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[13] E. Feig and S. Winograd, “Fast algorithm for the discrete cosine trans- Il. DIGITAL FRACTIONAL HILBERT TRANSFORMER
form,” IEEE Trans. Signal Processingol. 40, pp. 2174-2193, Sept. .
1992. A. Definition and Property

The ideal frequency response of an FHT with ordés defined by
e 0<w<

Hy(w):{ejd’, —T<w<0 @

where¢ = (vw/2). That is to say, a FHT is an ideal#{/2) phase
Design and Application of Discrete-Time Fractional Hilbert ~ Shifter. We now describe three properties of the FHT.

Transformer 1) FHT becomes the conventional Hilbert transformer (HT) when
v = 1. Ho(w) = 1 when we choose = 0. Thus, a signal
Chien-Cheng Tseng and Soo-Chang Pei passing through FHT with order= 0 is unchanged.

2) It can be shown thall,, 4, (w) = H,, (w)H,,(w). This im-
_ _ o plies that the order additivity property is satisfied, i.e., a signal
Abstract—In this paper, the design problems and applications of passes through the cascade systeni$,0f w) andH,, (w) and

the fractional Hilbert transformer (FHT) are investigated. First, the . .
conventional Hilbert transformer is generalized to FHT. Its corresponding is equivalent to pass through the syStén -, (w).

analytic signal is also defined to construct a single-sideband (SSB) signal  3) The responsél, (w) is periodic withv. Since Hy44(w) =
for saving communication bandwidth. Then, several methods are presented H,(w) holds, the period of FHT is four.

Wangiommer based method. l-pass. fier-based method, ‘optmizajon _ COTPUte the inverse Fourier transform &, («). The corre-
methods, etc. Next, we prorSose a secure SSB communicafion in which thesDOndlng impulse response is given by

fractional order of FHT is used as a secret key for demodulation. Finally, cos(9), n=2>0
two-dimensional FHT is used to detect edges or corners of digital images. , /IT
) ) ) hy(n) = 2 sin” ( ) @
Index Terms—Filter design, Hilbert transformer. sin(6) 2 n#0.
nmw '
It is clear thath, (n) becomes zero-valued whenis a nonzero even
. INTRODUCTION integer. Based on this result, the window method can be directly applied
Conventionally, the Hilbert transformer has been widely usé@ design FIR FHT. After some maniputation, it can be shown that
in communication applications to generate single-sideband (SSB) iy (n) = cos(¢)ho(n) + sin(¢)hy (n) (3)

signals by splitting the modulating signal into two components, WhIChﬁerehl (n) is the impulse response of the conventional HT &h)

are 90 out of phase. This approach reduces the required bandwid¥ . T .
for transmission of the signal by half [1]. The Hilbert transfornm)- equal to unit sample functiof(»). Thus, FHT can be designed by

also has applications in the measurement of frequency deviationﬁsjlcl)ghtly modifying the filter coefficients of conventional HT, which can

. . . L . e obtained by several well-documented methods. Taking the Fourier
rotating machines, investigation of the impulse response of systerps . .

o ; . rélhsform at both sides of (3), we obtain
characterization of acoustical devices, etc. [2]. So far, several methods
have been developed to design finite impulse response (FIR) and Hy(w) = cos(p)Ho(w) + sin(¢) Hi (w). (4)
infinite impulse response (IIR) digital Hilbert transformers such as thghis means that the fractional Hilbert transform of a signal is a

Remez exchange algorithm [3], eigenfilter method [4], and weightgghighted sum of the original signal and its conventional Hilbert
least squares method [5]. Moreover, there are several methods tfgfsform.

implementing the Hilbert transformer, including switched-capacitor
implementation [6], neural network [7], and multiplierless triangulay Single- Sideband Signal

array realization [8]. . . . . .
In 1996, Lohmanret al.[9] generalized the Hilbert transform by in- Now, fraCt'O.nal .HT IS useq to construct a S'ngle's'de.band signal to
ave communication bandwidth. The details are described as follows.

troducing two different definitions of what they called the fractionai;iven a real signak(n), its complex analytic signal, () is defined
Hilbert transform. One definition is a modification of the spatial filter e v

with a fractional parameter, and the other is based on the fractiondl
Fourier transform. In [10], Pei and Yeh developed the discrete version Fu(n) = a(n) — e IE (n) (5)
of the fractional Hilbert transform and applied it to the edge detection of
images. In [11], Zayed introduced another generalization of the Hilb&therez, () is the output of the FHT with order by feeding signal
transform to obtain the signal’s analytic part by suppressing the neg.). Taking the Fourier transform at both sides in (5), we have the
ative frequencies of the signal’s fractional Fourier transform. So fafxpression in the frequency domain as
the research of fractional Hilbert transform is very young and needs to B e o
be explored. In this paper, the design problems and applications of the Xo(w) = X(w) = e X (W) ©)
fractional Hilbert transformer (FHT) will be investigated. whereX, (w) = H,(w)X (w). Substituting (1) into (6), we obtain
. eI in(d) X (w .
Xy(w):{f)f” sin(0) X (w). OS:’<W0 @)
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x(n) is a sinusoidal signal denoted bys(won), its frequency-domain ~ Fact 1: Let D(w) = cos(d))e*f'”ﬂ“’ + sin(gﬁ)e*f”o'”H(;u), where

representation of fractional Hilbert transform is written as H(w) is the ideal frequency response of conventional Hilbert trans-
_ e . - former. Then it can be shown that
Xo(w)=r > [e,ﬂ' 8w — wo +2mk) + ¢’ 78w + wo + 2wk)] . eTInwe It )< w <
k=—o0 D(w) = {(,,—j"row(;]"i/) ’ _; <w<0 (14)
(8) - b —

thatis,D(w) = e ™Y H,(w).
€P Based on this fact, two steps to design FHT from the conventional
HT are as follows.

Taking the inverse Fourier transform, we obtain the time-domain r
resentation as follows:

Ty (n) = cos(won — 9). ©) 1) Design FIR or IIR Hilbert transformeiS( ») to approximate the
Combine the above results. The analytic sigh&ln) is given by desired frequency response’"°* H (w) by using the well-doc-
A () = cos LI SN 0 s Jwon umented methods.
2y (n) = cos(won) — e cos(won — @) = je sin(¢)e .

2) The FHTG(z) is given bycos(¢)z~"° + sin(¢) F(z).
(10) Note that filtersF’(z) andG( =) both have same filter length in the FIR
When we choose = (7/2), this resultis reduced to, (n) = ¢’“°". filter case. Now, two examples are used to illustrate this design method.
Inthe first example, we consider the design of IR FHT. The parameters

C. Two-Dimensional FHT chosen are delay, = 11 andv = 0.4. The IIR Hilbert transformer
The ideal frequency response of two-dimensional (2-D) FHT with'(z) with order 12/12, delay 11, and “care” band [0:0®.921] is
order(v., vy) is defined by designed by the method proposed in [2]. The designed restilf of

has been shown in [2, Fig. 5]. Lét(z) be denoted byB(z)/A(z)).
Then the FHTG(z) is constructed by
G(z) = cos(d)z" " + sin(¢) F(2)
__cos(¢)z” "0 A(z) +sin(¢)B(2)

Ho, v, (w1, 02)
= Hua_- (Wl)Huy(WZ)

e_jw)l"*'%), 0<w <7mand0 < ws <7

e i (ba—0y) 0<w <mand—7 < w2 <0

= : ’ 11 A( (15)
e JPetoy) <y <Oand) < wp < 7 () Af2)
eI (Sat9y), —r<w <0and—7 < wy < 0 Becausé’'(z) andG(z) have the same denominator polynomiglk ),

1 thefilter G(z) is stable if the filterF'(z) is stable. The design results
G(e’%)e’™°* are shown in Fig. 1(a) and (b). It is clear that the ampli-
%gde response approximates unit gain and the phase resp@n2e

where¢, = (v.w/2) and¢, = (vyw/2). Thatis to say, a 2-D FH
is an ideal ¢»7/2) phase shifter in:-direction and an ideak//2)
phase shifter ip-direction. From (11), it can be seen that the desired r o o
Sponse,, ,, (1. w») is separable for frequencies andws. Thus, its very well for all frequencies in ti_ie care ba_nd [0680.92r].

the design problem of 2-D FHT can be reduced to two one-dimensionafn the ser(]:ond exarr(;ple, w_e2con5|(;jer_the4desr|19n OfCFIIR” FHT. TEe pa-
FHT design problems, i.e., design filté#(z1) to approximate re- rame_tersc osen are elay = 20 andv _.0' - The Mc € e_m—Par S
sponse,._ (w1 ) and design filtets (=2 ) to fit response,, (ws). AS algorit_hm With order 40 and cut frequencies [0703).97/_7] is firstused

a result, 2-D filterG: (21 )Ga () will approximateHVI,y:(wi, ws) to design Hilbert transformdr(z). Then, the FHT(2) is constructed

very well. Finally, it is worth mentioning that multidimensional FHsz COS(C}")Z__"O +sin(o) F(2). '_I'heldesi%nedhresulﬁl(_ef“)5'7"0'*‘ are
can be also defined using separability like multidimensional HT gghown in Fig. ;(C) r_;md (d). Itis clear that the amplitude response ap-
scribed in [1, ch. 9]. proximates unit gain and the phase response-fiis2r well for all

frequencies except edge frequencies: 0 andw = «.

[ll. DESIGN OFFRACTIONAL HILBERT TRANSFORMER B. Other Design Methods
In this section, the design problem of the FHT is investigated. Be- 1,0 other methods can be used to design FHT.
cause practical digital filters will introduce a delay aH¢(«) in (1) is 1) All-Pass Filter Approach: From (12), it can be seen that the

azero delay specification, the FIR and IIR filtgrs cannot be used.to anplitude response df,(w) is equal to unity for all frequencies. The
proximate the ideal respongg, (w). To solve this problem, we let dig- response can be approximated by the all-pass filter
ital filters approximate the modified specificatidy (« ), which is the

. S T L _—N+1 —N
frequency response by cascading ideal FHT and a pure delay system, G(z) = an tanz A+t +z )
ie., I4arz7V - Fanv—iz= Nt Lanz=V

Fy(w) = Hy(w)e "0 Let the phase response of all-pass filéefz) be denoted byc(w).
{ —inowe—i® (< @ < Then our purpose is to design the all-pass filt&r:) such that the
e e Sw<Lm

(16)

(12) ¢ (w) approximates the prescribed phase respensgvs — ¢. Using

T~ <w <0 the design method described in [12], the optimal filter coefficients
whereno is a prescribed delay. Once an FIR or IIR filtéi(=) is . 4, canbe determined in the least squares error sense.
designed, we use the following formula to obtain the designed resultz) Optimization Method: The desired frequency response of the
H, (w) of the FHT: FHT has been specified in (12). Any general filter design methods that

H,(w) = G(e?)el 0%, (13) approximate a given magnitude and phase responses simultaneously

Moreover, when a signal passes through fif&r:), it is equivalent can be applied to design a FHT. _For e_xample, we can use the quadratic
to passing through a cascade system of a pure delayiltét and a programming approaches described in [13] to design optimal IIR FHT.
designed FHT with frequency responfe (w).

IV. APPLICATIONS OFFRACTIONAL HILBERT TRANSFORMER

A. Design Based on Conventional Hilbert Transformers In this section, we first use the FHT to construct a secure SSB com-

From (4), we see that the FHT can be obtained from the designedinication system. The fractional numbewill be a secret key for de-
result of conventional Hilbert transformer. The main result can be sumodulation. Then, 2-D FHT is applied to detect the locations of edges
marized as follows. and corners in digital images.
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Fig. 1. (a) The amplitude response of the FHT designed by IIR HT. (b) The phase response of the FHT designed by IIR HT. (c) The amplitude response of the
designed FIR FHT. (d) The phase response of the designed FIR FHT.
SSB SSB x(n)
x(m) Modulator [ 7~ 7 Demodulator x(n)}— é y(n)
ym vy 5 Fractional Hilbert
T T T Transformer % /o
a, 1% a, 14 e
(a) ®)
y(n) —>§)—>§)—> Re[] —> x(n)
e—jmen _jef¢ CSC¢
©
Fig. 2. (a) Secure SSB communication system. (b) The block diagram of the modulator. (c) The block diagram of the demodulator.

A. Secure SSB Communication System Proof: Substituting (5) into (18), we have

The definitions of FHT and analytic signal have been stated in Sec- s(n) = x(n) — j cot(@)x(n) + j csc(o)T, (n). (20)
tion II. Now, we will use them to construct a secure SSB comMmincex(n) and, (n) are both real signals, the real part of the signal
nication system shown in Fig. 2(a). is the carrier frequency and s(p) is x(n).
¢ = (vm/2) is the fractional order of FHT. In this system, the order  Based on the above fact, the block diagram of demodulation is shown
is used as a secret key for demodulation. If the order unknown in in Fig. 2(c). This process involves two steps.
the demodulation, the signaln) will not be recovered from the re- 1) The analytic signal is recovered by multiplyingn) with a si-
ceived signal(n). Based on the definition of the analytic signal in (5), nusoid whose frequency isw. ’
the block diagram qf modulation i.s shovyn in Fig. 2(b): This process in- 2) Use Fact 2 to obtain the signaln) from its analytic version. In
volves two steps. First, an analytic version of a real sigtial) is gen- this demodulation scheme, it is clear that the parameteust

erated. Second, it is used to modulate a sinusoidal carrier of frequency be known in advance. Thus, parameteran be used as a secret
w.. The spectruny (w) of the complex modulated signgin ) is given key for demodulation. '

by Now, let us investigate two interesting problems. First, what is the
Y(w) = Xo(w — wo) 17 output of demodulator if parameterin the demodulator is replaced
~ v “ by any parametef? In this case, it can be shown that the output of
WhereXV(;u) is described in (7). Moreover, we introduce the foIIowingdemOUIator becomes(») +I(,n)’ where interferencé(» ) is given by
fact to build the demodulation scheme. I(n) = M T, (n). (21)
Fact 2: Let the signak(n) be defined as sin(6)

wherei, (n) is the analytic signal defined in (5). Then it can be showl’

that the

s(n) = —je’” cse(@)i, () (18)

real part of the signa{n) is z(n), i.e.,

z(n) = Re(s(n)). (19)

If paramete# is equal tap, the interference becomes zero-valued. Oth-
erwise, the output of demodulator is the desired sigral) additive

ith an interferencd (n). Thus, illegal users can not demodulate the
received signal(n) if order ¢ is unknown.

Second, what is the output of demodulator if its inpQt) is cor-
rupted by an additive noisgn)? In this case, it can be shown that the
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Vx=0,Vy=0 Vx=0.5,Vy=0 Vx=1,Vy=0 Vx=1.5,Vy=0

Vx=0,Vy=0.5 Vx=0.5,Vy=0.5 Vx=1,Vy=0.5 Vx=1.5Vy=0.5

Vx=0,Vy=1 Vx=0.5,Vy=1

Vx=0,Vy=1.5 Vx=1.5Vy=1.5

Fig. 3. The outputs of the 2-D FHT for various ordetsandr,. The input is an image corrupted by white noise.

output of demoulator becomesén ) +u(n ), where noise:(n) is given 2) Wheny, = 1 andy, = 0, the horizontal positive and negative
by derivative edges are both emphasized.
o 3) Wheny, = 1.5 andv, = 0, the horizontal positive derivative
u(n) = csc(@)Re(—je’ e’ v(n)). (22) edges are emphasized.
4) Whenv, = 0 andv, = 0.5, the vertical negative derivative
If parameterp approaches zerosc(¢) approaches infinity, i.e., noise edges are emphasized.
u(n) is very large. However, whenis in the interval(= /6), (7/2)], 5) Whenv,, = 0 andr, = 1, the vertical positive and negative

then cs¢p) ranges from one to two. Thus, it had better to choose the  derivative edges are both emphasized.
screte keys in the rangé(w/6), (7/2)] such that noise gain csg) is 6) Whenv, = 0 andv, = 1.5, the vertical positive derivative

very small. edges are emphasized.
7) Whenv, = 1 andv, = 1, four corner points are greatly empha-
B. Edge and Corner Detections sized.

The main application of 2-D FHT is to detect the locations of edges The above observations tell us that the 2-D FHT provides more
or corners of digital images. Now, an example is used to illustrate thiglys to detect edges or corners of digital images than the conventional
application. When an imagg(m, n) passes through the 2-D FHT, itsHilbert transform [14].
output can be computed by the inverse Fourier transforﬁﬁ(oh , w2)
given by V. CONCLUSION

X(wi, we) = Hy,, vy (Wi, w2) X (Wi, wa) (23) In this paper, the design problems and applications of the FHT have
been investigated. However, only two applications are studied here,
Thus, it will be interesting to apply FHT to other signal-processing ap-

plications in the future.

where X (w1, w2) is the 2-D Fourier transform of(m, n) and
H,, ., (wi, ws)is 2-D FHT defined in (11). In the following, we will
compute the 2-D fractional Hilbert transform of the 150150 noisy
imagex(m, n) = f(m, n) + v(m, n), where
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Roundoff Noise Minimization in a Modified Direct-Form e, e,

Delta Operator IIR Structure
Fig. 2. Modified delta section with overflow scaling by, and A and
Ngai Wong and Tung-Sang Ng coefficient scaling byc; andks.

Abstract—Among various direct-form delta operator realized filter  in delay structures can be overcome. In particular, delta operator real-
structures, the delta transposed direct-form Il (6DFIIt) has been shownto  jzations are generally accompanied with better roundoff noise perfor-
produce the lowest roundoff noise gain in finite wordlength implementa-  Wance and more robust coefficient and frequency sensitivities [1], [2].
tions. Recent analyses focus on the optimization of the free parametex Alth hthei delt tori licated to imol t
of the delta operator, with scaling of the structure to prevent arithmetic ' ougnthe |nver§e ela opgra or IS more complicated to implement,
overflow. This paper proposes a modifieds DFIIt second-order section in  itS €xcellent numerical properties allow the use of shorter wordlengths,
which the As and filter coefficients at different branches are separately which results in moderate complexity or even gross savings in silicon
scaled to achieve improved roundoff noise gain minimization. Expressions greg [6].
for the filter coefficients are derived, and reduction of roundoff noise gain Comprehensive study of different delta structures has been carried
is verified by numerical examples. . b y .

outin [4]. It was found that the delta transposed direct-formiMFl1t)
shows the best roundoff noise properties among various delta struc-
tures. Emphasis has been put on the optimization of the free parameter
l. INTRODUCTION A(_A > (_)) of the delta operator in order to achleve_ minimum roun_doff
] ] ] _ _noise gain at the output. The second-oid@FIIt section, being a basic

Delta operator realized filters have attracted increasing attentiongpiiding block, was analyzed in detail [3], [4].
this decade due to their good numerical properties when compared t this paper, instead of limiting to a single optimal within the
the traditional delay structures [1]-[8]. This is especially true for sySecond-ordefDFIIt section, the concept of separately scaling fe
tems whose sampling rate is much higher than the underlying sigaalwell as filter coefficients is introduced. It will be shown that such an
bandwidth, causing the-plane poles to cluster toward the unit circle approach will enable the true global optimal solution to be obtained,
By replacing the conventional”* operator with the inverse delta oper-yhich further minimizes the roundoff noise gain of the section.
ator6~' = Az"!/(1 - z1), certain ill-conditioned numerical issues

Index Terms—Pelta operator, IIR filter, minimization, roundoff noise.
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