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Abstract

In this paper, the computation of a fractional derivative using the Fourier transform and a digital FIR di!erentiator is
investigated. First, the Cauchy integral formula is generalized to de"ne the fractional derivative of functions. Then the
fractional di!erentiation property of the Fourier transform of functions is presented. Using this property, the fractional
derivative of a function can be computed in the frequency domain. Next, we develop a least-squares method to design the
fractional order digital di!erentiator. When a signal passes through the designed di!erentiator, the output will be its
fractional derivative. One design example is included to illustrate the e!ectiveness of this approach. Finally, the designed
fractional order di!erentiator is used to generate a random fractal process which is better than the process obtained by
the conventional method. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel wird die Berechnung der fraktalen Ableitung unter Verwendung der Fouriertransformation und
eines digitalen, transversalen Di!erentiators untersucht. ZunaK chst wird die Formel des Cauchy-Integrals verallgemeinert,
um die fraktale Ableitung von Funktionen zu de"nieren. Dann wird die fraktale Di!erenzierungseigenschaft der
Fouriertransformation von Funktionen vorgestellt. Mittels dieser Eigenschaft kann die fraktale Ableitung einer Funk-
tion im Frequenzbereich berechnet werden. Als naK chstes entwickeln wir eine Kleinste-Quadrate-Methode, um den
digitalen Di!erentiator gebrochener Ordnung zu entwerfen. Wenn ein Signal den entworfenen Di!erentiator durchlaK uft,
wird das Ausgangssignal seine fraktale Ableitung sein. Ein Entwurfsbeispiel ist angegeben, um die E!ektivitaK t diese
Methode zu veranschaulichen. Schlie{lich wird der entworfene Di!erentiator gebrochener Ordnung verwendet, um einen
fraktalen, stochastischen Proze{ zu generieren, der besser als der Proze{ nach herkoK mmlicher Methode ist. ( 2000
Elsevier Science B.V. All rights reserved.

Re2 sume2

Dans cet article, nous investiguons le calcul d'une deH riveH e fractionnelle en utilisant la transformation de Fourier et un
"ltre FIR di!eH rentiateur. Tout d'abord, la formule de l'inteH grale de Cauchy est geH neH raliseH e pour deH "nir la deH riveH e
fractionnelle de fonctions. Ensuite la proprieH teH de di!eH rentiation fractionnelle de la transformeH e de Fourier de fonctions
est preH senteH e. En utilisant cette proprieH teH , la deH riveH e fractionnelle d'une fonction peut e( tre calculeH e dans le domaine
freH quentiel. Ensuite, nous deH veloppons une meH thode des moindres carreH s pour concevoir un di!eH rentiateur numeH rique
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d'ordre fractionnel. Lorsqu'un signal passe au travers du di!eH rentiateur ainsi conc7 u, la sortie sera sa deH riveH e fractionnelle.
Un exemple de conception est inclus pour illustrer l'e$caciteH de cette approche. Finalement, le di!eH rentiateur d'ordre
fractionnel ainsi conc7 u est utiliseH pour geH neH rer un processus fractal aleH atoire meilleur que le processus obtenu par la
meH thode conventionnelle. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the concept of fractional oper-
ator and measure has been investigated extensively
in many engineering applications and science. Four
typical examples are described as follows. The "rst,
is fractional derivative and integral are de"ned by
many mathematicians and applied to solve some
physical problems [9,12]. The second, is the frac-
tional Fourier transform has been studied in the
optical community and signal processing area
[1,10,17]. The third, is the fractional dimension is
used to measure some real-world data such as
coastline, clouds, dust in the air, and network of
neurons in the body. The fractional dimension has
been applied widely to pattern recognition and
classi"cation [2]. The last is fractional lower-order
moment has been used to analyize non-Gaussian
signal which is more realistic than the Gaussian
model in signal processing applications [19].

In the research area of fractional calculus, the
integer order n of derivative Dnf (x)"dnf (x)/dxn of
function f (x) is generalized to fractional order
Dlf (x), where l is a non-integer. Although frac-
tional calculus is useful in many "elds of sciences
and engineering, including #uid #ow, automatic
control, electrical networks, electromagnetic the-
ory, and probability [5}8,11,20], it has not drawn
the attention of researchers in the signal processing
area. The purpose of this paper is to use signal
processing tools such as the Fourier transform and
the digital FIR di!erentiator, to compute fractional
derivatives of signals. Because the fractional deriva-
tive of a zero mean white noise is a fractal process
called Brownian motion (fBm), the proposed
method can be used to generate the fractal process.

Conventionally, the digital di!erentiator is a very
useful tool to determine and estimate the time de-
rivatives of a given signal. For example, in radar

and sonar applications, the velocity and acceler-
ation are computed from position measurements
using di!erentiators [21]. In biomedical engineer-
ing, it is often necessary to obtain the higher-order
derivatives of biomedical data, especially at low-
frequency ranges [24]. So far, several methods have
been developed to design IIR and FIR digital dif-
ferentiators such as the Remez exchange algorithm
[14], the eigen"lter method [15,16], and the
weighted least-squares method [22,23], etc. An ex-
cellent survey of di!erentiator design has been pre-
sented in a tutorial paper [4]. However, the orders
of di!erentiators in the above applications are all
integers, so it cannot be applied to compute frac-
tional derivatives. In this paper, di!erentiators will
be generalized to fractional order to achieve our
purpose.

The paper is organized as follows. In Section 2,
the Cauchy integral formula is generalized to de"ne
the fractional derivative of functions. In Section 3,
the fractional di!erentiation property of the
Fourier transform of functions is presented. Using
this property, the fractional derivative of a function
can be computed in the frequency domain. In Sec-
tion 4, we develop a least squares method to design
a fractional order digital di!erentiator. When a sig-
nal passes through the designed di!erentiator, the
output will be its fractional derivative. One design
example is included to illustrate the e!ectiveness of
this approach. In Section 5, the designed fractional
order di!erentiator is used to generate a random
fractal process which is better than the process
obtained by the conventional method.

2. De5nition of fractional derivatives

In this section, a form of complex integral
transformation will be used to de"ne fractional
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Fig. 1. The fractional derivative of rectangular wave for various
order l. (a) l"0, (b) l"0.2, (c) l"0.5, (d) l"0.7.

derivatives. We begin with the statement of the
Cauchy integral formula [18]: If f (z) is single-
valued and analytic in an open region D of the
complex plane, and if A is an open region interior
to D bounded by a closed smooth curve C, then

f (z)"
1

2piP
C

f (f)
f!z

df (1)

for any point z in A. From (1), it follows that

Dnf (z)"
n!

2piP
C

f (f)
(f!z)n`1

df, (2)

where n is an integer. If n is generalized to an
arbitrary order l, we may replace n! by gamma
function C(l#1) in (2) to obtain the de"nition of
the fractional derivative as follows:

Dlf (z)"
C(l#1)

2pi P
C

f (f)
(f!z)l`1

df, (3)

where the choice of contour C is described in [11].
Using this de"nition, the fractional derivatives of
exponential and trigonometric functions are given
by

Dleaz"aleaz,

Dl cos(az)"al cosAaz#
p

2
lB,

Dl sin(az)"al sinAaz#
p
2
lB,

(4)

where z3C, l3R and a(O0) is a constant [11].
From this result, it is clear that when order l goes
from 0 to 1, the derivative Dl sin(az) goes from
sin(az) to a cos(az)"a sin(az#p/2) by gradually
increasing amplitude from 1 to a and phase from
0 to p/2. Thus, the fractional derivative can be
interpreted as a function interpolation between de-
rivatives with integer order. In order to illustrate
this claim, let us further investigate the fractional
derivative of the rectangular wave f(t) de"ned by

f (t)"G
<, n¹(t((n#1

2
)¹,

!<, (n#1
2
)¹(t((n#1)¹,

(5)

where ¹ is the period. According to the Fourier
series, f (t) can be written as

f (t)"
=
+

n/1,n|0$$

4<

np
sinA

2npt

¹ B. (6)

Since the di!erential operator is linear, the frac-
tional derivative of the rectangular wave is given by

Dlf (t)"
=
+

n/1,n|0$$

4<

np A
2np

¹ B
l
sinA

2pnt

¹

#

lp
2 B. (7)

Choosing parameters <"1 and ¹"0.01, Fig.
1 shows the fractional derivative Dlf (t) of the rec-
tangular wave for various order l. It is clear that
the waveform of the fractional derivative evolves
very smoothly as order l increases.

3. Computation of fractional derivatives using
the Fourier transform

3.1. Fourier transform of fractional derivatives

The Fourier transform is an integral opera-
tion and de"ned by the following transform
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pair:

F(u)"P
=

~=

f (t)e~*utdt,

f (t)"
1

2pP
=

~=

F(u)e*ut du.

(8)

Applying the fractional di!erential operator to
both sides of (8), we obtain

Dlf (t)"DlC
1

2pP
=

~=

F(u)e*utduD
"

1

2pP
=

~=

F(u)[Dle*ut] du. (9)

Since Dleaz"aleaz holds, take a"iu and z"t
such that

Dle*ut"(iu)le*ut. (10)

Substituting (10) into (9), we obtain

Dlf (t)"
1

2pP
=

~=

(iu)lF(u)e*utdu. (11)

Thus, the Fourier transform of lth-order derivative
Dlf (t) is given by (iu)lF(u).

3.2. Computation of fractional derivatives using the
Fourier transform

The result in (11) tells that when a signal f (t)
passes through a linear system with frequency re-
sponse (iu)l, the output signal of the system will be
fractional derivative Dlf (t). Based on this fact,
a procedure to compute the fractional derivative of
signal f (t) in frequency domain is given as follows:
Step 1: Compute the Fourier transform F(u) of
signal f(t).
Step 2: Compute the inverse Fourier transform of
(iu)lF(u) to get the fractional derivative Dlf (t).

An example is used to demonstrate this method.
If f (t) is a sinusoidal signal denoted by cos(u

0
t), its

Fourier transform is given by

F(u)"pd(u!u
0
)#pd(u#u

0
). (12)

Since (iu
0
)l"e*lp@2ul

0
and (!iu

0
)l"e~*lp@2ul

0
,

we obtain

(iu)lF(u)"pul
0
d(u!u

0
)e*lp@2

#pul
0
d(u#u

0
)e~*lp@2. (13)

Taking the inverse Fourier transform, we obtain
fractional derivative as follows:

Dlf (t)"ul
0

cosAu0
t#

lp
2 B (14)

which is consistent with the result in (4).

3.3. Extension to the discrete time case

So far, we have been limited to the continuous
time case. Now let us extend these results to the
discrete time signal case. Using the de"nition in
the frequency domain, the procedure to determine
the fractional derivative of sequence x(n) is stated
below:
Step 1: Find the discrete time Fourier transform of
x(n) by using the formula [13]:

X(u)"
=
+

n/~=

x(n)e~*un. (15)

Step 2: Compute the inverse Fourier transform of
(iu)lX(u) to obtain the fractional derivative Dlx(n)
by using the equation:

Dlx(n)"
1

2pP
p

~p

(iu)lX(u)e*undu. (16)

We use the same example to demonstrate this
method. If x(n) is a sinusoidal signal denoted by
cos(u

0
n), its discrete time Fourier transform is

given by

X(u)"p
=
+

k/~=

[d(u!u
0
#2pk)

# d(u#u
0
#2pk)]. (17)

Thus, in the interval [!p,p], we have

(iu)lX(u)"p[ul
0
d(u!u

0
)e*lp@2

#ul
0
d(u#u

0
)e~*lp@2]. (18)
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Take the inverse Fourier transform, we obtain the
fractional derivative as follows:

Dlx(n)"ul
0

cosAu0
n#

lp
2 B. (19)

When x(n) is a general time sequence, it is di$cult
to use the above procedure to compute the frac-
tional derivative of x(n). However, when x(n) passes
through the digital "lter with frequency response
(iu)l, the "lter output will be derivative Dlx(n).
Thus, the problem of computing the fractional de-
rivative of sequence x(n) becomes one of the designs
of a "lter with frequency response (iu)l. In next
section, this topic will be addressed.

4. Computation of fractional derivatives using
the digital di4erentiator

4.1. Design of fractional digital diwerentiator

In the following, we will design an FIR "lter to
approximate the speci"cation (iw)l of fractional de-
rivative. The transfer function of a causal Nth-
order FIR "lter can be represented by

H(z)"
N
+
n/0

h(n)z~n.

The frequency response of the FIR "lter is given by

H(u)"h5e(u)"e5(u)h, (20)

where vectors h and e(u) are

h"[h(0) h(1)2h(N)]5,

e(u)"[1 e~*u2e~*Nu]5.
(21)

Since h(n) is real valued, the frequency response
H(u) is conjugate symmetric, i.e.,

H(!u)"HH(u). (22)

For the fractional di!erentiator design, the ideal
frequency response D(u) is given by

D(u)"(iu)l"G
DuDle*lp@2, 0(u(p,

0, u"0,

DuDle~*lp@2, !p(u(0.

(23)

Because the FIR "lter H(z) will introduce a delay
and D(u) is a zero delay speci"cation, the FIR "lter
cannot be used to approximate the ideal respone
D(u). To solve this problem, we let the FIR "lter
approximate the modi"ed speci"cation F

$
(u)

which is the frequency response by cascading the
ideal fractional di!erentiator and a pure delay sys-
tem, i.e.,

F
$
(u)"D(u)e~*n0u, (24)

where n
0

is a prescribed delay. Once "lter H(u) is
designed, we use the following formula to obtain
the design result DK (u) of the fractional di!erenti-
ator:

DK (u)"H(u)e*n0u. (25)

Moreover, when a signal pass through "lter H(z), it
is equivalent to passing through a cascade system
of a pure delay "lter z~n0 and a designed fractional
di!erentiator with frequency response (iu)l. In this
paper, the "lter coe$cients h are obtained by min-
imizing the following least-squares error:

J(h)"Pu|(R`XR
~)

DH(u)!F
$
(u)D2du, (26)

where frequency bands R`"[ap,p] and R~"

[!p,!ap]. Note that a is a small positive num-
ber. Since the phase response jumps from !lp/2 to
lp/2 at u"0, the interval (!ap,ap) is a `don't
carea region in the design process. Using the conju-
gate symmetric property of H(u) and F

$
(u), the

error J(h) can be rewritten in quadratic form:

K(h)"h5Qh!2h5p#c, (27)

where matrix Q, vector p, and scalar c are real and
given by

Q"2Pu|R`

Re(e(u)eH(u)) du,

p"2Pu|R`

Re(F
$
(u)eH(u)) du,

c"2Pu|R`

DF
$
(u)D2 du.

(28)

H denotes the Hermitian conjugate transpose oper-
ator, and Re( ) ) stands for the real part of a complex
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Fig. 2. The design result H(u)e*n0u of a fractional order di!erentiator with N"100, l"0.5, and n
0
"50. (a) amplitude response, (b)

phase response.

number. Thus, the optimal solution of this problem
is given by

h
015

"Q~1p. (29)

4.2. Computation of fractional derivatives using
the digital diwerentiator

When a signal passes through the fractional or-
der di!erentiator, the output will be its fractional
derivative. Let us "rst design a di!erentiator with
the prescribed fractional order. The parameters
chosen are N"100, l"0.5, n

0
"50, and

a"0.02. The design result DK (u)"H(u)e*n0u is
shown in Fig. 2. It is clear that the amplitude

response approximates the speci"caion Ju well.
Also, the phase response "ts p/4 well for all frequen-
cies except edge frequecies u"0 and p. Next, we
use the designed fractional di!erentiator to "lter
the periodic rectangle sequence x(n) de"ned by

x(n)"G
<, k¹)n((k#1

2
)¹,

!<, (k#1
2
)¹)n((k#1)¹,

(30)

where k is integer and ¹ is period. Choosing para-
meters <"1 and ¹"100, Fig. 3 depicts the frac-
tional derivatives Dlx(n) for various order l. It is
clear that the results are very similar to those of
continuous case shown in Fig. 1.

5. Fractal process generation

Since the fractional derivative of a zero mean
white noise process is a fractal process called
Brownian motion (fBm), the proposed method can
be used to generate the fractal process. And, the
better method to compute the fractional derivatives
of signals, the better fractal process can be ob-
tained. In this section, the designed fractional order
di!erentiator is used to generate a fractal process
which is better than the process obtained by the
conventional method [3]. The spectrum of
Brownian motion (fBm) is of the form ul, where l is
a negative fractional number and u is the fre-
quency. Usually, the fBm is modeled as the output
y(n) of a rational "lter G(z) driven by a Gaussian
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Fig. 3. The outputs of fractional order di!erentiator with vari-
ous order l. (a) l"0, (b) l"0.2, (c) l"0.5, (d) l"0.7.

Fig. 5. The spectrum DG(e+u)D2 of "lter G(z) (solid line) and the ideal spectrum u2l (dotted line).

Fig. 4. A model to generate the fractional Brownian motion
(fBm).

white noise v(n) with zero mean and unit variance,
as shown in Fig. 4. In [3], the transfer function of
G(z) is chosen as

G(z)"
1

(1!z~1)~l

"

=
+
k/0

(!1)k`1
l(1!l)2(k!1!l)

k!
, (31)

where l is in the range (!0.5,0.5). Hence, the fBm
can be generated by the following di!erence equa-
tion:

y(n)"
N
+
k/0

(!1)k`1
l(1!l)2(k!1!l)

k!
v(n!k),

(32)
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Fig. 6. The spectrum DH(e+u)D2 of "lter G(z) (solid line) and the ideal spectrum u2l (dotted line).

where N is the "lter order of G(z). The frequency
response of "lter G(z) is given by

G(e*u)"
1

(1!e~*u)~l
"A2 sinA

u
2 BB

l
e~*ul@2. (33)

Since sin(u/2) can be approximated as u/2 when
u tends to zero, we have

G(e+u)+ule~*ul@2 (34)

for small value of frequency u. This means that the
spectrum S

y
(u) of fractal process y(n) is

S
y
(u)"DG(e*u)D2+u2l. (35)

Thus, the spectrum behaves as u2l as u tends to
zero. That is, at low frequency the spectrum of the
process y(n) has a behavior similar to that of the
fBm. However, at high frequencies, the spectrum
of y(n) will be far from that of fBm. Fig. 5 shows
the spectrums with l"!0.25 and "lter order
N"100 to illustrate this fact. In order to get better
model "tting, the "lter G(z) is replaced by the pro-

posed digital di!erentiator H(z) with negative frac-
tional order. In this case, the spectrum S

y
(u) of

fractal process y(n) is given by

S
y
"DH(e*u)D2. (36)

As an example, a digital di!erentiator H(z) with
parameters N"100, l"!0.25, n

0
"50 and

a"0.01 is designed and chosen as the "lter G(z) in
Fig. 4 to generate the fractal process y(n). Fig.
6shows the spectrums of DH(e*u)D2 and ideal spec-
trum u2l. It is clear that the two curves are almost
overlapped for all frequency. For comparison, an
error measure is de"ned as follows:

E"P
p

0

Du2l!DG(e*u)D2D du. (37)

It is clear that the error E depends on the choice of
G(z). Under the condition of the same "lter order N,
the error E in Fig. 5 is 0.0809 which is greater than
the error 0.0421 in Fig. 6. Thus, the proposed "lter
G(z) generate a more accurate fBm than the
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conventional "lter in [3]. The reason is that our
"lter is designed by an optimization method,
whereas the "lter in [3] is a heuristic one.

6. Conclusion

In this paper, the computation of fractional de-
rivative using the Fourier transform and the digital
FIR di!erentiator has been investigated. First, the
Cauchy integral formula was generalized to de"ne
the fractional derivative of functions. Then, the
fractional di!erentiation property of the Fourier
transform of functions was presented. Using this
property, the fractional derivative of function was
computed in the frequency domain. Next, we de-
veloped a least-squares method to design a frac-
tional order digital di!erentiator. When a signal
passes through the designed di!erentiator, the out-
put will be its fractional derivative. A design
example is included to illustrate the e!ectiveness of
this approach. Finally, the designed fractional or-
der di!erentiator is used to generate a random
fractal process which is better than the process
obtained by the conventional method.

In future work, it will be interesting to apply
fractional di!erentiators to any applications which
use the computation of velocity and acceleration.
For example, fractional di!erentiators can improve
the success rate of online Chinese signature veri"-
cation.
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