IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 10, OCTOBER 2003 307
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Abstract—In this letter, the Taylor series expansion is used to x(m)
transform the design problem of a fractional delay filter into the v ¥ s
one of afirst-order differentiator such that the conventional finitie- | G, (2) l IG”"(Z)I e TG G,(2)
impulse response and infinite-impulse response differentiators can .
be applied to design a fractional delay filter directly. The proposed
structure is more efficient than the well-known Farrow structure "3 — e —> y(n)
in terms of filter coefficient storage because only one first-order %
differentiator needs to be designed and implemented. Moreover, ,

one design example is demonstrated to illustrate the effectiveness
of this new design approach. Fig. 1.

Farrow structure for fractional delay filters with adjustable delay
Index Terms—Differentiator, fractional delay filter.

Substituting (3) into (2), the transfer function can be rewritten
|. INTRODUCTION as

N MANY applications of signal processing, there is a need M N M
for a delay that is a fraction of the sampling period. These H(z, p) = Z Z anpz Pk = Z Gr(2)p*  (4)
applications include time adjustment in digital receivers, beam k=0 n—=0 k=0
steering of antenna array, speech coding and synthesis, mod-
eling of music instruments, sampling rate conversion, time delashereG(z) = zﬁjzo anrz~ ™. In[5]-[10], several approaches
estimation, comb filter design, analog—digital conversion, eticave been proposed to desifih+ 1 subfiltersG(z) for k =
[1]-[10]. An excellent survey of the fractional delay filter desigm, 1, ..., M such that the filte# (z, p) approximates the de-
is presented in tutorial papers [3], [4]. The desired frequency Ered responseél,;(w, p) as well as possible. Once tiié + 1
sponse of the variable fractional delay filter is given by subfiltersG(z) have been designed, the filt&f(z, p) can be
implemented by the efficient Farrow structure shown in Fig. 1
Hy(w, p) = e77(PFP) 1) [5l
On the other hand, the digital differentiator has been a very
where delayD is an integer, ang is a variable or adjustable yseful tool to determine and estimate the time derivatives of
fractional number in the range-0.5, 0.5]. So far, there have a given signal. For example, in radar and sonar applications,
been several methods to design variable fractional delay finitge velocity and acceleration are computed from position mea-
impulse response (FIR) filters. In [5], the transfer function afurements using differentiators [11]. In biomedical engineering,
the FIR filter used to approximate this specification is chosénis often necessary to obtain the higher order derivatives of

as follows: biomedical data, especially at low-frequency ranges [12]. Until
N now, several methods have been developed to design infinite-im-

H _ . —n 2 pulse response (IIR) and FIR digital differentiators such as the

(z p) nz_:oa (p)z @ Remez exchange algorithm [13], eigenfilter method [14], least

squares method [15], [16], quadratic programming [17], etc. In

wherea,, (p) are the polynomial functions imof degreeM , i.e., this letter, the Taylor series expansion will be used to transform
the design problem of the fractional delay filter into that of a
M first-order differentiator such that conventional FIR and IIR dif-

an(p) = Z anip". (3) ferentiators can be applied to design the fractional delay filter di-

k=0 rectly. The proposed structure is more efficient than the Farrow

structure in Fig. 1 in terms of filter coefficient storage because

Manuscript received August 20, 2002; revised November 5, 2002. The @mnly one first-order differentiator needs to be designed and im-

sociate editor coordinating the review of this manuscript and approving it fﬁﬂemented instead dff 4 1 subfilters. Finally it is worth men-
publication was Dr. Petr Tichavsky. :

S. C. Pei is with Department of Electrical Engineering, National Taiwan Un}-'onmg th‘?‘t the.|dea Qf |mplement!ng a frgctlongl delay filter or
versity, 106 Taipei, Taiwan, R.O.C. (e-mail: pei@cc.ee.ntu.edu.tw). interpolation with various-order differentiators is not new. The
C. C. Tseng is with Dept. of Computer and Communication Engineering, Na|ated researches can be found in [18] and [19]_ However, in

tional Kaohsiung First University of Science and Technology, 824 Kaohsiung, . . . . . .
Taiwan, R.O.C. (e-mail: tcc@ccms.nkfust.edu.tw). &hs Ie_tter, the idea of only using the single first-order differen-
Digital Object Identifier 10.1109/LSP.2003.815616 tiator is novel.

1070-9908/03%$17.00 © 2003 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 03:12 from IEEE Xplore. Restrictions apply.



308 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 10, OCTOBER 2003

Il. DESIGN METHOD TABLE |
. . . . . THE NRMS ERROR FORVARIOUS M
In this section, we will use the Taylor series expansion to

transform the design problem of the fractional delay filter into M | NRMS (%)
the one of a first-order differentiator. The main idea is based on 1] 20.526934
the following fact. (2 | 7.156246
Fact: If the frequency response of the first-order differen- (3| 2034796
tiator is denoted by’ (w) = (jw)e=7“" and delayD = Mny, 4 | 0.486079
then it can be shown that the fractional delay filigy(w, p) can _5 | 0.099930
be written as 6| 0.018016
7 | 0.002890
M (—1)k . "8 | 0.000417

Ho(w, p)=) |~ [F(@)]* (e )M =Epk+0(pM*T) "9 | 0000054
k=0 10| 0.000006

®)
where M, ng are two prescribed integers, addx) denotes a
term which goes to zero at least:asvhenz approaches zero. the ideal response of the fractional delay filter can be approxi-
Proof: Using the Taylor series expansion, the terrdi“? mated by the following form:
can be expressed as a polynomiapdats follows:

; o~ (DF o\ M=k
' = (Zp)t Hy(w, p):Z x [F(w)]¥(e77em0)™ = p*. (9)
e~Iwp — Z 5 (jw)k k=0
h=0 The largerM is, the better approximation that,(w, p) has.
M . In order to evaluate the performance of this approximation, the
_ Z (=1) (jw)kpk normalized root mean square (NRMS) error is defined by
]
k=0 M ar 0.5 |7 2 1/2
S g Lo 0 e, ) — Haleo, )P dpds]
M4+1 - 2 Nk k—(M+1) =
A DYl Oy ] PO o, )P dpds]
k=M+1 0 —o.5 Halw, P 14
x100%. (10)
S (=1)* , .
= o (jw)Fp* + O(pM*). (6) It is easy to show [Hu(w,p) — Halw,p)] =
k=0 | ko (=0)*/kD)(wp)* — e77*P| and |[Hy(w, p)| = 1, s

. i D the NRMS only depends on the choice &f and «. Table |
By multiplying both sides by the factar 7, we get the fol- |ists the NRMS for various\/ anda = 0.9. From this result,

lowing equality: it can be found that whedd/ > 5, the NRMS is less than
o 0.1%. Thus, theH,(w, p) approximates the ideal response
: -k ; / H Il for M > 5
e—Jw(D+p) _ Z ( (jw)ke—ngpk n O(pz\u-l). @) a(w, p) very well for M > 5.

— k! Now, let us describe how to design a variable filt&fz, p) to
approximateH ;(w, p). From (9), we see that if a filte(z) is
SubstitutingD) = Mmn, into (7) and using equality’(w) = designed to approximate the first-order differentiator response
(jw)e™7mo, we get F(w) = (jw)e 7«m0, then the following filter
M M _1\k
e—iw(D+p) _ Z (_k_l')k(jw)ke—jw]\/[nopk + O(pM“) H(z, p) = Z ( ]:l) G(z)kz—no(M—k)pk (11)
k=0 k=0
M (=1F _jukng —juo(M—kyo. & a}pproximatesﬁd(% p) well. Based on (11),_thefraction_a| delay
= X (jw)"e € p filter can be implemented by th&/ same first-order differen-
k=0 tiator G(z) and M integer delay:~"°(™—*) shown in Fig. 2.
+O0(pM*1) Thus, the design problem reduces to the design of first-order
" differentiatorG(z). In the literature, several methods have been
. (-1)* F (T (mewno\ M=k s proposed to design FIR and IIR differentiat@fz) [13]-[17].
B kzo k! [F(w) (e ) p OnceG(z) has been designed and inserted into the structure in

Fig. 2, we can easily adjust the fractional numpéw obtain the
+ O(pM+h). (8) desired delay response. Now, three aspects of the efficiency are
m Uusedtocompare the Farrow structure in Fig. 1 with the proposed
structure in Fig. 2.
Because the fractional numbgiis in the rangd—0.5, 0.5], 1) Computational complexityThe Farrow structure has
the termO(p*+1) approaches zero whé is very large. Thus, M + 1 subfiltersG(z), but our structure has/ filters
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Fig. 2. Proposed structure for the fractional delay filter. Thez) is the
first-order differentiator.

o
'S

magnitude response (/pi)
o
(&

G(z) and M scalar multiplications. Thus, both structure
almost have the same arithmetic complexity.
2) Delay of filter: In Farrow structure, the integer deldy
is fixed and specified in advance, but the delayn our 04
structure is equal td/ny. Thus, when the number of sub- : :
filters M is large, the delay of the proposed structure i ¢ i i i i i i i i
longer than the delay of Farrow structure. 0 o1 0z 03 no,?n-;‘,izedE;fquengf(,pi) 07 08 09 A
3) Storage equirementfor the implementation of Farrow
structure, there are the coefficients f + 1 subfilters  Fig. 3. Magnitude response of the designed first-order differenttior).
necessary to be stored in the memory. However, for the
proposed structure, only the coefficients of a single firs
order differentiator need to be stored in the memory. Thu
the proposed structure is more efficient than the Farrc X107
structure in terms of the filter coefficient storage.

02b

2<.
[ll. DESIGN EXAMPLE 04
In this section, an example performed with MATLAB Ian-a 2
guage in an IBM-compatible personal computer is presented?
illustrate the effectiveness of the proposed design method. § -4
evaluate the performance, the maximum absolute egrgrand 2
rms errore, s are defined by g -6
emax = max{le(w, p)|lw € [0, an], p € [-0.5, 0.5]} ®
am 0.5 % =10
€rms = |:/ / |e((4()7 p)|2 dw dp (12) 0.5
J0 J—-0.5
P! 08
where error 0 0.6
~ 0.4
) | 0.2
e(w, p) = Ha(w, p) — H(e’, p). (13) -05 0

fractional delay normalized frequency

In this example, the parameters are chosetas 29, M = 7,

anda = 0.9. Thus, the integer dela)@ = Mngy = 203. Now, Fig. 4. Magnitude response of the designed variable fractional delay filter
the least squares method in [16] is used to design linear ph51§é’ p):

FIR differentiatorG(z) with length2n, + 1 and passband edge

frequencyw, = ar. Fig. 3 shows the magnitude response of.306 x 10~% and rms errok, s is4.272 x 10~°. Because the
the designed first-order differentiat6t(z). Clearly, G(z) ap- errors are very small, the specification is well fitted.
proximates the ideal responsewell in the range[0, 0.97]. Finally, it is interesting to compare the performance of the
By inserting the designed differentiat6¥(z) into the struc- proposed structure with conventional Farrow structure under
ture in Fig. 2, the variable fractional delay filtéf(z, p) can the same arithmetic complexity. Because filtay(z) in Farrow

be obtained. Figs. 4 and 5 depict the magnitude responsesiructure is nonlinear phase, there &e+ 1 multiplications
decibel scale and group delay of the designed variable fractionakded to implement,(z). In the above example, the first-
delay filter H(z, p) in the frequency rang@, 0.9x] for dif- order differentiator7(z) is linear phase with lengtbv + 1, so
ferentp € [—0.5, 0.5]. The maximum absolute erref,.x is there areny, multiplications needed to implement differentiator
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storage because only a single first-order differentiator needs to
be designed and implemented.
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