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Closed-Form Design of All-Pass
Fractional Delay Filters
Soo-Chang Pei, Fellow, IEEE, and Peng-Hua Wang

Abstract—In this letter, we propose a novel all-pass (AP) frac-
tional delay filter whose denominator polynomial is obtained by
truncating the power series of a certain function. This function is
derived from the frequency response of the denominator whose
magnitude response is related to the desired phase response
through the Hilbert transform since the denominator of a stable
AP filter is of minimum phase. The target function and corre-
sponding power series are calculated analytically and expressed
in closed form. The closed-form expressions facilitate the analysis
of stability. According to the properties for the coefficients of the
denominator polynomial, we show that the proposed AP filter is
stable for positive delay. Numerical examples indicate that the
phase delays of the proposed filters are flat around DC.

Index Terms—Allpass filter, fractional delay filter, minimum
phase, phase delay.

I. INTRODUCTION

D IGITAL implementation of fractional delay (FD) occurs
in many applications such as sound synthesis and timing

adjustment in digital receivers. Therefore, design of digital FD
filters is important and has been widely studied and reported
in the literature [1]. Several closed-form FD filters are inves-
tigated because there exist efficient and tunable structures for
implementation. Finite-impulse response (FIR) FD filters with
closed-form coefficients can be derived by windowing their
ideal impulse responses [1], [2], by solving the Vandermonde
system [3], or by expanding a certain function to power series
[4]. The Vandermonde FIR FD filters that are identical to the
series expansion have maximally flat (MF) frequency responses
[4]. The MF FIR FD filters can be implemented in module
[4] or in tunable structures such as the Farrow structure [1].

All-pass (AP) filters are a natural choice to design the FD fil-
ters, since the AP filters have unity magnitude responses within
the whole frequency band structurally. However, it is necessary
for AP filters to check their stability, which is guaranteed for the
FIR filters. The methods of AP filter design can be surely applied
to the FD filters [5]. Like the FIR MF FD filters, closed-form
AP FD filters whose coefficients are obtained by solving the
Vandermonde system has MF phase delay [6]. There exist tun-
able structures for the MF AP FD filters [7]. By over-sampling
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input signal, an efficient implementation of wideband FD filters
is proposed in [8].

In this letter, we proposed a new AP FD filter with closed-
form coefficients by series expansion. The phase delay of the
denominator is calculated from the desired overall delay and
accordingly the magnitude response can be derived through the
Hilbert transform based on the fact that the denominator is a
minimum phase polynomial. The ideal transfer function of the
denominator can be derived by the magnitude and the phase
responses. The denominator polynomials of the AP filters are
obtained by truncating the power series of the ideal transfer
function. Stability checked by a theorem about the bound of
the zeros of a polynomial is guaranteed for positive delay.

II. FREQUENCY RESPONSE OF DENOMINATOR

The transfer function of an th-order real-coefficient AP
filter is represented by

(1)

where the numerator is the mirror-image polynomial of the de-
nominator. Although we usually let for AP filters to
prevent the null solution, in this letter we do not make such an
assumption, so as to facilitate our derivation and discussion. The
phase response of the AP filter can be expressed by

(2)

where is the phase response of the denominator.
Given the desired phase response , we want to find a set of
coefficients ’s so that , or equivalently

(3)

Suppose the desired phase response for the th-order AP FD
filter is

(4)

where , restricted by in this letter, is the fractional
part of the delay. Then (3) gives the desired phase response of
the denominator

(5)

We assume that the magnitude response approximates
a minimum phase system with the phase response expressed by
(5). The magnitude is related to the phase response
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by the discrete Hilbert transformation [2]. Specifi-
cally speaking

(6)
where the symbol denotes the Cauchy principal value of the
integral. The constant in (6) is calculated by

(7)

Since represents a scaling factor to , it will be can-
celed out in the case of the AP filter. Hence, we let
without loss of generality.

Substituting (5) into (6), we may express in closed
form. By means of the Leibniz’s theorem for differentiation of
an integral [9], it is easy to calculate the integral of (6).

Property 1: The magnitude response of a minimum phase
system with phase response is

(8)

Proof: Let

(9)

We obtain that after substituting (5)
into (6). By the Leibniz’s theorem, we have

Therefore

(10)

where is a constant. To determine , we let , equate
(9) with (10), and obtain that

Therefore, and the
magnitude response can be obtained and expressed as (8).

Since the magnitude response and the phase response of the
denominator are obtained, the frequency response of the de-
nominator is calculated by the product of the magnitude and
the phase, and the transfer function can be obtained easily. This
transfer function could be regarded as the ideal transfer function
of the AP FD filter. We obtain the following property.

Property 2: The ideal transfer function of the denominator
for an th-order AP FD filter with total delay of is

ideal (11)

Remark: In fact, the denominators of Thiran’s MF AP FD
filters converge to ideal as approaches infinity. By ex-
pressing the coefficients of Thiran’s MF AP FD filters as

(12)

we have

and

(13)

where is the coefficients of the Taylor’s se-

ries of expanded at , and is
the Pochhammer’s symbol defined by and

.
Based on the magnitude response expressed by (8) or the ideal

transfer function of (11), we may find the coefficients of the de-
nominator by well-developed methods for FIR filter de-
sign. In this letter, we will expand (11) into its power series to
obtain the closed-form formulas for the coefficients directly.

Property 3: The transfer function of the denominator of an
th-order AP FD filter can be expressed by

(14)

Proof: This result can be obtained by expanding the ideal
transfer function around . Expressing ideal in (11) as

, expanding it as the binomial series,
and truncating the resulting series up to the first terms,
we obtain (14), except for the scaling factor of . The factor
can be dropped since it will be cancelled out in the AP transfer
function.

According to Property 3, it is easy to obtain the filter coeffi-
cients ’s in closed form by expanding the right side of (14)
and then collecting terms of the same power. After some alge-
braic manipulations, the coefficients in (1) can be expressed as

(15)

for .
The coefficients of the th-order AP FD filter are now ob-

tained in closed form. Although we derive the coefficients of the
filter according to the assumption of minimum phase system for
the denominator, this assumption does not guarantee stability of

in (14) because of truncation of series. In Section III, we
will discuss the stability of the proposed AP filter.
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Fig. 1. Plot of largest poles in modulus for �1 < d < 0. Because we give a
proof of stability only for 0 < d < 1, the stability for�1 < d < 0 is illustrated
by numerically computing the poles and by showing that their moduli are less
than unity.

Fig. 2. Phase delay plots forN = 10. These plots suggest that the bandwidths
for d < 0 are wider than bandwidths for d > 0.

III. STABILITY AND DESIGN RESULTS

To test the stability of the proposed AP filter, we may apply
the Schur–Cohn criterion or the more efficient Jury–Marden cri-
terion [10]. Nevertheless, it is difficult to evaluate the Schur de-
terminants because the summation in (14) can not be simplified
furthermore. It is also complicated to establish the Jury–Marden
arrays for the same reason. Therefore, we have to find another
way to test the stability. In this letter, we will apply the En-
eström-Kakeya theorem [11], [12] stated as the following.

Theorem 1: Let , , be a poly-
nomial with for . Let for

. Then all the zeros of are contained in the
annulus

By using the closed-form coefficients in (14), we can show that
the coefficients are decreasing in modulus. In fact, we have the
following property.

Property 4: The denominator polynomial can be rep-
resented as

(16)

for where .
Proof: It is obvious that for

. Since can be rewritten as

we have

for . That is, for On the
other hand, to prove for , we first express

as where .
Since , and , we have

and, finally

Based on Property 4, it is easy to show that the proposed AP
filter is stable for . Let . Since the co-
efficients of are positive and strictly monotone decreasing,
the zeros of lie in by Theorem 1. Therefore the
zeros also lie in . We conclude that the AP FD
filter with denominator is stable.

We do not prove the stability of the proposed filters for
in this letter. However, by numerically computing the

zeros of , the largest moduli of zeros are less than unity for
. Fig. 1 shows the plot of largest moduli for

and . The pole of largest
modulus for and is a negative real pole
of whose modulus is near but less than
unity.

As an illustration of the proposed filters, Fig. 2 shows the
design results of the tenth-order AP FD filters. Fig. 2 is the
plot of the phase delays versus normalized frequency for

. This plot suggests that the bandwidths
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Fig. 3. Phase delay plots for N = 10; 20;30;40;50 over 0:5� < ! < �.
(a) d = �0:5. (b) d = 0:5. The plot illustrates the error due to truncation of
power series.

for are wider than the bandwidths for . Fig. 3 il-
lustrates the degradation of phase response due to truncation of
power series. If the power series is truncated to terms, we ob-
tain an th AP FD filters. The fraction part phase responses for

and are shown in Fig. 3. The
width of the band of interest is increased if we use more terms
for the approximation.

IV. CONCLUSIONS

A new closed-form AP FD filter is proposed in this letter. The
coefficients of the proposed filter are obtained by truncating
the power series expansion of the function of
expanded at . According our derivation in this letter,

may be regarded as the ideal transfer func-
tion of denominator. Instead of the Schur–Cohn criterion or
Jury–Marden criterion, we apply the Eneström–Kakeya the-
orem to prove the stability of the proposed AP FD filter with

. The closed-form expression of coefficients facil-
itates analysis of stability. On the other hand, the stability of
filters with is demonstrated by numerically com-
puting the poles. We find that all the poles are inside unit circle
if for . The proposed filters are degraded
when the precision of the coefficient is low. According to our
experiment, coefficients rounded to 8 bits or less will induce
large ripples over . The ripples can be suppressed if 16
bits or more are used for expressing the coefficients.
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