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Abstract--Three-dimensional (3D) motion estimation is a very important topic in machine vision. How- 
ever, reliability of the estimated 3D motion seems to be the most challenging problem, especially to the 
linear algorithms developed for solving a general 3D motion problem (six degrees of freedom). In real 
applications such as the traffic surveillance and auto-vehicle systems, the observed 3D motion has only 
three degrees of freedom because of the ground plane constraint (GPC). In this paper, a new iterative 
method is proposed for solving the above problem. Our method has several advantages: (1) It can handle 
both the point and line features as its input image data. (2) It is very suitable for parallel processing. (3) Its 
cost function is so well-conditioned that the final 3D motion estimation is robust and insensitive to noise, 
which is proved by experiments. (4) It can handle the case of missing data to a certain degree. The above 
benefits make our method suitable for a real application. Experiments including simulated and real-world 
images show satisfactory results. © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd. 
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l. INTRODUCTION 

The problem of estimating 3D motion/structure para- 
meters from an image sequence has been the focus of 
a significant amount of research during the past years. 
In several industrial applications, the ability to per- 
form detection and estimation of motion has become 
a basic task of the robotic vision system. The difficulty 
of motion analysis may be broken into two parts: (1) 
measurement--to extract image features and measure 
their 2D motions on the image plane. (2) 3D motion 
estimation--from the above 2D measurements to esti- 
mate 3D motion and infer the object structure. The 
second part is the main concern of this paper. 

To solve the above 3D motion estimation problem, 
the so-called correspondence approaches are often 
utilized. They analyze discrete motion measurement 
of the same physical features (points, lines . . . . .  etc.) 
over time. Besides, they often assume that the 3D 
motion of the target is rigid. By the image features 
and strategies they used, we briefly describe these 
techniques. 

Roach and Aggarwal m proposed an algorithm of 
3D motion estimation using point correspondences. It 
is based on the distance invariance of the points of 
a 3D rigid object. This method is nonlinear and there- 
fore initial guesses or global search have to be 
adopted. Besides, several linear algorithms were pro- 
posed. Examples include Longuet-Higgins, t2J Tsai 
and Huang, t3) Zhuang, t4) Weng and Huang, 15) Phi- 
lip, t6) and Spetsakis and AloimonosF ) The main step 
of these linear algorithms is to solve an intermediate 

matrix linearly from point correspondences. Then the 
motion parameters will be determined by decompos- 
ing this intermediate matrix. These linear methods 
need at least eight point correspondences at two views 
and they are sensitive to noise. Several methods about 
point tracking are listed in references (8-11). 

Compared with the point features, the line features 
have better performance in the reliability of measure- 
ment. Measurement of a line feature can easily achieve 
the sub-pixel accuracy. However, a line feature reveals 
less 3D motion clues than that from a point feature. 
So it often needs more sets of line correspondences in 
more views (than points) to solve a 3D motion prob- 
lem. The algorithm proposed by Yen and Huang ~12) is 
based on projecting image lines on a unit sphere; the 
3D rotations are estimated iteratively from line cor- 
respondences over three frames. Mitichi, Seida and 
Aggarwal ~1 a) used angle invariance of any two lines of 
a 3D rigid object; this algorithm used rigidity con- 
straint to reconstruct the 3D lines and then computes 
the 3D motion parameters. Lately, linear algorithms 
for lines are proposed. Their basic derivations are very 
similar to that for points. Examples include Liu and 
Huang, t14-as) Spetsakis and Aloimonos, I16) Weng, 
Huang and Ahuja. t~7) These linear algorithms need at 
least 13-line correspondences at three views and they 
are very sensitive to noise. Some methods about 
tracking a line feature are listed in references (18-21). 

In industrial applications, reliability of an algo- 
rithm should be highly considered. To achieve high 
robustness, three possible strategies were often 
utilized. 

• To use long image sequence and local smoothness 
*Author to whom correspondence should be addressed. 3D motion constraint. Examples include Broida 
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and Chellappa, 122~ Weng, Huang and Ahuja,/23) 
Tseng and Sood, ~24) Shariat and Price, ~25) and 
Broida and Chellappa, ~26) and Hu and Ahuja. ~27~ 
Most of them used point correspondences only. 

• To use as many available image features as 
possible. For example, Wang, Karandikar and 
AggarwaP TM and Liu, Huang and Faugeras ~29J con- 
sidered the use of both image point and line fea- 
tures as their input. 

• To use additional physical constraints in some 
special applications. Nonlinearity of the motion 
analysis will be greatly simplified, and the number 
of unknowns will be reduced. Examples include the 
ground plane constraint (GPC) in the traffic sur- 
veillance system or the auto-navigation system (see 
Fig. 1). ~30'31) 

Inspired by the above ideas, a new iterative algo- 
rithm is proposed in this paper. It considers a special 
vehicle-type motion problem. A closed-form solution 
is also derived as an initial estimate to our algorithm. 
This initial solution is precisely accurate when no 
errors exist. 

Our algorithm has several important properties: (1) 
Both the image points and lines can be accepted as the 
input of the algorithm. (2) It minimizes a 2D cost 
function to find the optimum solution. (3) The defini- 
tion of the cost function is especially taken care such 
that the cost function is well-shaped (or well-condi- 
tioned). (4) It is very suitable for parallel processing. 
(5) Our algorithm can be easily extended to a long 
image sequence and it can handle missing data to 
a certain degree. 

To complete the algorithm, several important 
issues are discussed: (1) Weighting problem. (2) The 
smallest number of required image features. (3) The 
case when no rotation exists. Experiments, including 
both the simulated and real-world image tests, prove 
the correctness and robustness of this algorithm. 

To stress the difference between our iterative 
method and the traditional linear one [especially to 
the Spetsakis's method~33)], both of them are com- 
pared in the following directions: 

• Technique. Basically, the linear method is indirect. 
No matter how the motion type is constrained, 27 
intermediate variables should be first solved any- 
way. It means that we should use more redundant 
image features than that required (and even larger 
for the robustness of solution). Finally, the 27 inter- 
mediate variables are still be sent to a nonlinear 
optimization process for further refinement. On the 
contrary, our method is a direct one. We do not 
have to solve the intermediate variables; therefore, 
the redundant image features are not so badly 
required. 

• Accuracy. Of no doubt, solution to the intermedi- 
ate variables will be very error-sensitive for ignor- 
ing the nonlinear constraints among them. Besides, 
finding the best-fit motion parameters to minimize 

the residual errors of the 27 intermediate variables 
is not a very good idea. Constructing a good optim- 
ization criterion needs to consider the noise model 
of image features and the balance of weighting. The 
linear method never mentioned about that. On the 
contrary, in the vehicle-type motion problem, our 
method does consider all of the above factors. 
Practical use. In the vehicle-type 3D motion prob- 
lem, our method only needs to search a two-vari- 
able cost function (about rotation). The linear 
method may have a large advantage in the theoret- 
ical analysis of general 3D-motion problem, but it 
may be not the most appropriate method for the 
vehicle-type 3D motion estimation. 

On the whole, we can say: "The linear method is 
designed for speed improvement and theoretical anal- 
ysis, but ours is designed for accuracy improvement 
and real application ". 

The remainder of this paper is organized as follows: 
Section 2, describe several basic transform relation- 
ships between the camera coordinate system and the 
global coordinate system. Section 3, problem formula- 
tion. Section 4, description of the main algorithm. 
Section 5, discussions about several related problems 
of the algorithm. Section 6, experiments includ- 
ing simulated and real-world image. Section 7, final 
conclusion. 

2. COORDINATE TRANSFORM 

Without loss of generality, let us consider a traffic 
surveillance system shown in Fig. 1. There are two 
coordinate systems: ground plane coordinate system 
(GPCS) and camera coordinate system (CCS). The 
origin O of GPCS is just lying on this plane. {i, ~, ~} 
forms an orthonormal basis of GPCS, and the first 
two orthonormal vectors ( i  and y) span the whole 
ground plane. The third unit vector ~ is then the 
normal vector of the ground plane. For convenience, 
the GPCS is considered as the global coordinate sys- 
tem in this paper. The camera is placed at a suitable 
position such that it can see the objects moving on the 
ground plane. The origin F of CCS is positioned at 
Pc - (Pox, PcY, Pcz) T (relative to GPCS). Its three or- 
thonormal vectors, {ul, u2, u3}, specify the pose of the 
camera, u3 is the camera's main axis; focal length Fo is 
set to 1; Ul and u2 are the two directions of the image 
axes. 

A point in 3D space is separately denoted by P and 
Q in GPCS and CCS. We can easily derive the coordi- 
nate transform relationship between GPCS and CCS 
as follows: 

P = RcQ + Pc or  Q = a f ( P  - Pc), (1) 

where the matrix Rc is an orthonormal matrix and 
defined as 

R - [ u l i u 2 1 n 3 ] .  (2) 
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Fig. 1. Configuration of a traffic surveillance system. 

Assume that the vehicle-type motion is specified by 
a rotation matrix R and a translation vector T like 
this 

P' = R P  + T, (3) 

3. PROBLEM FORMULATION 

Let us consider the monocular  traffic surveillance 
system shown in Fig. 1. We assume that the image 
point and line features corresponding to a 3D moving 
vehicle can be continuously tracked at three image 
frames (t = - i, t = 0, t = + 1). Figure 2 shows the 
definitions for motion parameters: o)_ and T for 
time instants 0 and - 1; co+ and T+ for time instants 
0 and + 1. The pose Rc and position Pc of the camera 
has been known as prior information. The camera 
obeys the rule of perspective projection. 

Now the question is: "How to determine the un- 
known 30 motion parameters [o) , o)+, T_,  T+ } from 
the input image data?" 

Before leaving this section, we briefly explain why 
we need three frames to solve this problem. To the 
image point features, two frames are just enough for 
the 3D motion estimation; however, it takes at least 
three for the image line features to do the same thing. 
In order to fuse the contributions from both image 
points and lines, three image frames are grouped to- 
gether and considered as a basic processing unit in 
our method. 

where 

 o'C°S  snail R = | s i n ~ o  coso) - T =  r • 

0 

(4) 

The same 3D motion observed by the camera (de- 
noted by "*") can be represented by 

Q' = R * Q  + T*. (5) 

R* and T* also have the following special forms: 

R* = R~RRc; T *  = ctm~ + flmr, (6) 

where mx -= R~X~, m r - R~Xy, mz - R ~ ,  and 

ot - P c x (  - 1 + cos o~) - Per s i n o  + Tx; 

fi =- Pcx(sin@ 4- Per( - 1 4- cos oJ) 4- Tr. (7) 

For  a simpler form in derivation, T* can be rewrit- 
ten as I-from equation (6)] 

T* = [mxlmy] = Ma, (8) 

where M is a 3 × 2 matrix and a is a 2 × 1 vector. 
The above equations define the transform relation- 

ships between G P C S  and CCS. The three motion 
parameters ~o, Tx, and Ty defined in G P C S  are dir- 
ectly related to the moving velocity of the 3D object 
along the ground plane (road). In fact, with a minor 
modification, the above equations are also suitable for 
the auto-navgation system. 

4. MAIN ALGORITHM 

To present our method in an organized form, we 
divide its derivations into the following six subsec- 
tions (4.1 4.6): 

4.1. Definition of a general cost Junction 

The purpose of our algorithm is to find the opti- 
mum 3D motion parmeters which can minimize the 
value of a given cost function J. Assume that we have 
tracked Np image points and N~ image lines in three 
frames. Therefore, the cost function J must be divided 
into two parts: one for the point features, and one for 
the line features. It can be defined as 

Nv N~ 

J =-- E Jp, i 4- E Ji,j, (9) 
i = l  j = l  

where the subscripts p and l separately represent 
"point" and "line" features. If three is no available 
image line feature (or points) in the input data, we 
may neglect all of the cost terms Jr.is (or Jp. is). There- 
fore, the definition of cost function in equation (9) is 
very flexible. 

4.2. Cost function for image points 

Here we will define the cost function ,lv.i for i = 1 to 
Np. To simplify the notations, the subscript i is tem- 
porarily neglected in the following derivation. Let us 
consider Fig. 3. A moving-feature point Q in 3D space 
is separately denoted by Q_,  Qo, and Q+ at the three 
interested time instants t = - l, t = 0, and t = + 1. 
For  the purpose of proper weighting (explained later), 
their projected image points are represented by three 
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Fig. 2. Definition of motion parameters at three time 
instants. 
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y 

~ F 

Fig. 3. Perspective projection for a point feature. 

unit vectors q , qo, and q+ (from Ix, y, 1] T to [x, 
y, 1]/~/x 2 + y2 + I). 

Under  the perspective projection, it is easy to ob- 
serve that Qk (k = - ,  O, +)  and its projection qk are 
of the same direction. So the cost function Jp can be 
defined as 

Jp = Wp{Hq- ×Q-I I  2 + Ilqo × Qoql 2 + IIq+ ×Q+112}, 

(10) 

where wp (subscript "p" denotes "point") is a weight- 
ing factor. The operator " × "  denotes the outer prod- 
uct of vectors. 

According to equations (5), (6) and (8), we have 

Q -  = R * - Q o + T * -  ; Q+ = R * Q o + T * ,  (11) 

where T* = Mak (k = - ,  +). 
Therefore, J ,  is in fact a function of co , ~o +, a , a +, 

and Qo. To minimize Jp, we substitute equation (11) 
into equation (10) and set OJp/~3Qo to zero. An opti- 
mum Qo can be solved in terms of a given set of 
motion parameters 

Qo = (ATA) - 1AXb, (12) 

where 

FE a 1 A ~ x / ~ p  Eo ; b~- - x / ~ p  7 . (13) 

[E+R*J  [E+Ma+ / 

The matrix Ek (k = - ,  0, +)  is defined as 

Ek =-- qk, z 0 -- k,x • 

- -  qk,r qk.x 

(14) 

When substituting the best Qo in equation (12) into 
the cost function Jp, we have 

Jp = bT(l -- A(ArA)-  IAT)b -= b~Db. (15) 

Notice that the matrix D only depends on the un- 
known rotation parameters,  ~,J_ and ~9+. 

For a simpler mathematical form, the vector b can 
be rearranged as 

b =  - ~ p p  a+ 

E+M 

= Ha. (16) 

Here H is a 9 × 4 matrix, and it depends only on the 
input image data; a is a 4 × 1 vector. 

Substituting equation (16) into equation (15), we 
have 

Jv = aT(HTDH)a -aTCpa. (17) 

Two things are obvious: (1) the 4 x 4  symmetric 
matrix Cp is a function of only two unknowns,  e~_ and 
~o+; (2) the cost function J ,  is a quadratic form of a. 

Each set of the corresponding image points can 
provide a cost function like equation (17). Adding 
these cost functions together, we have the final form 

Jp.i = a~ Cp.i(co ,~J.,+) a = aXBpa. (18) 
i = 1  i 

4.3. Cost function Jor image lines 

Here we will define the cost function Jt.j forj  = 1 to 
N~. The subscript j  is also neglected for simplifying the 
notations. Let us consider Fig. 4. A moving feature 
line L in 3D space is separately denoted by L_, Lo, 
and L+ at the three interested time instants t = - 1, 
t = 0, and t = + 1. Their projected image lines are 
separately denoted by lkS (k = - ,  0, + ). The corre- 
sponding 3D points on the feature lines are denoted 
by QkS. Each image line Ik can be represented by a unit 
vector ek illustrated in Fig. 4. ~:k is just defined as the 
normal vector of the plane ~z which passes through the 
focal point F and the image line lk. Obviously, ~:k is 
orthogonal to every point on the 3D feature line Lk. 

To define the cost function Jr, we appropriately 
choose two virtual points, say q{o ") and q~o b), on an image 
line lo. For  the purpose of proper weighting, the 
norms of q~o a) and q~o bl are also re-scaled to 1 just as in 
Section 4.2. The points on the line Lo which are 
corresponding to the two virtual points on lo are 
denoted by Q~o ") and Q~). Their corresponding points 
at other time instants (t = - 1, 0, + 1) are then de- 
noted by Q~") and Q~b), where k = - ,  0, + .  

There is no need for the two virtual points being 
physically extracted on the image line because a line 
can be re-constructed by any two points on it. How- 
ever, it will be better to choose the two detected edge 
points of a tracked line segment as the virtual points. 
It is because the detected edge points on an image line 
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normal vector g \ 
of the plane n 

Fig. 4. Perspective projection for a line feature. 

The 4 x 4 symmetric matrix C} "1 is also a function of 
only two unknowns, o)_ and ~o+; (2) the cost function 
j},l is also a quadratic form of a, just like Jr. 

As to the other point Q~b~, we have the same deriva- 
tion as that from equation (19) to equation (24). So we 
will have another 4 x 4 matrix Ct b~. Notice that the 
virtual point q~)") (or q~b) ) only appear in D (a) and D (b). 

Each set of the three corresponding image lines can 
provide two cost functions Jl ") and Jlb). Adding these 
cost functions together, we have the final form 

• , < j  + a = aTBta. (25) 
j= 1 j= 1 l"~l'JJ 

are usually projected by real 3D points on the object, 
and these 3D points are of approximately the same 
visual distance to the camera. 

Take the first virtual point qCo") for example, we 
may define a function Jl a) like this 

Jl~)= wt{[[Q~").~_ll 2 + IIQ~0") × q~0°)ll 2 + IIQ~)'~+112}, 

(19) 

where w~ is a weighting factor for the line's cost func- 
tion. The operator " '"  denotes the inner product of 
vectors. 

Following the similar derivations described in Sec- 
tion 4.2, we may set OJI")/OQ~o a~ to zero to minimize the 
cost function J}"J. An opt imum Q~") can be deter- 
mined in terms of a given set of motion parameters. 

Q~o ~) = (A'rA)- IATb, (20) 

where 

~:TR* L TMa+J 
and the matrix go is the same as that defined in 
equation (14) except that its qo is replaced by q(0 "). 

Substituting the opt imum Qto") into equation (19), 
we have 

Jl '° = bT(l -- A(ATA) - ~AT)b - bXD(a)b. (22) 

Similar to equation (16), the vector b defined here 
can be rearranged as 

I  T-o lEl  b =  - ~  ~ - H a .  (23) 
~T+M a+ 

Here H is a 5 × 4 matrix, and it depends only on the 
input image lines; a is a 4 × 1 vector. 

Substituting equation (23) into equation (22), we 
have 

Jl ") = aT(HTD(")H)a --= aTCl")a. (24) 

4.4 Fusion of  image point and line features 

Substituting equations (18) and (25) into equation 
(9), we have 

J = aT(Bp + Bi)a -- I]aH2(aTB'a). (26) 

Here the 4 × 4 matrix B is a function of two unknowns 
~o_ and o)+; fi is the unit vector of a. Equation (26) 
combines both the contributions from image points 
and lines. It is the reason why we call "fusion" in the 
title of this paper. 

Because a monocular  camera system cannot re- 
cover the absolute value of translation (subject to 
a unknown factor), the magnitude of a [refer to equa- 
tions (7) and (8)] is also undetermined. So we may 
temporarily assume that Ilall = 1. Then the cost func- 
tion J can be further minimized if h is the eigenvector 
corresponding to the smallest eigenvalue /],min of B. 
Therefore, minimizing J is equivalent to finding the 
best parameters (09 ,o)+) which can minimize the 
smallest eigenvalue of B(og_, co+). A lot of searching 
method can be applied to solve this minimization 
problem• For  example, the Nelder-Meade simplex 
method used in a procedure named "FMINS" in the 
computer software "MATLAB" is adopted in this 
paper. Experiments show that the cost function J is 
well-conditioned and the minimization can always 
converge to the true solution. 

When the rotation parameters ~o_ and t~+ are 
estimated, the unit vector h is then determined. Be- 
cause the true vector a is in fact a unknown scale- 
multiple h of h, the translation T_ and T+ can be 
written in term of the unknown variable h like this 
[according to the definitions in equations (7) and (8)] 

; - ] ~  = -P,,x(sin~1)_) - P , , y ( - l + c o s o ) _ )  

+ h , (27) 
a2 

r + , y J  - Pcx(sin~+) -- PcY( - 1 + cos~,+)J 

+ h[a_-31 . (28, 
La4d 
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Finally, from equations (12) and (20), the 3D locations 
of the feature points Qos and lines Los can be solved 
to the unknown factor h. If there is no additional 
constraint available, the unknown factor h seems to be 
an inherent determinacy for such a monocular  camera 
system. 

However, a traffic surveillance system which can 
not determine the true value of translation (T and 
T+) is usually worthless for real application. There- 
fore, in Section 4.5, a new constraint is proposed for 
estimating the final unknown factor h. 

4.5. The positional constraint for a moviny vehicle 

To a traffic surveillance system, its interested ob- 
jects are usually vehicles moving on the road. Gener- 
ally speaking, we can observe several common 
constraints (see Fig. 1): (1) The width of the road 
constrains the varying range of X -  component of an 
object point (in GPCS), say [Xmin, Xmax]. (2) The 
height of the moving vehicles on the road is usually 
limited, say [0, Zmax]- These new constraints help us 
to determine the final unknown h. 

From the determined motion parameters ~o_, co +, 
and ~, we may substitute them into equations (4) and 
(6) and to determine R*, where i =  - ,  + .  If the 
object point Qo is the feature point described in Sec- 
tion 4.2, R* and ~ can be substituted into equatons 
(12)-(14) to determine Qo to the scale factor h. If the 
object point Q0 is the virtual point defined in Section 
4.3, R* and ~ can be similarly substituted into equa- 
tions (20) and (21) to determine Qo to the scale factor 
h. Both of them have the following form: Qo = hQo. 
For improving the reading, the explicit form of Qo is 
neglected here. 

Because the positional constraints for a moving 
vehicle is expressed by GPCS, we have to transform 
Qo to Po by using the first equation of equation (1). 
Therefore, 

Po = hRcQ0 + P,.. (29) 

Every chosen points P0 (feature points or virtual 
points) must satisfy the two constraints (inequalities) 
given in the first paragraph of this subsection. How- 
ever, it is still impossible to solve h from these inequal- 
ities. So we have to give another constraint Zave such 
that 

1 N. 
- -  ~ P0,z = Za~ = constant. (30) 
Np i = 1  

From equations (29) and (30), we approximately esti- 
mate the final unknown factor h. 

4.6. Initial solution for the optimization process 

In such a constrained SFM problem formulated in 
Section 2, it is possible that a closed-form solution 
may exists. Similar to the linear algorithm proposed 
by Weng, Huang and Ahuja, ~5) we can derive an initial 

solution for our iterative algorithm. First, let us con- 
sider the motion defined in equation (5) 

Q' = R * Q  + T*.  (31) 

Then, we have 

Q ' . [ T * x ( R * Q ) ] = 0  or  q ' . [ T * × ( R * q ) ] = 0 ,  

(32) 

where q and q' are separately the image points of 
Q and Q'. 

Substituting equation (6) into equation (32), we 
obtain the following homogeneous equation 

~ cos ~)[q"(m~ × q) + (m~. q) (my- q')] + fl cos e) 
[q" (my × q) - (m~. q) (mx" q')] + 2 [ - (m~. q) 
(my" q')] + fl[-(m~ • q) (mx" q')] + ~ sin ~o[-(mx" q) 
(m~" q')] + flsinm [(my- q) (m~. q')] = 0. (33) 

Equation (33) can be considered as a linear equation 
of six unknowns by defining six new variables like this 

e -- [el ,e2,ea,e4,es,e6] x =- [~xcosco,fl cos~,~,0~,/~, 

sin u~, fl sin o)] T. (34) 

If there are at least five given sets of point correspon- 
dences, the vector e can be easily solved to a scale 
factor (say c) by a least-squares approach. This un- 
known scale factor c can be determined by using the 
relationship among the components of e. For  
example, we have e ~ + e  2 = e  2 , e ~ + e 6  z=e , ] ,  and 
(el/ez)=(e3/e4)=(es/e6).  Finally, we will obtain 
a closed-form solution. It can be adopted as an initial 
solution. 

In fact, according to the behavior of the cost func- 
tion J in our experiences, it is usually good enough to 
adopt ~) = o)+ = 0 as the initial solution. It is be- 
cause the rotation of a moving vehicle is seldom large. 

5. D I S C U S S I O N  

In this section, we will discuss three related topics. 
They are described in Sections 5.1-5.3. 

5.1. The balance of  weightin 9 

To a minimization process, the cost function J 
should be well-shaped or well-conditioned. If not, the 
iterative searching may be trapped by a local minima 
or causes a very error-sensitive motion estimation. 
These problems are often caused by an improper 
definition of the cost function. Now we will check 
whether the cost function J is well defined or not. 

Considering the definitions of Jp.i and Jl,j in equa- 
tions (10) and (19), it is easy to find that their basic 
elements are defined as an operation (inner or outer 
vector product) between an object point and an unit 
vector. So the cost values of the basic elements are 
proportional to the ray distance of the interested 3D 
object points. As stated in Section 4.5, there is no 
significant difference among the ray distances of 



objec t  poin ts .  It m a k e s  sure  t ha t  each  image  fea ture  
a p p r o x i m a t e l y  has  the  same  level of  c o n t r i b u t i o n  to 
the  cost  func t ion .  Therefore ,  the  cos t  func t ion  is still 
qu i te  we l l - cond i t i oned  even  if all of the  we igh t ing  
factors  are set to  one.  

5.2. To handle missing data 

O u r  m e t h o d  still w o r k s  even  if some  of the  i npu t  
da t a  are  missing.  Basically,  we set the  quan t i t i e s  

-0.5 

re la ted  to the  miss ing  image  fea tures  to zero, a n d  they 
will no t  c o n t r i b u t e  to the  cost  func t ion  J any  more .  
N o w  the  ques t i on  is: "How much missin9 data can our 
method handle?" T o  a n s w e r  this  ques t ion ,  let us con-  
s ider  e q u a t i o n s  (13)-(15) aga in  (for points) .  The  cost  
func t ion  def ined in e q u a t i o n  (15) is the  res idual  e r ro r  
of the  sys tem AQo = b w h e n  we subs t i t u t e  the  opt i -  
m u m  so lu t ion  of Qo [def ined  in e q u a t i o n  (12)] in to  
the  l inear  system. Not ice  t ha t  on ly  an  over -de te r -  
mined  l inear  sys tem has  a res idual  er ror .  In o the r  
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Cc) The image at t= +l (t? The image at t= tl 

Fig. 5. Simulated image sequence a moving vehicle. (a)-(c) seen by a camera whose focal point F is 
located at (r, 0, q~) = (15, 45', 45'). (a) t = - 1; (b) t = 0; (c) t - + 1. Figures (d~(l) are similarly defined 

as that in Figs (a)~c). But the focal point of the camera is now located at (r, 0, qS) - (15, 1 5 , 4 5 i .  
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z • i 
~ !  "- camera i' r .  ,+ 

o . . . . . . . . . . . . . . . . . . . . . . . .  ./77_,' 
" , ~ n d  plane (X-Y plane) 

X 

Fig. 6. The pose of the camera. The position of its focal 
point F (denoted by a vector P~) is specified by three 

parametrs: r, 0, and ~D. 

words, the number  of the rows of A should be larger 
than  three and dim(AVA) must  be equal  to three. If 
there are too many  missing image data  such that  the 
above condi t ion is not  satisfied, the cost function 
defined in equa t ion  (15) is always zero and  makes  no 
cont r ibu t ion  to the total  cost J any more. Similar 
discussion is suitable for the line features. So we have 
the following conclusion: 

"'An image point should appear at least twice during 
the time interval included in the defined cost junction J. 
Besides, an image line Jeature should appear at least 
three times in the same time interval "'. 

5.3. Simplification when there is no rotation 

In daily experiences, the rota t ion of a moving  ve- 
hicle on the road is usually small. So we may directly 
set c,) and c,J. to zero and  substi tute them into 
equa t ion  (26) to determine the matr ix B. The vector 
a is jus t  the eigenvector cor responding  to the smallest 
eigenvalue of B. F r o m  equat ion  (26) to equat ion  (30), 
the mot ion  es t imat ion problem is completely solved 
without  using any iterative search. 

6. EXPERIMENTAL RESULTS 
There are three goals for our  experiments:  (1) To 

prove the correctness of our  algori thm. (2) To test the 
robustness of our  a lgor i thm under  different condi- 
tions. (3) Our  a lgor i thm can work well when consider- 
ing a real-world image sequence. For  a better  control  
of the experiments,  a s imulated image sequence is 
adopted  for the first two goals. 

6.1. Experiments[or simulated image 

Figures 5(a)-(c) shows a moving  vehicle on the 
road. Three frames captured at t = - 1, t = 0, and  
t = + 1 are considered. Figures 5(d) (t3 shows the 
same moving  vehicle but  seen by the camera at differ- 
ent pose. To define the pose of the camera properly, 
let us see the configurat ion shown in Fig. 6. The focal 

(a) 

(b) 

(d) 

",\ 

(c) 

(e) 

Fig. 7. Changing shapes of the cost function. Four cost functions are shown (a) The cost function near 
the true solution (has shifted to the center). (r, 0, q~)=(15, 15 °,45"). (b) Level contour: 
(r, 0, 4)) = (15, 15", 45+). (c) jr, 0, qS) = (15, 45', 45'). (d) (r, 0, (b) = (10, 457, 0"). (e) (r, 0, ~b) = (40, 45",0 ). 



Vehicle-type motion estinaation by the fusion of image point and line features 341 

center F (position vector Pc) of the camera can be 
represented by 

P,, = [ rsin0cos~b, rsin 0sin ~b, rcos0] .  (35) 

The three or thonormal  vectors, ui for i = 1 to 3, defin- 
ing the pose of the camera are now set to 

- P , .  u 3 × ~  . 
u3 = IlPcl~; u,- Ilu3x~lI u2 U 3 X U l ,  (36) 

Figure 5(a)-(c) considers the case when (r, 0, thl = 
(15, 45 ,45 '% Figure 5(d)-(f) considers the case when 
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(a) Deviation of image position (pixel) 

(r, 0, ~b)= (15, 1 5 , 4 5 " ) .  The motion parameters of 
the moving vehicle shown in Fig. 5 are, o~ = - 0.4, 
(o+ =0.3 ,  T _ x =  - 0 . 5 ,  T , y =  - 2 . 0 ,  T + . x = 0 . 4 ,  
and T+.r = 1.8. On the moving vehicle, its vertices 
and the lines linking these vertices are used as the 
input image features (Np = 12 and Nt = 18). To com- 
pare the true solution and the estimated soluton, we 
define two vectors 

c _ = [ ( o  ,¢,~+ ]r; d=[ T- x,T ,r, T.~.x,T+.r] 1. 
{37) 
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Fig. 8. Error performance of the algorithm under different poses of the camera. (a) and (b) The rotation 
and translation errors vs. noise when varying the angle 0. (c) and (d) The rotation and translation errors 

vs. noise when varying the distance r. 
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Therefore, the percentage errors of the estimated rota- 
tion and translation are separately defined as 

tl~ cll 
rotation error - x 100%; 

Ilcil 
rid -d~i 

translation error - - -  (38) 
Ildll 

The final estimation errors for Figs 5(a)-(c} and Figs 
5(d} (f) are separately: (1)Rotat ion errors: 2.14x 
10 s% and 3.45x 10 9%. (2)Translat ion errors: 
5.82x 10 ~% and 1.05x 10 ~%. Here we assume 
that the true Z,~e has been given. It proves the correct- 
ness of the algorithm. 

Figure 7(a) shows an example of the 2D cost func- 
tion J. It is obtained by considering the same moving 
vehicle shown in Fig. 5. The domain of this cost 
function is (e)_, e~+) = [ 0.4 _+ 0.2, 0.3 _+ 0.2]. From 
different poses of the camera, we can observe the 
shape change of the cost function. Figures 7(b)-(e) are 

four cost functions (level contours) obtained by differ- 
ent positions of the camera. Figures 7(b} and (c) con- 
sider the shape change induced by different 0 (15' and 
45'). Figures 7(d} and (e) consider the shape change 
induced by different distances r (10 and 40). We find 
that the cost functions corresponding to larger 0 and 
larger distance r will be more ill-conditioned, which 
may influence the robustness of our algorithm. 

Figure 8(a) (d) shows the error performance under 
different poses of the camera. The noise-perturbed 
image-point positions are simulated by adding a 2D 
random vector (61, 62) to each vertices of the moving 
vehicle shown in Fig. 5. Here 6~ and 62 are random 
variables of normal distribution N(0, 6). 6 is the stan- 
dard deviation. If we assume that the total image 
plane (1 x 1) is uniformly divided into 512 x 512 grids, 
every pixel on it occupies an area of (1/5 l 2) x (1/512) 
square unit. Therefore, the deviation 6 = cr x (1/512) is 
considered as the "noise level of rr pixels ". Every point 
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Fig. 9. Real-world image test; (a) the frame at t = 1; (b) the frame at t = 0; (c) the frame at t = + 1; 
(d) the extracted image points and line features (Np = 20, Nt = 18) at three time instants• 
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on the curves shown in Fig. 8 is the average of 40 tests. 
Figures (a)-(b) consider the cases when (r, 0, qS)= 
(15, 0, 45"). Figures 8(c) (d) consider the cases when 
(r, 0, qS) = (r, 4 5 , 0 ' ) .  It is easy to find that the cases 
corresponding to larger 0 and larger distance r are 
more error-sensitive. The influence from the changing 
distance r seems stronger than that from the changing 
tilt angle 0. 

6.2. Experiments Jot real-world image 

Figures 9(a) (c) show the three frames of the testing 
real-world image sequence. The toy car moves from 
upper right to lower left. The size of the toy car is 
about 4.7 cm x 3.2 cm x 3.5 cm. To extract its image 
features (points or lines), the original image is first 
transformed into an "edge" image by edge detection. 
Both the point and line features are manually picked 
and traced during the three frames. To obtain a line 
feature, we collect all of its corresponding edge points 
and then determine the best-fitting line by linear regres- 
sion. Finally, we can trace continuously 20 points and 
18 lines at three time instants. It is shown in Fig. 9(d). 

Following the definitions of coordinate transform 
described in Section 2, the pose of the camera is 
specified by {Re, P~}. After applying a simple camera 
calibration process (not shown here), we have the 
following parameters: aspect ratio = 1.036, focal 
length = 19.051 cm, viewing angle = 28', and 

-0.0336 0.5066 - 0.8615"] 
/ 

R,. = 0.9989 0.0099 0.0448[; 

0.0312 0.8621 - 0.5057J 

P~ = 19.051 x - 0.0559| cm. 
! 

1.3303_] 

The true motion parameters of the moving toy car 
are directly measured as follows: [~o_, e)+] = 
( - 0.3840, 0.8029) (rad), [ T - . x  , T -  r] = ( - 1.74, 
7.87) (cm), [ Y r + . x ,  r+.r]  = (6.23, - 6.13) (cm). 
The average height Z~v~ defined in equation (30) is 
measured as 2.56 (cm). 

Finally, the estimated results are: [v) , c~+] = 
( - 0.3519,0.8306) (rad), error = 4.7640%; [T  .x, 
T .y] = ( -- 1.65, 7.25)(cm), error = 7.7729%; 
I T + x ,  T+,r] = (5.69, -- 5.58) (cm), error = 8.8189%. 
The estimation errors may be mainly due to quantiz- 
ation errors, calibration errors, and position errors. 
But they still seem acceptable. The result could be 
better if a more precise camera calibration can be 
obtained. 

7. CONCLUSIONS 

In this paper, a new iterative method is proposed 
for solving the problem of vehicle-type motion estima- 
tion. This method has several advantages: 

• It can handle both the point and line features as its 
input image data. The contributions from these 
image features can be fused together. All we have to 
do is to minimize the smallest eigenvalue of a 4 x 4 
symmetry and nonnegative definitive matrix B. The 
dimension of searching space is very small ( = 2). 

• The definition of the cost function is very suitable 
for parallel processing. 

• Each component  cost function in J has approxim- 
ately the same numerical contribution to the final 
cost value. It is just fine to set all of the weighting 
factors w's defined in J to 1. Therefore, there is no 
serious weighting problem in our method. 

• Its cost function J is so well-conditioned that the 
final 3D motion estimation is robust and insensitive 
to noise, which is proved by experiments. 

• It can handle the case of missing point/line data to 
certain degree. Besides, a line feature has an in- 
herent ability to handle partial occlusion. 

Both the simulated and real-world images are tes- 
ted in this paper. Simulated experiments are mainly 
used to test (1) the correctness of the proposed algo- 
rithm, (2) the error performance of the proposed 
algorithm. The results obtained from real-world 
image show that our method can work well in real 
application. 
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