomes

H(k) = H,(k) + H,(k)cose + H,(- k)sinQ

+ Hz(k)cos2e + H,(- k)sin28. Pa)

H(-k)=H,(-k)+H1(-k)cose

-H,(k)sin8 + H2(- k)cos2e

- H,(k) sin 28. UW

where H(- k) = H(N - k) and Hi(- k) =
Hi(tN - k) for i = 0, 1,2.

H(k + +N) = H,(k) - +H,(k) cos e

-i&H1(k)sintI -+H,(- k)sin8

+ f&z,(- k)cos8

- fH,(k) cos 28 + Q?H,(k) sin 28

-+H 1(- k)sin28

- +$H,(- k)cos2e, Wa)

126 S.-C. Pei, S.-B. Jaw 1 Signal Processing 48 (1996) 123-134

H(-k++N)=H,(-k)-+H,(-k)cosd

+ i,,hH,(- k)sin8

+ +H, (k) sin 8 + +aH, (k) cos 0

- $H,(- k)cos28

- ifiH,(- k)sin 28

+iH,(k)sin28

- &,bH,(k)cos 28, (W

factors are equal to 1 and 0, respectively. Then Eqs.
(14)-(16) become

H(0) = H,(O) + [H,(O) + H&N,

H@V = H,(O) - +CHd0) + H,(O)1

+ &%fMO) - H,(O)l,

W%W = f&(O) - +CHd0) + Hz(O)1

H(k + $V) = H,,(k) - +HJk)cod

+f$Hr(k)sinO -+H,(- k)sine

- +fiH,(- k)cos6’

- f,/bW) - H,P)l. (17c)

This 3-point butterfly needs only one multiplica-
tion, six additions and one right shift (multiplied

by f).

- $H,(k)cos28 - +$H,(k)sin20

- iH,(- k)sin20

+ &hH,(- k)cos28, (164

H(- k + $V) = H,(- k) - &H,(- k)cos 0

For our proposed algorithm, the above de-
composition of an N-point DHT into three
+N-point DHTs only q re uires $(iN - 1) 6-point
butterflies for k # 0 plus one additional 3-point
butterfly for k = 0. Assume the number of multipli-
cations and additions required for an N-point
DHT are M(r) and A(r), respectively, where N = 3’,
then

-&,bH,(- k)sinti M(r) = 3M(r - 1) + i(fN - 1) x 10 + 1

+ +H,(k)sine-&,,/?Hl(k)cose

- +H,(- k)cos 28

+ $,,hH,(- k)sin 28

- &H,(k) sin 20

=3M(r-l)+SN-4, (lga)

A(r) = 3A(r - 1) + f($N - 1) x 16 + 6

=3A(r-l)+$N-2.

+ $J?H2(k)cos 28,

0 < k < +($A/ - 1). (16b)

Notice that at each stage both the kth term and the
(*N - k)th term from each length-jN DHT (i.e. the
six terms Hi(k) and Hi(- k), i = 0, 1,2) are re-
quired for the computation of one output point
H(K). Thus the above six terms in the conventional
DIT FHT two 3-point butterflies can be combined
into a 6-point butterfly in Fig. l(a) to avoid over-
writing an element that will be needed later [9].
This results in saving of both data transfer load and
the number of multiplications. Each 6-point butter-
fly requires 10 multiplications and 16 additions
totally. The three outputs of H(O), H(N/3) and
H(2N/3) for k = 0 in Eqs. (14)-(16) are reduced into
a 3-point butterfly in Fig. l(b), also the twiddle

For Zhao’s algorithm in [lo], the “trit” de-
composition [l, lo] into three +N-point DHTs
requires ($N - 1) 3-point butterflies for k # 0 and
one 3-point butterfly for k = 0 plus additional
data transfer for B(k). Each 3-point butterfly for
K # 0 needs five multiplications, instead of four
multiplications in Fig. 1 of [lo], and eight addi-

tions. Multiplication by i$J has been neglected
carelessly and it needs be counted in Zhao’s
3-point butterfly, then we obtain the multiplica-
tions as M(r)=3M(r-l)+(jN--1)x5+1
= 3M(r - 1) +$N -4 and the additions as

A(r) = 3A(r - 1) + ($N - 1) x 8 + 6 = 3A(r - 1)
+$N-2.

We get exactly the same arithmetic complexity in
both algorithms, however, the proposed algorithm
is unique in normal digit reversal decomposition
for radix-3, and has eliminated the time consuming
data transfer load at each decomposition stage.

U7b)

(lgb)

S.-C. Pei. S.-B. Jaw 1 Signal Processing 48 (1996) 123-134 127

ks0. @-2&/N.
H;(k)

HOC-k)

H,(k)

H, C-k)

H2W

H2(-k)

(a)

k-0

Ho(O)

H,(O)

H2(0)

(b)

0 H(k)

H+k)

H,!$+k,

H(s-k)
3

H(z+k)
3

W-k)

’ H(O)

Fig. 1. (a) 6-point radix-3 FHT butterfly for k # 0. (b) 3-point radix-3 FHT butterfly for k = 0.

Using the initial conditions M(1) = 1 and A(1) = 6,
we obtain

M(r) = $rN - 2N + 2, A(r) = $N - N + 1,

algorithms, thus making such mixed radix FHTs
quite flexible and useful.

where r = log, N. (19)
4. Odd radix-p FHT algorithm

The above algorithm can be effectively used by
zero padding when the transform length is equal to
or close to a power of 3. More importantly, it can
be combined with radix-2 FHTs to form an efficient
algorithm of composite length 2k3’. Note that the
density of DHT lengths covered by length 2k3f
FHTs is much higher than that of single radix

In this section, we will develop a general odd
radix-p FHT algorithm although it is not optimal
in minimum arithmetic complexity. However, it
does have its simplicity advantage for software im-
plementation, and it is suitable for any specific odd
radix FHT algorithm. A radix-p DIT FHT algo-
rithm is decomposed into several length-N/p

128 S.-C. Pei, S.-B. Jaw / Signal Processing 48 (1996) 123-134

DHTs in a similar way as radix-3 FHT (i.e. Hi(k)
and Hi(- k), i = 0, 1,2, . . . ,P).

p-1

H(k) = H,(k) + 1 [Hj (k) cos (2njk/N)
j=l

+ Hj (- k) sin (2njk/N)]. (20)

H k+y
(>

p-1

= H,(k) + 1 Hj(k) cos (27tjk/N) cos (2rcjjm/P)
j=t

- Hi(k) sin (2njk/N) sin (2rrjjm/P)

+ Hj (- k) cos (2njk/N) sin (2rtjjm/P)

+ Hj (- k) sin (2njk/N) cos (2rcjm/P). (21)

Let 9 = 2nk/N, assume P is odd; Eq. (21) then
becomes

H k+y
(>

(P-l)/2

= H,(k) + 1 {[Hj(k)cosjd + Hj(- k)sinj0
j= 1

+ Hp-j(k)Cos(p - j)0

+ Hp-j(- k)sin(p - j)e]cos(2njm/p)

+ [Hj (- k) cos j0 - Hj (k) sin j0

- Hp-j(- k)cos(p - j)0

+ Hp -j (k) sin (p - j) 01 sin (2njjm/p)}

and

>
(P-1)/2

(22)

= H,(k) + c {[Hj(k)cosje + Hj(- k)sinj6’
j=l

+ Hp-j(k)Cos(p -j)fl

+ Hp-j(- k)sin(p -j)e]cos(2nm/p)

- [Hj (- k) cos j0 - Hj (k) sin je

- Hp-j(- k)cos(p - j)e

+ HP-j(k) sin(p -j) f3] sin (27cjm/p)},

k=O,l , . . . ,i(N/p - 1) and

m = 0, 1, . . .) gp - 1). (23)

The same redundant terms in Eqs. (21)-(23) can be
used for computation saving. Similar expressions
for H(-k), H(-k+y) and H(-k+yN)
are not listed here for saving space.

For k = 0, Eqs. (22) and (23) are reduced to

H y = H,(O)
(>

(p-l)/2

+ 1 { CHj (0) + Hp -j (011 COS (Wjm/p)
j=l

+ CHj (0) - Hp -j (011 sin Pjjm/p)} , (24)

,(vN) = H,(o)

(P-1)/2

+ jzl { CHj (0) + Hp - j K91 COS @W/p)

- [H,(O) - HP-j(O)]sin(2njm/P)). (25)

Eqs. (22)-(25) are general radix-p butterfly forms
of Eqs. (14)-(17) in radix-3 case. Each radix-p
butterfly requiring about (p + 1)’ - 4 multiplica-
tions/additions, the total number of multiplica-
tions/additions is approximately equal to

(p2 + 2p - 3) operations/butterfly

butterflies/stage

x (log, N) stages x
p2 + 2p - 3

2P
N log, N

for N = pr. (26)

5. Winograd short-length DHT modules

It is well-known that the short-length Winograd
DFT modules [S] can get the minimum number of
multiplications for prime-length transforms. The
algorithm can be expressed as

X(k) = DFT, C-441 = $,C,Tp Cx(41, (27)

where Tp is a J x p pre-weave incidence matrix oper-
ator, S, is a p x J post-weave incidence matrix oper-
ator and C, is a J x J diagonal matrix with complex

S.-C. Pei. S.-B. Jaw / Signal Processing 48 (1996) 123-134 129

entries, and J is the number of multiplications.
The incidence matrices TP and S, are matrices,
whose elements are - 1, 0 or 1, leading only
to additions and subtractions. The diagonal matrix
C, is decomposed into its real and imaginary
parts by

X(k) = DFT, [x(n)] = S, [C,” + jCL] Tp [x(n)]

= S,C~Tp[x(n)] + jS,C~T,[x(n)]. (28)

Since the DHT is equivalent to subtracting the
imaginary part from the real part of the DFT X(k),
we get

H(k) = DHT, [x(n)]

= S, C,” Tp Cx (41 - S, C:, Tp Cx (41

= S,[C,R - C;] T,[x(n)] = S,e;T,[x(n)],

(29)

where Cp” = C,” - Ci is the new diagonal matrix
with real entries for the Winograd DHT module,
and the matrices S, and Tp are the same as
the corresponding Winograd DFT modules. So
the DHT via the Winograd approach requires
exactly the same minimum number of multiplica-
tions, but a few more additions than the DFT.
We give an example for computing the length-5
DHT as below

H(k) = DHT, [x(n)] = S5 cFT5 x(n), (304

1 0 0 0 0

1 1 1 1 - 1

1 1 - 1 1 0

1 1 - 1 - 1 0

1 1 1 - 1 1

-

0-

0

1

1

0

X

1 0 0 0 0 0

0 - 1.25 0 0 0 0

0 0 0.56 0 0 0

0 0 0 0.95 0 0

0 0 0 0 1.54 0

0 0 0 0 0 0.36

1

0

0

x 0

0

-0

0

1

WW

This length-5 Winograd DHT only requires 5 real
multiplications and 17 real additions. The other
short Winograd DHT modules of length 7,8,9 and
16 can be easily obtained by modifying the DFT
modules in [S].

During the middle stages of the decomposition,
the general Winograd radix-p FFT butterfly can be
expressed as

F(k) = SCTWf(n), (31)

wheref(n) is a p x 1 vector of previous stage output
values, and W is a twiddle-factor diagonal matrix
with the following form:

-1 0

W
-n

w=
W-2n

(32)

0 w-(P- l)n

The main difference between Eqs. (32) and (27) is
that the input f(n) needs be premultiplied first by
the twiddle factors, and then transformed by the
p-point DFT module. Since in the middle stages of
the transformation, f(n) and F(k) are generally
complex valued, we get

[F,(k) + PdW = SC& + jG1 T [WR + j WJ

x CM4 + ih(41 (33)

We separate the real-part and the imaginary
part:

F,(k) = SCR TWA(n) - SCR T Wrfi(n)

- SC, T WRfi(n) - SC, T Wr.Mn) , (344

J’,(k) = SG T WRM + SG T WI.!&)

+ sGTw~fR(4 - SGTWLW. (34’4

130 S.-C. Pei, S.-B. Jaw / Signal Processing 48 (1996) 123-134

The Hartley transform can be expressed as the
real-part minus the imaginary-part:

H(k) = F,(k) - F,(k)

= SCR ~~Rkh’t(~) -h(n)]

- scRTW,[.hdn) +_hb)l

- %TWR[ht(n) +&,)I

- SC, T Wd_hdn) -fib)]. Wa)

If we add F,(k) and F,(k), we get H(- k) =
FR(- k) - F,(- k) = F,(k) + F,(k), since the real
part is symmetric, the imaginary part is anti-sym-
metric with respect to k. We get

H(- k) = F,(k) + F,(k)

= scRTWR[_fi&) +fi(n)l

+ ScRT W,&(n) -fib)]

+ SC, T WR kh&) -h(n)]

- &TW,[f,b) +_h(n)l. Wb)

Substituting h(n) =fR(n) --J(n) and h(- n) =
fR(n) +fi(n), we obtain

H(k) = SCR T WR[h(n)] - SCR T W,[h(- n)]

- SC, T WR [h(- n)] - SC, T W, [h(n)],

(364

H(- k) = SCRT WR[h(- n)] + SCRT W,[h(n)]

+ SC, T WR [h(n)] - SC, T W, [h(- n)] .

W-4

Eqs. (36a) and (36b) can be combined into a 2p-
point FHT butterfly to avoid overwriting and to
save both data transfer load and multiplications. If
the index n of the previous stage is zero, then h(0)
and h(- 0) will be the same for each group; so
there are only p points in the butterfly. In this case,
the twiddle-factor matrix W of Eq. (32) for n = 0 is
an identity matrix IR. Then

wR = IR, w, = 0,

H(k) = SCR T [h(O)] - SC, T [h(- 0)]

= S(CR - C,) T [h(O)]. (37)

Eq. (37) will form a p-point FHT butterfly to be
used for transformation. Since the size of the pres-

ent stage H(k) is N-point length, then H(- k) in
Eq. (36b) is equivalent to H(N - K). However, if
the size of h(n) is (N/P)-point length, then h(- n) is
defined as h[(N/P) - n] in Eq. (36a) and (36b).

Each radix has two major transformation proced-
ures, one for p points, the other for 2p points. For
example in our radix-5 Winograd DHT subroutine
RSWDHT(M, x), the subprogram RSBTFl does
the 5-point butterfly procedure, and the routine
R5BTF2 performs the lo-point butterfly operation.

6. Complexity analysis

Assume a composite length-N DHT is to be
computed, where N = M,M2M3, M, = p;‘,
M2 = p;2, M3 = p;3 and the factors M,, M2, M3
are co-prime with respect to each other. Then this
mixed-radix FHT needs M2M3 length-M1 DHTs
M1M3 length-M2 DHTs and M,Mz length-M,
DHT computations, totally. We have

#Multiplies

= MzM&) + MrM&) + MrM&), (3ga)

#Adds

= M,M,(a,) + M,M&z) + M,M&,). (3gb)

Here pi, Clip i = 1,2,3, are the numbers of multi-
plications and additions required for each radix-pi
length-M, DHT computation, respectively, in
which pi and ai can be approximately estimated as

Mi ri
/Li~k:‘~logpiMi=k~-

I Pi ’

CtiEkfslog,,Mi=kf-,
Mi ri

Pi Pi

Here kf’ and kf’ are the numbers of multiplies and
adds for a length-pi Winograd DHT butterfly or
module. Table 1 lists the multiplications and addi-
tions required for each short length WDHT
module or butterfly.

There are @ - 1) twiddle factors to be premulti-
plied; the first twiddle factor is equal to 1, which can
be eliminated. Each twiddle factor needs two multi-
plications and one addition. So the total number of
multiplies/adds in each p-point WDHT butterfly

S.-C. Pei, S.-B. Jaw / Signal Processing 48 (1996) 123-134 131

Table 1
Number of real Multiplies and Adds for short length p-real
WDHT module (Butterfly)

P M (MBl) (MB2) A (ABl) (AB2)

2 0 (2) (4) 2 (3) (6)
3 2 (6) (12) 6 (8) (16)
4 0 (6) (12) 8 (11) (22)
5 5 (13) (26) 17 (21) (42)
6 8 (20) (40) 36 (42) (84)
7 2 (16) (32) 26 (33) (66)
8 10 (26) (52) 44 (52) (104)
9 10 (40) (80) 74 (89) (178)

MB l/ABl are valid for a p-point butterfly, MB2/AB2 for a
fp-point butterfly.

will be the sum of the twiddle-factor premultiply
operations plus the WDHT transform module. It is
calculated as below and shown in Table 1.

MB1 =M+2(p-l), MB2 = 2MB1, (40a)

ABl = A + l(p - l), AB2 = 2ABl. WW

For the 2p-point butterfly case, twice the number
of the point butterfly operations are required (see
MB 2 and AB 2 in Table 1). We give an example and
calculate the complexity of a length-12 DHT: For
N=i2=3x4,weobtain

#A = 3(Q + 4(a,) = 3 x 8 + 4 x 6 = 36.

For N = 12 = 3 x 22, we get

M=3~(2x$x2)+4~2=32,

Since a length-4 WDHT module is much more
efficient than a radix-2 DHT, we prefer the first
factorization with N = 3 x 4 instead of N = 3 x 22.
According to our experience, the large prime length
of p and small power of I will usually be the better
choice. Table 2 and Fig. 2 list the number of opera-
tion counts for several mixed radix DHT’s for refer-
ence. Since the general odd radix-9 and radix-13

No. of addition and multiplication

gti peak d
8-

7-

6-
*
5
s5

6
o,_
$
0”

3-

2-

l-

---- MRDHI” $+Aa

- --- MRh’DHTb Mb+Ab

“0 500 1500 2000
Lenah

Fig. 2. The number of operation counts for the mixed radix DHTs.

132

Table 2

S.-C. Pei, S.-B. Jaw / Signal Processing 48 (1996) 123-134

Time in milliseconds and operation counts for two FHT implementations

Length N Factors
MRD- MRWD- M” + Mb+

HT” HTb M” A” A a Mb Ab Ab

60 3.4.5

63 I.9

63 7.32
64 26

125 s
147 3.72

210 2.3.5.7
240 3.5.16

240 3.5.42

243 35
252 4.7.9
252 4.7.32

256 44

343 13
400 16.5’

400 42.52

500 4.53

576 9.8’
576 9.43

700 4.7.52

729 93
784 16.7’
784 42.72

1008 7,9.16

1008 7.32.42
1008 7.9.42

1200 3.16.5’

1200 3.42.52

1260 4.5.7.9

1260 5.7.2’.3=

1260 5.7.9.22

1260 4.5.7.3=

1280 5.16’
1280 5.44

1296 16.9’

1296 4=.9=
1296 42. 34
1331 113
1800 8.9.5=

1800 9.23.52

1800 2X.32.52

2000 16. 53

2000 42.5’
2197 133
2304 9.16’

2304 9.44
2352 3.16.7=

2352 3.4=.72
2880 5.9.82
2880 5.32.43
2880 5.9.43
3240 5.8.92
3240 5.23.92
3375 153

66 57 180
65 44 441
59 56 273
59 59 384

153 95 1275
169 143 1407
315 280 1260

None 228 None
264 290 1120
250 217 2430
308 241 1764
275 288 1764
245 210 1536
467 294 4557

None 360 None
374 465 3280
557 527 4000

None 548 None
557 593 4896
881 838 5740

1084 623 11907
None 766 None

794 950 7056
None 975 None
1125 1404 7434
1256 1232 9450

None 1428 None

1428 1724 10640
1960 1560 13230

1834 2207 13 860

2006 1941 13 860
1799 1795 11025

None 1271 None
1286 1396 10240

None 1232 None

1410 1558 14 256
1050 1718 14 248
2154 None 19965

None 2142 None
2419 2845 19 800
2180 3158 16200

None 2106 None

2133 2604 18000
3862 None 39 546

None 2319 None
2259 2553 23 040

None 2935 None

3008 3514 23 520
None 3516 None
3211 4263 30 240
3590 3743 30 240

None 3956 None
4617 5221 42 120
6324 None 70785

360 540 100 444 544
441 882 142 544 686
273 546 156 436 592
576 960 384 576 960

1275 2500 975 1575 2550
1407 2814 938 2058 2996
1260 2520 590 2424 3014

None None 550 2406 2956
1120 2240 1120 2616 3736

2430 4860 2430 3240 5670
1764 3528 568 3032 3600
1764 3528 1296 3144 4440
2816 4352 1536 2816 4352
4557 9114 2940 6174 9114

None None 2330 5210 7540

3280 6560 3280 5560 8840

4000 8000 3900 6100 10000
None None 2944 7568 10512
4896 9792 3232 7568 10800
5740 11840 4440 10880 15 320

11907 23814 6318 12636 18954
None None 4970 13034 18004
7056 14112 5656 13720 19376

None None 2662 13 694 16356
7434 14 868 7968 11832 19800

9450 18900 5056 11384 16440
None None 7790 18030 25 820
10640 21200 10640 19080 29 720
13230 26 460 4100 19444 23 544

13 860 27 720 9252 21264 30516

13 860 27 720 6620 20 704 27 324

11025 22 050 7740 20004 27 744
None None 7680 18 592 26 272
10240 20480 8960 18 432 27 392

None None 8295 20 970 29 265
14 256 28 512 11376 22 104 33 480
14 248 28 496 14 248 20 982 35 200
19 965 39 930 None None None
None None 11810 29 860 41670

19800 39 600 16760 32 020 48 780
16200 32 400 21960 32 820 54 780
None None 16 850 34 450 51300

18000 36000 21600 36 200 57 800
39 546 19 092 None None None
None None 14080 36 896 50 976

23 040 46 080 16384 36 608 52 992
None None 16478 40 806 57 284

23 520 47 040 22 064 42 728 64 792
None None 17600 47 632 65 232

30 240 60480 27 360 48 912 76 272
30 240 60 480 19040 47 632 66 672
None None 11520 53 226 64 746

42 120 84 240 31680 57 276 88 956
70785 141750 None None None

S-C. Pei. S.-B. Jaw / Signal Processing 48 (1996) 123-134 133

MRDHT routines are less efficient than the others,
notice that there are two sharp peaks c and d occur-
ring at length 729(93) and 2197(133), respectively, in
Fig. 2. For length 1260 with four different choices of
factors in Table 2, these number of operation
counts are averaged and plotted in Fig. 2.

7. Brief program description and speed
measurements

Two in-place, in-order mixed radix FHT pro-
grams have been implemented in Fortran on our
Micro-VAX 3600 computer. The complete pro-
grams, mixed radix FHT subroutine “MRDHT”
using the general radix-p algorithm, and a mixed-
radix Winograd FHT subroutine “MRWDHT”
with small DHT modules are available on request
from the authors. The programs take real input
data in array X, and calculate a length-N DHT
in-place and in-order (the output being written
over the input X). The length N must be such that
it can be written as a product of M factors,
which are powers of relatively prime numbers
stored in the integer array PO. The even loca-
tions of array PO such as PO(O), PO(2) and
PO(4), etc. store the prime numbers, and the
odd locations such as PO(l), PO(3), PO(5), etc.
are their corresponding powers. This gives
N = [PO(O)* * PO(l)] * [PO(2) * * PO(3)] * ... *
[PO(ZM) * * PO(2M + l)]. If PO(2n) = 0 for some
n, this means the end of the parameter list. The
maximum number of factors is M = 3. However,
the routines can be extended easily to more than
three factors by slightly modifying the main pro-
gram. The maximum transform length of the DHTs
is limited to N = 5000. Since the DHT is its own
inverse, the two main subroutines MRDHT
and MRWDHT can be used for both forward and
inverse transformation.

The MRDHT subroutine includes radix-2,
radix-3, radix-4 and general odd radix-p FHT
transform routines, in which p must be any odd
number; even radix-8 and 16 FHTs, etc. are not
allowed in our MRDHT routines. The Winograd
subroutine MRWDHT provides several efficient
radix-2, 3, 5, 7, 8, 9 and 16 Winograd transform
subroutines.

Times were measured on a Micro-VAX model
3600 computer, each specific length transform has
been run 50 times to measure the speed, and the
results are averaged and shown in Table 2 and
Fig. 3. For the MRDHT subroutine, since general
odd radix-p FHT routines are not as efficient as the
Winograd short-length transform routines, it turns
out to be better to use short radix-3 and 4 fast
routines instead of high-power radix-2 and long
radix-9 FHTs. However, for the MRWDHT
subroutine, it is better to use the long-length
Winograd routines as frequently as possible. The
results show that the speed is much faster, for single
or low powers of prime length, than for many or
high powers of prime factors. The rule of thumb
for factoring the length N is to let the radix
for power-of-prime factors be as large as possible,
and the power of each radix be as small as possible.
Also we can use 4, 8, 16 and 9-point short length
Winograd DHT modules to replace the radix-2
and radix-3 FHTs for reducing the number of
multiplications.

Our two mixed-radix FHT programs show com-
parable performance in terms of speed measure-
ments. For lengths less than 1260, the Winograd
program MRWDHT is faster than MRDHT; but
for length larger than 1260, the MRDHT becomes
faster than the Winograd routine MRWDHT.
Each program has its own advantages, such as
simplicity of software code or minimum arithmetric
complexity required.

8. Conclusions

New efficient radix-3 and odd radix-p FHT
algorithms as well as short Winograd DHT
modules have been developed, to be both
incorporated into a general FHT algorithm. Two
mixed radix FHT programs have been imple-
mented as a very general and useful software tool.
It allows a much wider selection of transform sizes,
and calculates the DHT in-place and in-order.
Extensive computer simulations have been run on
a Micro-VAX computer to measure the transform
speed.

134

7000.

S.-C. Pei, S.-B. Jaw 1 Signal Processing 48 (1996) 123-134

Execution time
I I I I I

6000 -

____-_ Htwf

5000 - w-w__ MRKIHTb

3 4000 -

8
2 z
5 3000 -

Fig. 3. The execution time for the mixed radix DHTs.

References C61

Cl1

CA

c31

M

PI

N. Anupindi, S.B. Narayanan and K.M.M. Prabhu, “New
radix-3 FHT algorithm”, Electronics Lett., Vol. 26, 1990,
pp. 1537-1538.
R.N. Bracewell, “Discrete Hartley transform”, J. Opt. Sot.
Amer., Vol. 73, December 1983, pp. 1832-1835.
R.N. Bracewell, “The fast Hartley transform”, Proc. IEEE,
Vol. 72, August 1984, pp. 1010-1018.
R.N. Bracewell, 0. Buneman, H. Hao and J. Villasenor,
“Fast two-dimensional Hartley transform”, Proc. IEEE,
Vol. 74, 1986, pp. 1282-1283.
C.S. Burrus and P.W. Eschenbacher, “An in-place, in-or-
der prime factor FFT algorithm”, IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-29, August 1981, pp.
806-817.

c71

PI

c91

Cl01

D.P.K. Lun and W.C. Siu, “On prime factor mapping for
the discrete Hartley transform”, IEEE Trans. Acoust.
Speech Signal Process., Vol. ASSP-40, No. 6, June 1992, pp.
1399-1411.
K.J. Olejniczak and G.T. Heydt, “Scanning the special
section on the Hartley transform”, Proc. IEEE, Vol. 82,
March 1994, pp. 372-380.
S.C. Pei and J.L. Wu, “Split-radix fast Hartley transform”,
Electronics Lett., Vol. 22, January 1986, pp. 26-27.
H.V. Sorensen, D.L. Jones, C.S. Burrus and M.T. Heide-
man, “On computing the discrete Hartley transform”,
IEEE Trans. Acoust. Speech Signal Process., Vol. ASSP-
33, October 1985, pp. 1231-1238.
Z.J. Zhao, “In-place radix-3 fast Hartley transform algo-
rithm”, Electronics Left., Vol. 28, 1992, pp. 319-321.

