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An Efficient Design of a Variable Fractional Delay
Filter Using a First-Order Differentiator

Soo-Chang Pei, Fellow, IEEE,and Chien-Cheng Tseng, Senior Member, IEEE

Abstract—In this letter, the Taylor series expansion is used to
transform the design problem of a fractional delay filter into the
one of a first-order differentiator such that the conventional finitie-
impulse response and infinite-impulse response differentiators can
be applied to design a fractional delay filter directly. The proposed
structure is more efficient than the well-known Farrow structure
in terms of filter coefficient storage because only one first-order
differentiator needs to be designed and implemented. Moreover,
one design example is demonstrated to illustrate the effectiveness
of this new design approach.

Index Terms—Differentiator, fractional delay filter.

I. INTRODUCTION

I N MANY applications of signal processing, there is a need
for a delay that is a fraction of the sampling period. These

applications include time adjustment in digital receivers, beam
steering of antenna array, speech coding and synthesis, mod-
eling of music instruments, sampling rate conversion, time delay
estimation, comb filter design, analog–digital conversion, etc.
[1]–[10]. An excellent survey of the fractional delay filter design
is presented in tutorial papers [3], [4]. The desired frequency re-
sponse of the variable fractional delay filter is given by

(1)

where delay is an integer, and is a variable or adjustable
fractional number in the range . So far, there have
been several methods to design variable fractional delay finite-
impulse response (FIR) filters. In [5], the transfer function of
the FIR filter used to approximate this specification is chosen
as follows:

(2)

where are the polynomial functions inof degree , i.e.,

(3)
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Fig. 1. Farrow structure for fractional delay filters with adjustable delayp.

Substituting (3) into (2), the transfer function can be rewritten
as

(4)

where . In [5]–[10], several approaches
have been proposed to design subfilters for

such that the filter approximates the de-
sired response as well as possible. Once the
subfilters have been designed, the filter can be
implemented by the efficient Farrow structure shown in Fig. 1
[5].

On the other hand, the digital differentiator has been a very
useful tool to determine and estimate the time derivatives of
a given signal. For example, in radar and sonar applications,
the velocity and acceleration are computed from position mea-
surements using differentiators [11]. In biomedical engineering,
it is often necessary to obtain the higher order derivatives of
biomedical data, especially at low-frequency ranges [12]. Until
now, several methods have been developed to design infinite-im-
pulse response (IIR) and FIR digital differentiators such as the
Remez exchange algorithm [13], eigenfilter method [14], least
squares method [15], [16], quadratic programming [17], etc. In
this letter, the Taylor series expansion will be used to transform
the design problem of the fractional delay filter into that of a
first-order differentiator such that conventional FIR and IIR dif-
ferentiators can be applied to design the fractional delay filter di-
rectly. The proposed structure is more efficient than the Farrow
structure in Fig. 1 in terms of filter coefficient storage because
only one first-order differentiator needs to be designed and im-
plemented instead of subfilters. Finally, it is worth men-
tioning that the idea of implementing a fractional delay filter or
interpolation with various-order differentiators is not new. The
related researches can be found in [18] and [19]. However, in
this letter, the idea of only using the single first-order differen-
tiator is novel.
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II. DESIGN METHOD

In this section, we will use the Taylor series expansion to
transform the design problem of the fractional delay filter into
the one of a first-order differentiator. The main idea is based on
the following fact.

Fact: If the frequency response of the first-order differen-
tiator is denoted by and delay ,
then it can be shown that the fractional delay filter can
be written as

(5)
where , are two prescribed integers, and denotes a
term which goes to zero at least aswhen approaches zero.

Proof: Using the Taylor series expansion, the term
can be expressed as a polynomial ofas follows:

(6)

By multiplying both sides by the factor , we get the fol-
lowing equality:

(7)

Substituting into (7) and using equality
, we get

(8)

Because the fractional numberis in the range ,
the term approaches zero when is very large. Thus,

TABLE I
THE NRMS ERROR FORVARIOUSM

the ideal response of the fractional delay filter can be approxi-
mated by the following form:

(9)

The larger is, the better approximation that has.
In order to evaluate the performance of this approximation, the
normalized root mean square (NRMS) error is defined by

NRMS

(10)

It is easy to show
and , so

the NRMS only depends on the choice of and . Table I
lists the NRMS for various and . From this result,
it can be found that when , the NRMS is less than
0.1%. Thus, the approximates the ideal response

very well for .
Now, let us describe how to design a variable filter to

approximate . From (9), we see that if a filter is
designed to approximate the first-order differentiator response

, then the following filter

(11)

approximates well. Based on (11), the fractional delay
filter can be implemented by the same first-order differen-
tiator and integer delay shown in Fig. 2.
Thus, the design problem reduces to the design of first-order
differentiator . In the literature, several methods have been
proposed to design FIR and IIR differentiator [13]–[17].
Once has been designed and inserted into the structure in
Fig. 2, we can easily adjust the fractional numberto obtain the
desired delay response. Now, three aspects of the efficiency are
used to compare the Farrow structure in Fig. 1 with the proposed
structure in Fig. 2.

1) Computational complexity:The Farrow structure has
subfilters , but our structure has filters
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Fig. 2. Proposed structure for the fractional delay filter. TheG(z) is the
first-order differentiator.

and scalar multiplications. Thus, both structure
almost have the same arithmetic complexity.

2) Delay of filter: In Farrow structure, the integer delay
is fixed and specified in advance, but the delayin our
structure is equal to . Thus, when the number of sub-
filters is large, the delay of the proposed structure is
longer than the delay of Farrow structure.

3) Storage requirement:For the implementation of Farrow
structure, there are the coefficients of subfilters
necessary to be stored in the memory. However, for the
proposed structure, only the coefficients of a single first-
order differentiator need to be stored in the memory. Thus,
the proposed structure is more efficient than the Farrow
structure in terms of the filter coefficient storage.

III. D ESIGN EXAMPLE

In this section, an example performed with MATLAB lan-
guage in an IBM-compatible personal computer is presented to
illustrate the effectiveness of the proposed design method. To
evaluate the performance, the maximum absolute errorand
rms error are defined by

(12)

where error

(13)

In this example, the parameters are chosen as , ,
and . Thus, the integer delay . Now,
the least squares method in [16] is used to design linear phase
FIR differentiator with length and passband edge
frequency . Fig. 3 shows the magnitude response of
the designed first-order differentiator . Clearly, ap-
proximates the ideal responsewell in the range .
By inserting the designed differentiator into the struc-
ture in Fig. 2, the variable fractional delay filter can
be obtained. Figs. 4 and 5 depict the magnitude response in
decibel scale and group delay of the designed variable fractional
delay filter in the frequency range for dif-
ferent . The maximum absolute error is

Fig. 3. Magnitude response of the designed first-order differentiatorG(z).

Fig. 4. Magnitude response of the designed variable fractional delay filter
H(z; p).

and rms error is . Because the
errors are very small, the specification is well fitted.

Finally, it is interesting to compare the performance of the
proposed structure with conventional Farrow structure under
the same arithmetic complexity. Because filter in Farrow
structure is nonlinear phase, there are multiplications
needed to implement . In the above example, the first-
order differentiator is linear phase with length , so
there are multiplications needed to implement differentiator
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Fig. 5. Group delay response of the designed variable fractional delay filter
H(z; p).

. Thus, when we choose , the filters in both
structures have the same arithmetic complexity. Now, the con-
ventional weighted least squares method in [7] is used to design
filters in Farrow structure with specification ,

and uniform weighting. As a result, the max-
imum absolute error is and rms error
is . Thus, the proposed structure has smaller de-
sign errors than the Farrow structure under the same arithmetic
complexity. However, the delay of Farrow structure is 15, but
the delay of our structure is . Thus, the proposed
structure has longer delay than the Farrow structure.

IV. CONCLUSION

In this letter, the Taylor series expansion has been used to
transform the design problem of the fractional delay filter into
the one of a first-order differentiator such that the conventional
digital differentiators can be directly applied to design a frac-
tional delay filter. The proposed structure is more efficient than
the well-known Farrow structure in terms of filter coefficient

storage because only a single first-order differentiator needs to
be designed and implemented.
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