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Design and Application of Discrete-Time Fractional Hilbert
Transformer

Chien-Cheng Tseng and Soo-Chang Pei

Abstract—In this paper, the design problems and applications of
the fractional Hilbert transformer (FHT) are investigated. First, the
conventional Hilbert transformer is generalized to FHT. Its corresponding
analytic signal is also defined to construct a single-sideband (SSB) signal
for saving communication bandwidth. Then, several methods are presented
to design finite and infinite impulse response FHTs including the Hilbert
transformer-based method, all-pass filter-based method, optimization
methods, etc. Next, we propose a secure SSB communication in which the
fractional order of FHT is used as a secret key for demodulation. Finally,
two-dimensional FHT is used to detect edges or corners of digital images.

Index Terms—Filter design, Hilbert transformer.

I. INTRODUCTION

Conventionally, the Hilbert transformer has been widely used
in communication applications to generate single-sideband (SSB)
signals by splitting the modulating signal into two components, which
are 90� out of phase. This approach reduces the required bandwidth
for transmission of the signal by half [1]. The Hilbert transform
also has applications in the measurement of frequency deviations of
rotating machines, investigation of the impulse response of systems,
characterization of acoustical devices, etc. [2]. So far, several methods
have been developed to design finite impulse response (FIR) and
infinite impulse response (IIR) digital Hilbert transformers such as the
Remez exchange algorithm [3], eigenfilter method [4], and weighted
least squares method [5]. Moreover, there are several methods for
implementing the Hilbert transformer, including switched-capacitor
implementation [6], neural network [7], and multiplierless triangular
array realization [8].

In 1996, Lohmannet al. [9] generalized the Hilbert transform by in-
troducing two different definitions of what they called the fractional
Hilbert transform. One definition is a modification of the spatial filter
with a fractional parameter, and the other is based on the fractional
Fourier transform. In [10], Pei and Yeh developed the discrete version
of the fractional Hilbert transform and applied it to the edge detection of
images. In [11], Zayed introduced another generalization of the Hilbert
transform to obtain the signal’s analytic part by suppressing the neg-
ative frequencies of the signal’s fractional Fourier transform. So far,
the research of fractional Hilbert transform is very young and needs to
be explored. In this paper, the design problems and applications of the
fractional Hilbert transformer (FHT) will be investigated.
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II. DIGITAL FRACTIONAL HILBERT TRANSFORMER

A. Definition and Property

The ideal frequency response of an FHT with order� is defined by

H�(!) =
e�j�; 0 � ! < �

ej�; �� � ! < 0
(1)

where� = (��=2). That is to say, a FHT is an ideal (��=2) phase
shifter. We now describe three properties of the FHT.

1) FHT becomes the conventional Hilbert transformer (HT) when
� = 1. H0(!) = 1 when we choose� = 0. Thus, a signal
passing through FHT with order� = 0 is unchanged.

2) It can be shown thatH� +� (!) = H� (!)H� (!). This im-
plies that the order additivity property is satisfied, i.e., a signal
passes through the cascade systems ofH� (!) andH� (!) and
is equivalent to pass through the systemH� +� (!).

3) The responseH�(!) is periodic with �. SinceH�+4(!) =
H�(!) holds, the period of FHT is four.

Compute the inverse Fourier transform ofH�(!). The corre-
sponding impulse response is given by

h�(n) =

cos(�); n = 0

sin(�)
2 sin2

n�

2
n�

; n 6= 0.
(2)

It is clear thath�(n) becomes zero-valued whenn is a nonzero even
integer. Based on this result, the window method can be directly applied
to design FIR FHT. After some maniputation, it can be shown that

h�(n) = cos(�)h0(n) + sin(�)h1(n) (3)

whereh1(n) is the impulse response of the conventional HT andh0(n)
is equal to unit sample function�(n). Thus, FHT can be designed by
slightly modifying the filter coefficients of conventional HT, which can
be obtained by several well-documented methods. Taking the Fourier
transform at both sides of (3), we obtain

H�(!) = cos(�)H0(!) + sin(�)H1(!): (4)

This means that the fractional Hilbert transform of a signal is a
weighted sum of the original signal and its conventional Hilbert
transform.

B. Single- Sideband Signal

Now, fractional HT is used to construct a single-sideband signal to
save communication bandwidth. The details are described as follows.
Given a real signalx(n), its complex analytic signal̂x�(n) is defined
by

x̂�(n) = x(n)� e�j�x�(n) (5)

wherex�(n) is the output of the FHT with order� by feeding signal
x(n). Taking the Fourier transform at both sides in (5), we have the
expression in the frequency domain as

X̂�(!) = X(!)� e�j�X�(!) (6)

whereX�(!) = H�(!)X(!). Substituting (1) into (6), we obtain

X̂�(!) =
2je�j� sin(�)X(!); 0 � ! < �

0; �� � ! < 0.
(7)

Thus, the negative frequency content ofx̂�(n) is all suppressed. When
� is not the multiple of�, i.e.,sin(�) 6= 0, the signal̂x�(n)will contain
the same information asx(n) because both spectrums have a nonzero
scale in the positive frequency domain. This elimination reduces the
required bandwidth for processing and/or transmission of the signal
by half. Finally, an example is used to demonstrate the above facts. If
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x(n) is a sinusoidal signal denoted bycos(!0n), its frequency-domain
representation of fractional Hilbert transform is written as

X�(!) =�

1

k=�1

e�j��(! � !0 + 2�k) + ej��(! + !0 + 2�k) :

(8)

Taking the inverse Fourier transform, we obtain the time-domain rep-
resentation as follows:

x�(n) = cos(!0n� �): (9)

Combine the above results. The analytic signalx̂�(n) is given by

x̂�(n) = cos(!0n)� e�j� cos(!0n� �) = je�j� sin(�)ej! n:

(10)

When we choose� = (�=2), this result is reduced tôx�(n) = ej! n.

C. Two-Dimensional FHT

The ideal frequency response of two-dimensional (2-D) FHT with
order(�x; �y) is defined by

H� ; � (!1; !2)

= H� (!1)H� (!2)

=

e�j(� +� ); 0 � !1 < � and0 � !2 < �

e�j(� �� ); 0 � !1 < � and�� � !2 < 0

e�j(�� +� ); �� � !1 < 0 and0 � !2 < �

ej(� +� ); �� � !1 < 0 and�� � !2 < 0

(11)

where�x = (�x�=2) and�y = (�y�=2). That is to say, a 2-D FHT
is an ideal (�x�=2) phase shifter inx-direction and an ideal (�y�=2)
phase shifter iny-direction. From (11), it can be seen that the desired re-
sponseH� ; � (!1; !2) is separable for frequencies!1 and!2. Thus,
the design problem of 2-D FHT can be reduced to two one-dimensional
FHT design problems, i.e., design filterG1(z1) to approximate re-
sponseH� (!1) and design filterG2(z2) to fit responseH� (!2). As
a result, 2-D filterG1(z1)G2(z2) will approximateH� ; � (!1; !2)
very well. Finally, it is worth mentioning that multidimensional FHT
can be also defined using separability like multidimensional HT de-
scribed in [1, ch. 9].

III. D ESIGN OFFRACTIONAL HILBERT TRANSFORMER

In this section, the design problem of the FHT is investigated. Be-
cause practical digital filters will introduce a delay andH�(!) in (1) is
a zero delay specification, the FIR and IIR filters cannot be used to ap-
proximate the ideal responseH�(!). To solve this problem, we let dig-
ital filters approximate the modified specificationFd(!), which is the
frequency response by cascading ideal FHT and a pure delay system,
i.e.,

Fd(!) =H�(!)e
�jn !

=
e�jn !e�j� 0 � ! < �

e�jn !ej� �� � ! < 0
(12)

wheren0 is a prescribed delay. Once an FIR or IIR filterG(z) is
designed, we use the following formula to obtain the designed result
Ĥ�(!) of the FHT:

Ĥ�(!) = G(ej!)ejn !: (13)

Moreover, when a signal passes through filterG(z), it is equivalent
to passing through a cascade system of a pure delay filterz�n and a
designed FHT with frequency responseH�(!).

A. Design Based on Conventional Hilbert Transformers

From (4), we see that the FHT can be obtained from the designed
result of conventional Hilbert transformer. The main result can be sum-
marized as follows.

Fact 1: LetD(!) = cos(�)e�jn ! + sin(�)e�jn !H(!), where
H(w) is the ideal frequency response of conventional Hilbert trans-
former. Then it can be shown that

D(!) =
e�jn !e�j�; 0 � ! < �

e�jn !ej�; �� � ! < 0
(14)

that is,D(!) = e�jn !H�(!).
Based on this fact, two steps to design FHT from the conventional

HT are as follows.

1) Design FIR or IIR Hilbert transformersF (z) to approximate the
desired frequency responsee�jn !H(!) by using the well-doc-
umented methods.

2) The FHTG(z) is given bycos(�)z�n + sin(�)F (z).
Note that filtersF (z) andG(z) both have same filter length in the FIR
filter case. Now, two examples are used to illustrate this design method.
In the first example, we consider the design of IIR FHT. The parameters
chosen are delayn0 = 11 and� = 0:4. The IIR Hilbert transformer
F (z) with order 12/12, delay 11, and “care” band [0.08�; 0.92�] is
designed by the method proposed in [2]. The designed result ofF (z)
has been shown in [2, Fig. 5]. LetF (z) be denoted by(B(z)=A(z)).
Then the FHTG(z) is constructed by

G(z) = cos(�)z�n + sin(�)F (z)

=
cos(�)z�n A(z) + sin(�)B(z)

A(z)
: (15)

BecauseF (z) andG(z) have the same denominator polynomialA(z),
the filterG(z) is stable if the filterF (z) is stable. The design results
G(ej!)ejn ! are shown in Fig. 1(a) and (b). It is clear that the ampli-
tude response approximates unit gain and the phase response�0.2�
fits very well for all frequencies in the “care” band [0.08�; 0.92�].

In the second example, we consider the design of FIR FHT. The pa-
rameters chosen are delayn0 = 20 and� = 0:4. The McClellan–Parks
algorithm with order 40 and cut frequencies [0.03�; 0.97�] is first used
to design Hilbert transformerF (z). Then, the FHTG(z) is constructed
by cos(�)z�n + sin(�)F (z). The designed resultsG(ej!)ejn ! are
shown in Fig. 1(c) and (d). It is clear that the amplitude response ap-
proximates unit gain and the phase response fits�0.2� well for all
frequencies except edge frequencies! = 0 and! = �.

B. Other Design Methods

Two other methods can be used to design FHT.
1) All-Pass Filter Approach: From (12), it can be seen that the

amplitude response ofFd(!) is equal to unity for all frequencies. The
response can be approximated by the all-pass filter

G(z) =
aN + aN�1z

�1 + � � �+ a1z
�N+1 + z�N

1 + a1z�1 + � � �+ aN�1z�N+1 + aNz�N
: (16)

Let the phase response of all-pass filterG(z) be denoted by�G(!).
Then our purpose is to design the all-pass filterG(z) such that the
�G(!) approximates the prescribed phase response�n0! � �. Using
the design method described in [12], the optimal filter coefficients
a1; . . . ; aN can be determined in the least squares error sense.

2) Optimization Method:The desired frequency response of the
FHT has been specified in (12). Any general filter design methods that
approximate a given magnitude and phase responses simultaneously
can be applied to design a FHT. For example, we can use the quadratic
programming approaches described in [13] to design optimal IIR FHT.

IV. A PPLICATIONS OFFRACTIONAL HILBERT TRANSFORMER

In this section, we first use the FHT to construct a secure SSB com-
munication system. The fractional number� will be a secret key for de-
modulation. Then, 2-D FHT is applied to detect the locations of edges
and corners in digital images.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:49 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000 1531

(a) (b)

(c) (d)

Fig. 1. (a) The amplitude response of the FHT designed by IIR HT. (b) The phase response of the FHT designed by IIR HT. (c) The amplitude response of the
designed FIR FHT. (d) The phase response of the designed FIR FHT.

Fig. 2. (a) Secure SSB communication system. (b) The block diagram of the modulator. (c) The block diagram of the demodulator.

A. Secure SSB Communication System

The definitions of FHT and analytic signal have been stated in Sec-
tion II. Now, we will use them to construct a secure SSB commu-
nication system shown in Fig. 2(a).!c is the carrier frequency and
� = (��=2) is the fractional order of FHT. In this system, the order�
is used as a secret key for demodulation. If the order� is unknown in
the demodulation, the signalx(n) will not be recovered from the re-
ceived signaly(n). Based on the definition of the analytic signal in (5),
the block diagram of modulation is shown in Fig. 2(b). This process in-
volves two steps. First, an analytic version of a real signalx(n) is gen-
erated. Second, it is used to modulate a sinusoidal carrier of frequency
!c. The spectrumY (!) of the complex modulated signaly(n) is given
by

Y (!) = X̂�(!� !c) (17)

whereX̂�(!) is described in (7). Moreover, we introduce the following
fact to build the demodulation scheme.

Fact 2: Let the signals(n) be defined as

s(n) = �jej� csc(�)x̂�(n) (18)

wherex̂�(n) is the analytic signal defined in (5). Then it can be shown
that the real part of the signals(n) is x(n), i.e.,

x(n) = Re(s(n)): (19)

Proof: Substituting (5) into (18), we have

s(n) = x(n)� j cot(�)x(n) + j csc(�)x�(n): (20)

Sincex(n) andx�(n) are both real signals, the real part of the signal
s(n) is x(n).

Based on the above fact, the block diagram of demodulation is shown
in Fig. 2(c). This process involves two steps.

1) The analytic signal is recovered by multiplyingy(n) with a si-
nusoid whose frequency is�!c.

2) Use Fact 2 to obtain the signalx(n) from its analytic version. In
this demodulation scheme, it is clear that the parameter� must
be known in advance. Thus, parameter� can be used as a secret
key for demodulation.

Now, let us investigate two interesting problems. First, what is the
output of demodulator if parameter� in the demodulator is replaced
by any parameter�? In this case, it can be shown that the output of
demoulator becomesx(n)+I(n), where interferenceI(n) is given by

I(n) =
sin(�� �)

sin(�)
x�(n): (21)

If parameter� is equal to�, the interference becomes zero-valued. Oth-
erwise, the output of demodulator is the desired signalx(n) additive
with an interferenceI(n). Thus, illegal users can not demodulate the
received signaly(n) if order� is unknown.

Second, what is the output of demodulator if its inputy(n) is cor-
rupted by an additive noisev(n)? In this case, it can be shown that the
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Fig. 3. The outputs of the 2-D FHT for various orders� and� . The input is an image corrupted by white noise.

output of demoulator becomesx(n)+u(n), where noiseu(n) is given
by

u(n) = csc(�)Re(�jej�ej!nv(n)): (22)

If parameter� approaches zero,csc(�) approaches infinity, i.e., noise
u(n) is very large. However, when� is in the interval[(�=6); (�=2)],
then csc(�) ranges from one to two. Thus, it had better to choose the
screte key� in the range[(�=6); (�=2)] such that noise gain csc(�) is
very small.

B. Edge and Corner Detections

The main application of 2-D FHT is to detect the locations of edges
or corners of digital images. Now, an example is used to illustrate this
application. When an imagex(m; n) passes through the 2-D FHT, its
output can be computed by the inverse Fourier transform ofX̂(!1; !2)
given by

X̂(!1; !2) = H� ; � (!1; !2)X(!1; !2) (23)

where X(!1; !2) is the 2-D Fourier transform ofx(m; n) and
H� ; � (!1; !2) is 2-D FHT defined in (11). In the following, we will
compute the 2-D fractional Hilbert transform of the 150� 150 noisy
imagex(m; n) = f(m; n) + v(m; n), where

f(m; n) =
220; 60 � m � 90 and60 � n � 90

0; otherwise
(24)

andv(m; n) is white Gaussian noise with standard deviation 20. Fig. 3
shows the results for various orders�x and�y . For clarity, all images
have been displayed by properly thresholding. It is clear that the edges
or corners in the image can be detected by suitably choosing the pa-
rameters�x and�y . Seven observations are listed as follows.

1) When�x = 0:5 and�y = 0, the horizontal negative derivative
edges are emphasized.

2) When�x = 1 and�y = 0, the horizontal positive and negative
derivative edges are both emphasized.

3) When�x = 1:5 and�y = 0, the horizontal positive derivative
edges are emphasized.

4) When�x = 0 and�y = 0:5, the vertical negative derivative
edges are emphasized.

5) When�x = 0 and�y = 1, the vertical positive and negative
derivative edges are both emphasized.

6) When�x = 0 and�y = 1:5, the vertical positive derivative
edges are emphasized.

7) When�x = 1 and�y = 1, four corner points are greatly empha-
sized.

The above observations tell us that the 2-D FHT provides more
ways to detect edges or corners of digital images than the conventional
Hilbert transform [14].

V. CONCLUSION

In this paper, the design problems and applications of the FHT have
been investigated. However, only two applications are studied here,
Thus, it will be interesting to apply FHT to other signal-processing ap-
plications in the future.
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Roundoff Noise Minimization in a Modified Direct-Form
Delta Operator IIR Structure

Ngai Wong and Tung-Sang Ng

Abstract—Among various direct-form delta operator realized filter
structures, the delta transposed direct-form II ( DFIIt) has been shown to
produce the lowest roundoff noise gain in finite wordlength implementa-
tions. Recent analyses focus on the optimization of the free parameter�
of the delta operator, with scaling of the structure to prevent arithmetic
overflow. This paper proposes a modified DFIIt second-order section in
which the�s and filter coefficients at different branches are separately
scaled to achieve improved roundoff noise gain minimization. Expressions
for the filter coefficients are derived, and reduction of roundoff noise gain
is verified by numerical examples.

Index Terms—Delta operator, IIR filter, minimization, roundoff noise.

I. INTRODUCTION

Delta operator realized filters have attracted increasing attention in
this decade due to their good numerical properties when compared to
the traditional delay structures [1]–[8]. This is especially true for sys-
tems whose sampling rate is much higher than the underlying signal
bandwidth, causing thez-plane poles to cluster toward the unit circle.
By replacing the conventionalz�1 operator with the inverse delta oper-
ator��1 = �z�1=(1� z�1), certain ill-conditioned numerical issues
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Fig. 1. Delta equivalence of delay structure with transfer function given by
(1).

Fig. 2. Modified delta section with overflow scaling byg, and � and
coefficient scaling byk andk .

in delay structures can be overcome. In particular, delta operator real-
izations are generally accompanied with better roundoff noise perfor-
mance and more robust coefficient and frequency sensitivities [1], [2].
Although the inverse delta operator is more complicated to implement,
its excellent numerical properties allow the use of shorter wordlengths,
which results in moderate complexity or even gross savings in silicon
area [6].

Comprehensive study of different delta structures has been carried
out in [4]. It was found that the delta transposed direct-form II (�DFIIt)
shows the best roundoff noise properties among various delta struc-
tures. Emphasis has been put on the optimization of the free parameter
�(� > 0) of the delta operator in order to achieve minimum roundoff
noise gain at the output. The second-order�DFIIt section, being a basic
building block, was analyzed in detail [3], [4].

In this paper, instead of limiting to a single optimal� within the
second-order�DFIIt section, the concept of separately scaling the�s
as well as filter coefficients is introduced. It will be shown that such an
approach will enable the true global optimal solution to be obtained,
which further minimizes the roundoff noise gain of the section.

II. NOISE MINIMIZATION

Suppose that a transfer function in thez-domain, represented by (1),
is obtained under certain specifications and sampling conditions. It can
then be transformed into an equivalent delta structure with the substitu-
tion z = 1+ ��. Fig. 1 shows the�DFIIt implementation of (1). This
structure was studied extensively for optimization in previous works
[3], [4], where the same�was used in both��1 operators. Fig. 2 shows
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