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is about 8600. In our simulation, the design runs at 66-MHz clock
frequency, and achieves a search rate of about 683 000 blocks/s.

III. EXPERIMENTAL RESULTS AND PERFORMANCE COMPARISONS

In our experiments, the block size is fixed at 16� 16 and
the maximum motion displacement is set to�7. The first 100
frames of the “Football,” “Mobile,” “Windmill,” “Flower,” “Tennis,”
“Salesman,” and “Miss America” sequences are used to test the
proposed algorithm. It is noted that these sequences contain different
combinations of still, slow, and fast moving objects. The comparisons
are made by using ten search algorithms: 1) FS; 2) 3SS; 3) CS; 4)
PHODS; 5) 4SS; 6) BBGDS; 7) SES; 8) PSA; 9) GPS; and 10) FPS,
in terms of six different measures. These measures include: 1) average
MSE per pixel; 2) average PSNR; 3) average prediction errors per
pixel; 4) average entropy of prediction errors; 5) average percentage
of unpredictable pels per frame (pels with absolute prediction errors
larger than three, over a range of 255, are classified as unpredictable
pels [3]); and 6) average search points per block. The results
obtained from the different algorithms are reported in Tables II–VII.
These results indicate that the proposed FPS performs better than
other algorithms in terms of the six measures for the seven image
sequences. Although FPS performs just a little better than GPS, its
cost is less because it needs only a small memory (128 bytes) for
fuzzy prediction, as compared with the large memory (32 000 bytes)
needed for GPS [8].

Fig. 7 shows the original 15th frame of the “Football” sequence,
and the motion-compensated prediction frames using FS, 3SS, 4SS,
BBGDS and FPS, respectively. The compensated images look un-
satisfactory at the locations where fast moving objects appear. From
Fig. 7, we find that only FS and FPS can clearly identify the number
“82” of the football player who slipped on the ground. In terms of
subjective image quality, the performance of FPS is better than those
of 3SS, 4SS, and BBGDS. Table VIII shows the results of the six
measures of FS, 3SS, 4SS, BBGDS, and FPS for the 15th frame of
the Football sequence.

IV. CONCLUSION

In this paper, we present a novel and efficient fuzzy-prediction
search algorithm for block-motion estimation. Experimental results
show that the proposed algorithm works better than other search
algorithms. The VLSI architecture for the proposed algorithm has
been developed, and yields a search rate of 683 000 blocks/s with a
clock rate of 66 MHz in our simulation.
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A New Discrete Fractional Fourier Transform
Based on Constrained Eigendecomposition of
DFT Matrix by Largrange Multiplier Method

Soo-Chang Pei, Chien-Cheng Tseng, and Min-Hung Yeh

Abstract—This paper is concerned with the definition of the discrete
fractional Fourier transform (DFRFT). First, an eigendecomposition of
the discrete Fourier transform (DFT) matrix is derived by sampling the
Hermite Gauss functions, which are eigenfunctions of the continuous
Fourier transform and by performing a novel error-removal procedure.
Then, the result of the eigendecomposition of the DFT matrix is used to
define a new DFRFT. Finally, several numerical examples are illustrated
to demonstrate that the proposed DFRFT is a better approximation to the
continuous fractional Fourier transform than the conventional defined
DFRFT.

Index Terms—Discrete Fourier transform, discrete fractional Fourier
transform.

I. INTRODUCTION

In recent years, a new fractional operator called fractional Fourier
transform (FRFT) has been investigated extensively [1]–[11]. The
FRFT has found many applications in the solution of differential
equations, quantum mechanics and quantum optics, and optical
systems and optical signal processing, swept-frequency filters, time-
variant filtering and multiplexing, pattern recognition, and study of
time-frequency distribution [1]–[4]. Besides, the FRFT has been
proven to relate to other signal analysis tools, such as Wigner
distribution, neural network, wavelet transform and various chirp-
related operations [5]–[7]. Several useful properties of FRFT are
currently under study in the signal processing community [8]–[11].

So far, many methods for implementing FRFT have been devel-
oped. However, most of them utilize optical instruments or numerical
integration. Because the FRFT is a potentially useful tool for signal
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TABLE I
MULTIPLICITIES OF F

N Mul. of 1 Mul of -1 Mul. of -j Mul. of j
4m m+1 m m m-1

4m+1 m+1 m m m
4m+2 m+1 m+1 m m
4m+3 m+1 m+1 m+1 m

processing, the direct computation of FRFT in digital computers has
become an important issue. Basically, the computation of the discrete
fractional Fourier transform (DFRFT) needs to obey the additivity
property and similarity condition. The additivity property means that
application of the transform with angular parameter� followed by an
application of the transform with angular parameter� is equivalent
to the application of the transform with angular parameter�+�. The
similarity condition means that the transform results of DFRFT must
be similar to those of the continuous FRFT. In [12] and [13], a method
for digital computing FRFT was proposed, but their method does not
obey the additivity property. In [14], another DFRFT is defined, but
this definition does not provide the similar transform results as those
of continuous case. The purpose of this paper is to present a new
DFRFT which obeys the additivity property and similarity condition
simultaneously.

The advantage to define a DFRFT which satisfies additivity prop-
erty is described as follows. If additivity property holds, the inverse
transform of DFRFT with angular parameter� is the DFRFT with
angular parameter��. Thus, the signals processed in the fractional
Fourier domains can be easily transformed into time domain by a
unified computer program with minus angular parameter. The DFRFT
proposed in [12], [13] does not obey the additivity property, so its
inverse transform has not been described yet. Moreover, the reasons
to define a DFRFT which obeys the similarity condition are that
the continuous signal processing algorithms derived in continuous
fractional Fourier domains can be directly modified into the digital
signal cases by replacing continuous FRFT with DFRFT. In the
sequel, the chirp interference filtering applications will be used to
illustrate this fact [7].

II. EIGENDECOMPOSITION OF THEDISCRETE

FOURIER TRANSFORM (DFT) MATRIX

A. The Eigenvalues of DFT Matrix

Now, we review the properties of the eigenvalues of the DFT
matrix F whose elements are defined by

Fnk =
1p
N

cos
2�kn

N
� j sin

2�kn

N
;

0 � n; k � N � 1: (1)

From the results in [15], the properties of eigenvalues of DFT matrix
can be summarized by the following fact.

Fact 1: The eigenvalues ofF aref1; �1; j; �jg and its multi-
plicities are listed in Table I.

(Pf) see [15]: From this fact, it is clear that there exists infinite
eigendecomposition forms of the DFT matrix, because any linear
combination of the eigenvetors which correspond to the same eigen-
value is also an eigenvector. If we use the eigendecomposition of
the DFT matrixF to define DFRFT, then we have infinite choice.
However, under the condition that transform results of DFRFT needs
to be similar to those of continuous FRFT, the eigendecomposition
of DFT matrix must be found trickily. In the following, we will
derive an eigendecomposition form by sampling the Hermite Gauss
functions, which are the eigenfunctions of the continuous Fourier

transform and by performing a novel error removal procedure. Using
the proposed decomposition to define DFRFT, the transform results
will obey similar conditions.

B. An Eigendecomposition of DFT Matrix

The usual continuous Fourier transform pair is defined as

X(!) =
1p
2�

1

�1

x(t)e�j!t dt

x(t) =
1p
2�

1

�1

X(!)ej!t d!:

It can be shown that the eigenfunctions of the Fourier transformation
operator are Hermite Gauss functionHm(t)e�t =2; whereHm(t) are
the Hermite polynomials of orderm defined by

Hm(t) =

bm=2c

k=0

(�1)km!(2t)m�2k

k!
: (2)

The notationbm=2c denotes the largest integer smaller thanm=2.
We thus have

(�j)mHm(!)e�! =2 =
1p
2�

1

�1

Hm(t)e�t =2e�j!t dt:

(3)

Now, we will use this equation to derive an approximate eigende-
composition of the DFT matrix. Our derivation is mainly based on
the following two facts.

Fact 2: If the sequencegm(n) is obtained by sampling the Her-
mite Gauss functionHm(t)e�t =2 with sampling intervalT =
2�=N; i.e.,

gm(n) = Hm(nT )e�(nT ) =2 (4)

then it can be shown that

(�j)mgm(k) � 1

N

N=2�1

n=�N=2

gm(n)e�j(2�kn=N) (5)

for sufficiently largeN .
Proof: By truncating the integral interval of the (3) from

(�1; 1) to (�NT=2; NT=2); we have the following approxi-
mation expression:

(�j)mHm(!)e�! =2 � 1p
2�

NT=2

�NT=2

Hm(t)e�t =2e�j!t dt:

(6)

This approximation is valid becauseNT =
p
2�N is big for large

N and the decay rate of Gauss functione(�t )=2 is very fast. Next,
by replacing the continuous integral with numerical integral, we have

NT=2

�NT=2

Hm(t)e�t =2e�j!t dt

�
N=2�1

n=�N=2

Hm(nT )e�(nT) =2e�j!nTT: (7)

This approximation is also valid bacauseT = 2�=N is very small
whenN is very large. Combining (6) and (7), we obtain

(�j)mHm(!)e�! =2

� 1

N

N=2�1

n=�N=2

Hm(nT )e�(nT) =2e�j!n
p

2�=N : (8)
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This expression is valid for any!. Thus, take! = kT = k 2�=N
at both sides, we have

(�j)mHm(kT )e�(kT ) =2

�
1

N

N=2�1

n=�N=2

Hm(nT )e�(nT) =2e�j2�kn=N : (9)

Substitute (4) into (9), and the proof is completed.
From the above proof, it is clear that there are two approximation

errors in (5). One is truncation error in (6), the other is numerical
error in (7). When the value ofN approaches infinity, both errors
approach to zero. Thus, the largerN value is, the better approximation
(5) is. Next, because the degree of Hermite polynomialHm(t) is
m; the decay rate of the Hermite Gauss functionHm(t)e�t =2 is
proportional totme�t for sufficiently larget. Thus, the larger order
m is, the slower decay rate Hermite Gauss function has. This implies
that the truncation error in (6) is large for large orderm. Thus, when
orderm becomes large, the approximation in (5) becomes inaccurate.

Fact 3: If the sequencegm(n) defined in the range[0; N � 1]
is obtained by shifting Hermite Gauss samplesgm(n) defined in the
range[�N=2; N=2 � 1] in the following way:

gm(n) =
gm(n); for 0 � n �

N

2
� 1

gm(n�N); for
N

2
� n � N � 1

(10)

then it can be shown that the DFT of thegm(n) can be approximated
by (�j)mgm(k), i.e.,

(�j)mgm(k) �
1

N

N�1

n=0

gm(n)e�j(2�kn=N) (11)

for sufficiently largeN .
Proof: Using the equalitye�j(2�nk=N) = e�j[2�(n�N)k=N],

this fact can be proven trivially.
From Fact 3, it is clear thatgm(n) are the approximate eigen-

functions of the discrete Fourier transform. Because the Hermite
Gauss functions are orthogonal to each other for different orders,
the sequencesgm1(n) andgm2(n) are approximately orthogonal for
m1 6= m2, i.e.,

N�1

n=0

gm1(n)gm2(n) � 0: (12)

Let us define the vectorsvm as

vm = [gm(0)gm(1) � � � gm(N � 1)]t: (13)

Then, (11) means that

(�j)mvm � Fvm (14)

wherevm = vm=kvmk is normalized version of the vectorvm.
Thus, vm is an approximate eigenvector of the DFT matrixF
corresponding to the eigenvalue(�j)m. Although the approximate
expression in (14) is valid for any orderm, the DFT matrixF with
size N � N has onlyN eigenvectors whose eigenvalues need to
satisfy the multiplicity property in Fact 1. Thus, we are required
to selectN orders denoted by the set	 = fm1; m2; � � � ; mNg
(m1 < m2 < � � � < mN) to construct an eigendecomposition of the
matrixF. Two rules of the selection in this paper are listed as follows.

1) The setf(�j)m ; (�j)m ; � � � ; (�j)m g; formed by eigen-
values, must satisfy the multiplicity property in Fact 1.

2) The approximation errork(�j)m vm � Fvm k must be less
than the errork(�j)mvm � Fvmk if m is not in the set	.

TABLE II
A SUITABLE CHOICE OF SET 	 OBEYING TWO RULES

N 	 = fm1; � � � ; mNg

4n 0; 1; 2; � � � ; 4n� 2; 4n

4n+1 0; 1; 2; � � � ; 4n� 1; 4n

4n+2 0; 1; 2; � � � ; 4n; 4n+ 2

4n+3 0; 1; 2; � � � ; 4n+ 1; 4n+ 2

Because the approximation errork(�j)mvm � Fvmk becomes
large when orderm increases, a suitable choice of set	 which obeys
two rules is described in Table II.

Based on this choice, an approximation eigendecomposition of the
DFT matrix F is given by

F �

N

i=1

(�j)m vm v
t
m : (15)

In order to remove the error in this decomposition, an eigenvector
calibration procedure is developed as follows. Assume that the
eigenvector setfvm ; vm ; � � � ; vm g will be corrected into the
eigenvector setfum ; um ; � � � ; um g and the vectors fromum
to um have been obtained. Then, the eigenvectorum is found
by minimizing the squared error(um � vm )2 subjected to two
prescribed constraints which are the eigenvector constraintFum =
(�j)m um and the orthogonal constraintutium = 0 for i =
m1; � � � ; mk�1. After some manipulation, the two constraints can
be written in matrix form as

Cm um = 0 (16)

where the matrixCm is given by

Cm =

Real(F� (�j)m I)

Img(F� (�j)m I)

utm
:

utm

: (17)

The notationReal(:) and Img(:) denote the real part and imaginary
part of a complex matrix, andI is identity matrix. Using the QR
decomposition, the matrixCm can be rewritten as

Cm = Qm

Rm

0
: (18)

Substitute (18) into (16), (16) reduces to

Rm um = 0: (19)

If the rank of matrixCm is equal tor; the size of the matrix
Rm is r �N . Now, using the well-known Largrange multiplier
method, the solution of this constrained optimization problem is given
by

um = (I�Rt

m (Rm R
t

m )�1Rm )vm : (20)

Finally, the entire eigenvector calibration procedure is summarized
as follows: Given DFT matrixF and the approximate eigenvector
setfvm ; vm ; � � � ; vm g we take the following steps to compute
the exact eigenvector setfum ; um ; � � � ; um g.

Step 1: Let matrix Cm be [I � Real(F)t; Img(F)t]t and use
(20) to find the vectorum . Note that we normalizeum
to unit norm. Setk = 2.

Step 2: Perform the following two computations:

a) Use (17), (18) to compute the matrixRm .
b) Use (20) to calculate the vectorum and normalize it

to unit norm.
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Step 3: Let k = k + 1. If k > N , stop the procedure. Otherwise
go to Step 2.

After this calibration, the exact eigendecomposition of the DFT
matrix F is given by

F =

N

i=1

(�j)m um u
t
m : (21)

The unique feature of this eigendecomposition is that the shape of the
eigenvector is similar to the shape of the Hermite Gauss functions
which is the eigenfunction of the continuous Fourier transform. In
the next section, we will use this decomposition to define a discrete
fractional Fourier transform.

III. N EW DEFINITION OF DFRFT

A. Continuous FRFT

The continuous FRFT is defined as [8]

F�[x(t)] =
1

�1

x(t)K�(t; !) dt (22)

where the transform kernel is given by (23), shown at the bottom of
the page. After some manipulation, it is easy to show that

F�+� [x(t)] = F�[x(t)]F � [x(t)]: (24)

This implies that the angle additivity property is satisfied, i.e.,
application of the transform with angular parameter� followed by an
application of the transform with angular parameter� is equivalent
to the application of the transform with angular parameter� + �.
Moreover, the Hermite Gauss functions are also the eigenfunctions
of the continuous fractional Fourier transform, i.e.,

F�[Hm(t)e�t =2] = (�j)2m�=�Hm(!)e�! =2

= e�j�mHm(!)e�! =2: (25)

It is clear that the eigenvalue of themth order Hermite Gauss
function is e�j�m. When� = �=2, the continuous FRFT becomes
the conventional Fourier transform. As an example, Fig. 1(a) shows
the FRFT of the impulse function�(t) for the angle� = 0:45�. The
continuous FRFT of this special signal has the closed form formula
given by

F�[�(t)] =
1� j cot(�)

2�
ej(! =2) cot(�): (26)

The real parts of FRFT or DFRFT in this paper are plotted by solid
lines, and the imaginary parts of FRFT or DFRFT are plotted by
dashed or dotted lines.

B. Conventional Discrete Fractional Fourier Transform

Let data vector bex; Santhanam and McClellan defined the discrete
fractional Fourier transform as [14]

<
�[x] = F

2�=�
x: (27)

The 2�=�th power of the DFT matrixF is found by the equation

F
2�=� =

3

k=0

ak(�)F
k (28)

(a)

(b)

(c)

Fig. 1. (a) Continuous FRFT of the impulse signal�(t). (b) Conventional
DFRFT of the impulse function�(n). (c) Proposed DFRFT of the impulse
function �(n) for � =0.45�.

where the coefficientsai(�) are given in [14]. Although this def-
inition of DFRFT obeys the angle additivity property, it is not
the discrete version of the continuous transform defined in (23). A
numerical example is illustrated as follows. Fig. 1(b) shows the result
of the DFRFT produced by a discrete impulse function defined as

�(n) =
1; for n = 0
0; otherwise.

(29)

In this example, we chooseN = 36. The results shown in Fig. 1(b)
are far from the results in Fig. 1(a).

C. New Discrete Fractional Fourier Transform

As (27), the DFRFT of the data vectorx is defined by

<
�[x] = F

2�=�
x:

Since2�=�th power of the DFT matrixF can be calculated from its
eigendecomposition by taking the2�=�th power for its eigenvalues,
the matrixF2�=� is given by

F
2�=� =

N

i=1

(�j)m (2�=�)
um u

t
m : (30)

Because(�j)m (2�=�) = e�jm �; the eigenvalues of the new
transform matrixF2�=� are consistent with those of the continuous
FRFT. Moreover, the eigenvectorsum are obtained by sampling
Hermite Gauss functions with an error removal procedure, so the
eigenvectors of new DFRFT are similar to those of the continuous
FRFT. Due to these two agreements, the transform result of our
DFRFT will be similar to that of continuous FRFT. Fig. 1(c) shows
the result of the new DFRFT produced by a discrete impulse function
defined in (29). It is clear that the shape of the transformed result

K�(t; !) =

1� j cot�

2�
ej((t +! )=2) cot �� j!tcsc�; if � is not a multiple of�

�(t� !); if � is a multiple of2�

�(t+ !); if �+ � is a multiple of2�

(23)
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(a) (b)

(c)

Fig. 2. (a) Waveform of signalx(n) which is Gaussian signal with chirp
interference. (b) Waveform of the signalx5 filtered by the proposed DFRFT.
(c) Waveform of the signalx5 filtered by the DFRFT in [14]. The waveform
plotted by dotted line is the ideal Gaussian signal.

looks much like the shape of the continuous transformed result in
Fig. 1(a).

In order to evaluate the similarity between the results of continuous
FRFT in Fig. 1(a) and the results of DFRFT in Fig. 1(b) and (c), a
quantitative error measure is defined as follows:

E =

N=2�1

n=�N=2

kF�C (nT )� F�D(n)k
2 (31)

whereF�C (nT ) is the sequence obtained by directly sampling con-
tinuous FRFT with the sampling intervalT = 2�=N , andF�D(n)
is the transformed result of DFRFT. It is clear that the smaller error
E is, the more similar results between continuous FRFT and DFRFT
have. Now, the errorE between Fig. 1(a) and (b) is 1.2815, and
the errorE between Fig. 1(a) and (c) is 0.0407. Thus, the proposed
DFRFT provides a better similarity than the conventional DFRFT
defined in [14].

D. Chirp Filtering in the DFRFT Domain

In the following, we concentrate on the applications of the chirp
interference removal. The detail of continuous chirp case has been
investigated in [7]. Here, we only extend the technique developed
in [7] to the discrete chirp case. Since the FRFT of chirp signal is
the line delta function in the appropriate fractional Fourier domain,
we can remove this impulse of chirp component in FRFT domain by
multiplying a narrow band-stop mask. The narrower the band-stop
mask is, the less distortion the nonchirp part has. Given the angular
parameter� = 2�=� and the signalx(n) composed of a desired
signal and a chirp interference, the procedure of filtering out this
chirp component in DFRFT domain is summarized as follows.

Step 1: Compute the DFRFTx1(n) of the signal x(n) with
angular parameter� .

Step 2: Multiply the transform resultx1(n) by the band-stop
maskm(n). The masking result is denoted byx2(n) =
x1(n)m(n).

Step 3: Compute the DFRFTx3(n) of the signalx2(n) with
angular parameter�2� .

Step 4: Multiply the resultx3(n) by the band-stop maskm(n).
The masking result is denoted byx4(n) = x3(n)m(n).

Step 5: Compute the DFRFTx5(n) of the signalx4(n) with
angular parameter� . The signalx5(n) is the desired
filtered output.

The above procedure is the same as that of the continuous case except
signal is discrete and continuous FRFT is replaced with DFRFT.
Two band-stop masks are applied in the procedure because a real
chirp signal can be decomposed into the sum of two complex chirp
signals. One band-stop mask is performed in the� domain, the other
is in the�� domain. In the following, we use the above procedure
to filter a Gaussian signal with a real chirp noise, that is

x(n) = e�0:01(n�30) + cos(0:004�n2 + 0:2�n); 1 � n � 61:

(32)

Fig. 2(a) shows the waveform of signalx(n) plotted by solid line. For
comparison, the ideal Gaussian signale�0:01(n�30) is also plotted
by dotted line in Fig. 2(a)–(c). The angular parameter� is chosen as
0.9 and the band-stop mask is given by

m(n) =
0; for 40 � n � 48
1; otherwise.

(33)

Fig. 2(b) and (c) shows the filtered signalsx5(n) with solid line
by using the proposed DFRFT and Santhanam’s DFRFT in [14],
respectively. From the results in Fig. 2(b), it is clear that the chirp
interference has been eliminated by the proposed DFRFT. The
Gaussian signal to chirp noise ratio is improved from�3.8 to 6.5 dB.
However, the results in Fig. 2(c) show that the chirp interference
can not be removed by the DFRFT in [14]. This is owing that the
proposed DFRFT obeys similarity condition. Thus, the continuous
signal-processing algorithms derived in continuous fractional Fourier
domains can be directly modified into the discrete signal cases by
replacing continuous FRFT with the proposed DFRFT, which satisfies
the similarity condition.

IV. CONCLUSION

In this paper, a new definition of the DFRFT based on an
eigendecomposition of the DFT matrix has been presented. However,
the complexity for implementing DFRFT isO(N2); which is the
same as that of DFT. Thus, it is interesting to develop a fast algorithm
to compute DFRFT. This topic will be investigated in the future.
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An Adiabatic Differential Logic for
Low-Power Digital Systems

Chun-Keung Lo and Philip C. H. Chan

Abstract—A new adiabatic circuit technique called adiabatic differential
cascode voltage switch with complementary pass-transistor logic tree
(ADCPL) is presented. ADCPL is a dual-rail logic with relatively low
gate complexity. It operates from a two-phase nonoverlapping supply
clock. Power reduction is achieved by recovering the energy in the recover
phase of the supply clock. Energy dissipation comparison with other
logic circuits is performed. Simulation shows that for a pipelined ADCPL
carry lookahead adder, a power reduction of 50%–70% can be achieved
over the static complimentary metal oxide semiconductor case within a
practical operation frequency range. The results also show that the lower
the operating frequency, the larger the energy savings for an ADCPL
circuit.

Index Terms—Adiabatic circuit, differential cascode voltage logic, low-
power circuit, low-power digital system.

I. INTRODUCTION

Adiabatic switching is a new approach for reducing power dissi-
pation in digital logic. When adiabatic switching is used, the signal
energies stored on circuit capacitances may be recycled instead of
dissipated as heat [1]. For an energy recovery circuit, the ideal energy
dissipation when a capacitanceC is charged from zero toVdd or
discharged fromVdd; through a circuit of resistanceR during time
T is given by

Ediss = I2RT =
CVdd

T

2

RT =
RC

T
CV 2

dd: (1)

When T � RC; the energy dissipation is much smaller than the
conventional complimentary metal oxide semiconductor (CMOS)
circuit, for which an energy of(CV 2

dd)=2 is required during a charge
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Fig. 1. Basic ADCPL circuit configuration.

or discharge cycle. As a result, when the charging timeT is much
larger than theRC time constant, the power consumption can be
reduced. Usually, this can be achieved by using a slowly changing
clocking waveform to drive the circuit.

A variety of adiabatic logic architectures has been proposed for
low power VLSI design [2]–[5]. Most of them use diodes or diode-
like devices for precharge, which causes unavoidable energy loss
due to the voltage drop across the diodes. Other designs have
been proposed to eliminate the precharge diode; however, they
have potential problems of floating output nodes and faulty logic
[5]. Previous studies [1]–[5] have shown that the most important
operational characteristics for the successful utilization of adiabatic
logic architectures are a constant load presented by the gates to
the clock, the reduction or elimination of floating output nodes, the
reduction of the number of clock phases needed for correct operation,
the ability to generate a signal and its complement on the same clock
phase, the reduction or elimination of diodes, the ability to drive a
high output toVdd and a low output toVss; and finally an efficient
supply clock generator to provide the power clock.

This paper describes a new adiabatic circuit technique called adi-
abatic differential cascode voltage switch with complementary pass-
transistor logic tree (ADCPL). With complementary pass-transistor
logic (CPL) as the logic evaluation tree, the input capacitances can
be reduced and complex logic function can be realized efficiently
[6]. ADCPL is diode free and is a dual-rail logic operated with
a two-phase nonoverlapping supply clock. Energy is recovered in
the recover phase of the supply clock, and pipeline structure can be
designed in conjunction with the clock-powered latch. The basic AD-
CPL logic design and operation will be presented. Energy dissipation
comparison with other adiabatic logic and static CMOS logic is made.
A ripple carry adder (RCA) and a pipelined carry lookahead adder
(CLA) using ADCPL are constructed to evaluate the performance.

II. L OGIC DESIGN AND OPERATION

The basic ADCPL circuit configuration is shown in Fig. 1. It has
a similar structure to the differential cascode voltage switch (DCVS)
logic [7], but with a complementary pass-transistor logic (CPL) tree
instead of the nMOS logic tree in the conventional DCVS circuit.
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