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Programmable Fractional Sample Delay Filters with
Flatness Compromise Between Magnitude Response and

Group Delay

Soo-Chang Pei, Bi-Ruei Chiou, and Peng-Hua Wang

Abstract—In this paper, a new design of fractional sample delay filter is
presented. This method is based on the Stancu polynomial, which possesses
an extra parameter . Under special choice of this parameter, the results
obtained are identical to previous ones based on Lagrange interpolation
formula. Much more flatness of group-delay response can be achieved at
the sacrifice of the filter magnitude response. Thus, this method provides
designers more flexibility for trading between these two performance cri-
terion.

Index Terms—Flatness of group delay, fractional sample delay filter,
Stancu polynomial.

I. INTRODUCTION

In digital signal processing system, sometimes it is desired to have
the linear phase shifter or, equivalently, constant delay of a signal. A
signal delayed for a duration of integer multiples sampling period can
be easily obtained by passing it through cascading unit-delay elements.
However, it is desired to delay a signal with fractional multiples of sam-
pling period [3]–[6]. For example, transferring discrete time data sam-
ples between two digital systems that have the same clock rate but use
separate clock generators might require an fractional sample delayer to
compensate for the delay time between two clocks.

The ideal frequency response of a phase shifter is

H(!) = e
�j!� (1)

where� is the amount of constant delay that the filter would like to
achieve. SincejH(!)j = je�j!� j = 1, the ideal magnitude response is
1 for all frequency components. Also, the desired group delay of a filter
is constant� frequency components. Thus, both are used as criterion
for grading fraction delay filters.

In [3] and [4], fractional sample delay filters are designed based
on the interpolation method. To estimate the signal value at fractional
sampling period, the Lagrange interpolation formula is utilized. In this
paper, we present another design of fractional sample delay filters by
using the Stancu polynomial, which is first introduced by Stancu in [2].
Under certain conditions, the designed filters are identical to those in
[3]. But they enjoy a flexibility of trading between the magnitude re-
sponse and group delay of filter responses.

This paper is organized as followed. In Section II, the definition and
some properties of the Stancu polynomial are introduced. We briefly
review previous method in [3] and then demonstrate our design in Sec-
tion III. Illustrative examples are also given. Section IV is devoted to
conclusions.
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II. DEFINITION AND PROPERTIES OFSTANCU POLYNOMIAL

A. Definition of the Stancu Polynomial

The Stancu polynomial operatorSN (f; x;�) = SN(f(t); x;�),
corresponding to a functionf = f(x) defined on the interval (0, 1),
and to a parameter�, is defined as [2]

S
N(f; x;�) =

n

i=0

Si
N(x;�)f

i

N
(2)

where we have (3), shown at the bottom of the next page.
There is another representation of the Stancu polynomial. This is di-

viding (3) the numerator and denominator with�N , yielding (4), shown
at the bottom of the next page.
By using the recurrence property of gamma function, which is defined
as�(x) = 1

0
e�ttx�1 dt, �(x+ 1) = x�(x), we may write down

the following equations:
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Substituting them into (4), we obtain another form of the Stancu poly-
nomial
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Moreover, using the relation between Gamma function and Beta
function, which is defined asB(a; b) =

1

0
ta�1(1� t)b�1 dt, that

B(a; b) =
�(a)�(b)

�(a+ b)
: (9)

Si
N(x;�) can further be written as

Si
N(x) =
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Thus, we have a more compact form of the Stancu polynomial
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B. Properties of the Stancu Polynomial

Some properties of the Stancu polynomial listed in [2], [1] are revis-
ited.

1) It is obvious that the Stancu approximation off(t) always passes
throughf(0) andf(1), i.e.,

SN (f; 0;�) = f(0); SN(f; 1;�) = f(1): (12)

2) We note that when� = 0, the Stancu polynomial reduces to
well-known Bernstein polynomial

BN(f; x) =

N

i=0

f
i

N

N

i
xi(1� x)N�i: (13)

And, when� = �(1=N), the Stancu polynomial becomes as
in (14), shown at the bottom of the page, which is the equally
spaced Lagrange interpolation off(t) on the intervalt 2 (0; 1).

3) There is an identity of the Stancu polynomial; this is

SN(1; x;�) =

N

i=0

Si
N(x;�) = 1: (15)

III. D ESIGN METHOD

A. Previous Design

We first describe the design method in [3].

Fig. 1. Transversal filter structure for implementing fractional sample delay
filters.

A 2N -order Lagrange interpolation formula for an equally spaced
data sequencefx(n+N); x(n+N�1); � � � ; x(n+1); x(n); x(n�1);
� � � ; x(n � N)g is constructed

x(t) =

N

i=�N

Li(t)x(n+ i) (16)

whereLi(t) is defined as (17), shown at the bottom of the next page.
Then the value of the waveform at the fractional sample point(n+�)

is evaluated using this Lagrange interpolation formula

x(n+ �) =

N

i=�N

Li(n+ �)x(n+ i): (18)

It is easily seen thatx(n+ �) is linear combination of the input data
sequencex(n+i);�N � i � N . Letx(n+�) be the output of a frac-
tional delay filter with delay time� , i.e.,y(n), then (18) becomes the
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difference equation which relates the input and output of filter. Thus,
the coefficients of filter isLi(n + �). This filter can be implemented
by using transversal filter structure shown in Fig. 1. We also note that
although the designed filter is noncausal at this moment, we may make
it causal by simply shifting the coefficients with integer multiples of
delay. Unavoidable tape delay is introduced by this procedure.

B. Proposed Design

Now we describe how to design fractional delay filters using the
Stancu polynomial.

Since the Stancu polynomial is defined on the interval (0, 1), the
mappingy = 2Nx � N maps the interval (0, 1) into(�N;N). We
then start with a2N -order Stancu polynomial (19), shown at the bottom
of the page. Using the change of variablex = (y=2N)+ 1

2
, we obtain a

Stancu polynomial defined ony 2 (�N;N) (20), shown at the bottom
of the page. Applying a similar technique, the output of a fractional
delay filter with delay� is taken by evaluatingS2N (f; y;�) aty = � .
The coefficients of filter are found in (21), shown at the bottom of the
page. A causal delay filter is obtained by re-indexing the coefficients
defined above

h(i) = ci�N ; i = 0; � � � ; 2N: (22)

Here, we claim that this result is identical to that in [3] when� =
�(1=2N). We would not prove it explicitly but state out argument
intuitively. First, sinceS2N(f; x;�(1=2N)) is the Lagrange interpo-
lation formula for equally spaced data points atx = (i=2N), then
S2N(f; x;�(1=2N)) passes through these data points. By using the
change of variabley = 2Nx � N , the pointsx = (i=2N); i =
0; � � � ; 2N are mapped toy = �N; � � � ; N . So the mapped poly-
nomialS2N(f; y;�) coincides with functionf at y = �N; � � � ; N .
By the uniqueness of Lagrange interpolation formula, it is clear that
S2N(f; y;�) is the2N -order Lagrange interpolation for equal spaced
data aty = �N; � � � ; N , which is used in [3] for designing filter.

Using (8) and (11), we may rewrite the weighting coefficients in
more compact forms. Applying the change of variablex = (y=2N)+
(1=2) to the2N -order alternative Stancu epresentations and evalu
ating them aty = � yields
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and
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C. Design Example

Example 1: Weillustrate an example of fractional delay filterswhich
are of length 5 , i.e.,2N = 4, and with various delay values. First we se-
lect� = �

1

4
, and the noninteger part of delay value varies from�0.45

to 0.45. For this�, designed filtersareequivalent to thosedesigned using
Lagrange interpolation formula in [3]. Magnitude response and group
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Fig. 2. Fractional delay filters with� = �0:45; � � � ; 0:45, and� = �0:25.

Fig. 3. Fractional delay filters with� = �0:45; � � � ; 0:45, and� = �0:25.

delay of these filters are shown in Figs. 2 and 3. Then we illustrate an-
other example that� is chosen as� 1

8
. Their magnitude responses and

group delays are shown in Figs. 4 and 5. It can be seen that although
their magnitude responses deteriorate, their group delays are much more
flat than the first example. A zoom-in graph of group delays in low fre-
quency for both design are shown in Figs. 6 and 7.

Example 2: Next we illustrate another example of fractional delay
filters which are also of length 5 and the fractional value is fixed at
0.2, but now we varies with different� values,� = � 1

16
, � 1

8
and

� 1

4
. Both their magnitude responses and group delays are shown in

Figs. 8 and 9. It is obvious that when� moves from� 1

4
toward 0, the

magnitude response deteriorates continuously but the group delay first
becomes more flat and, after� � �(1=4), then bending again. Thus
we suggest that designers had better select a� value between�(1=2N)
and�(1=4N) for delay filters of length2N + 1.

IV. CONCLUSION

In this paper, we have presented a new design method, which is based
on the Stancu polynomial, for fractional sample delay filters. By con-
trolling a parameter�, more flexibility can be achieved. We may find
compromise for the flatness between their magnitude response and

Fig. 4. Fractional delay filters with� = �0:45; � � � ; 0:45, and� = �0:125.

Fig. 5. Fractional delay filters with� = �0:45; � � � ; 0:45, and� = �0:125.

Fig. 6. Zoom-in graph of Fig. 3 for low-frequency component.

group delay. A previous design based on Lagrange interpolation is a
special case of our results. Compact forms of the weighting coeffici-
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Fig. 7. Zoom-in graph of Fig. 5 for low-frequency component.

Fig. 8. Fractional delay filters with� = 0:2, and� = �0:25;�0:125;

�0:0625.

Fig. 9. Fractional delay filters with� = 0:2 and� = �0:25;�0:125;

�0:0625.

ents of filters are obtained. Design examples are also given for illustra-
tive purpose.
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Eigenfilter Design of Real and Complex Coefficient
QMF Prototypes

Fabrizio Argenti and Enrico Del Re

Abstract—In this brief, we propose a new method to design pseudo-QMF
prototypes to implement near perfect reconstruction (NPR) modulated
filter banks. The proposed method is based on the eigenfilter approach,
simple to implement, but nevertheless, very efficient in designing high
attenuation filters. The method also allows to design complex coefficient
prototypes that may be used to build nonuniform filter banks. Several ex-
amples of both uniform and nonuniform filter bank design are presented.

Index Terms—Eigenfilter design, modulated filter banks, uniform and
nonuniform subband decomposition.

I. INTRODUCTION

The eigenfilter approach is an efficient method to design a large va-
riety of digital filters having both finite-impulse response (FIR) [1]–[3]
and infinite-impulse response (IIR) [4]–[6]. The method is flexible and
easy to implement, since the problem is reduced to finding the eigen-
vector corresponding to the minimum eigenvalue of a positive-definite
matrix. The design of complex coefficient FIR eigenfilters has been
described in [2], where the problem is converted into a real coefficient
design problem, and in [3], where the design involves the search of the
eigenvector of a complex Hermitian symmetric positive-definite ma-
trix. The eigenfilter approach has been applied to multirate signal pro-
cessing and two-channel QMF bank design in [7] and [8], respectively.

The purpose of this brief is extending the application of the eigen-
filter approach to the design of linear phase prototypes with real and
complex coefficients to implement uniform and nonuniform NPR mod-
ulated filter banks. AnM -channelnonuniformfilter bank with integer
decimation factors is shown in Fig. 1. If all the downsampling/upsam-
pling factors are equal toM , we have auniform filter bank.
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