
1590 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 11, NOVEMBER 1999

High-Resolution Neural Temperature
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Abstract—We demonstrate a novel high-resolution neural tem-
perature sensor using two fiber Bragg gratings (FBG’s) and
a modular artificial neural network which is used to learn
the mapping relation among frequency, temperature, and the
normalized transmission power spectrum. Because of the fast
computational ability of the modular artificial neural network
and the sensitivity of FBG’s, the sensor can make high-resolution
temperature and frequency measurements in real time. The
experimental results show that the temperature resolution of this
sensor can reach 0.005�C.

Index Terms—Feedforward neural networks, fiber Bragg grat-
ings, fuzzy neural networks, temperature sensor.

I. INTRODUCTION

OVER THE PAST ten years, most of the reported fiber
Bragg grating (FBG) sensors used the phenomenon

of power spectrum drifting with temperature to detect tem-
perature variations [1], [2]. The dependence between the
temperature and the Bragg wavelength caused by thermal
expansion of the fiber and change of the refractive index in the
core can be theoretically predicted and experimentally verified.
Based on the amount of wavelength shift, the magnitude of the
temperature variation can be deduced. Therefore, measurement
of the wavelength shift is a key issue for in-fiber Bragg-
grating sensors. Several sensing schemes, such as the edge
filter, tunable filter, and interferometric scanning method, have
been proposed to measure the degree of wavelength shift of
an FBG [3]–[8]. Some experiments using CCD spectrometers
have also been reported in the literature with promising results.
A CCD line array with a holographic grating can be fixed in
a mechanical breadboard [9], [10]. However, these schemes
utilize either the entire power spectrum of the FBG or phase
detection to identify the degree of wavelength shift. There are
three general requirements for a useful sensor: 1) good reso-
lution with enough measurement range; 2) cost effectiveness;
and 3) compatibility with multiplexing. According to these
requirements, we must design a fiber sensor with the benefits
of artificial neural networks.

In many practical cases, the amount of raw data is huge
and, most of the time, is difficult to interpret. Artificial
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neural networks (ANN’s), which have self-learning ability
and are trainable to interpret raw data, are good information
processing tools. In recent years, some ANN’s have been
applied to sensing systems [11]–[15]. ANN’s are used to learn
the functional mapping relationship from the raw data to the
physical quantities. Based on the characteristics of ANN’s,
they can be classified as supervised methods (classification
[13] or regression [11], [14]) and unsupervised methods [15].
These neural processing type sensors, based on the general
ability of the trained ANN’s, can achieve high resolution and
accuracy. Sensors with ANN’s can be implemented directly by
using parallel computation chips to process distributed signals
in real time.

In this paper, we propose a novel neural FBG temperature
sensor, which combines the features the good sensitivity of
FBG sensors and real neural processing. This sensor improves
the sensing speed and accuracy, reduces cost, and eliminates
the process of scanning over the entire power spectrum of the
FBG. In the future, fiber optics and small-size neural networks
will potentially make the integration of sensing, training,
and processing functions in one compact smart apparatus
feasible. The remainder of this paper is organized as follows.
In Section II, the modular ANN used to learn the many-to-
one mapping relationship is described. The sensing principle
and procedures are discussed in Section III. The experimental
setup and the results, which demonstrate that resolution as high
as 0.005 C can be achieved, are both presented in Section IV.
Finally, the conclusions are given in Section V.

II. M ODULAR ARTIFICIAL NEURAL NETWORK

In this paper, we use a modular artificial neural network
which combines a multi-layer perceptron (MLP), ANN’s [16],
and a fuzzy network [17], [18] to learn a two-input-to-one-
output mapping as

(1)

where is the detected response of the sensors,
are the physical quantities to be measured in the environment,
and represents the mapping function of the sensor from

to . The MLP ANN is a powerful tool for
information processing, but the weights of the MLP ANN
cannot be determined easily. However, the fuzzy network
has the capability of managing the parameters of a physical
system. The parameters of the fuzzy network can be initialized
by usinga priori knowledge to shorten the training process.
Therefore, we combine the MLP ANN’s and the fuzzy network
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Fig. 1. The signal flow chart of the modular ANN.

as a modular ANN to learn the nonlinear mapping functions.
This modular ANN is a network containing localized compu-
tation nodes in which each module is an independent system
interacting with other modules to perform a more complex
function.

The architecture of the modular ANN is illustrated in Fig. 1.
The fuzzy network as depicted by the left side of Fig. 1 can
be trained to learn the mapping relationship from to
as follows:

(2)

and

(3)

where is the output of the modular ANN, is the th
membership function of the linguistic descriptions of the input
variable is the output of the th MLP ANN, and
and with are the adjustable parameters of
the fuzzy network.

The MLP ANN is trained to learn the mapping relationship
from with to as shown by the right side of
Fig. 1. The symbol represents an adaptive linear combiner
(ALC), which simply performs a weighted sum of the input
with a bias term as in the following expression:

(4)

where is the output of the ALC, is an input vector of
the ALC, is a weighting vector of the ALC, and is the
bias term. The symbol in Fig. 1 represents an activation
transfer function, which calculates the output of the node
with the weighted input signal (the output of the ALC). We
use the hyperbolic tangent function as the activation
transformation. Therefore, we can train each submodel in the
modular ANN separated by the back-propagation algorithm

Fig. 2. The sensing procedure.

[19]. Each with maps to the submodel of
and then maps to the submodel of .

For simplicity, we denote each submodel by the same
functional form as

(5)

where is the output of a submodel, is the input of the
submodel, and is a vector representing the adjustable
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Fig. 3. The experimental setup.

weights of the submodel. Then, for a given training set,
we define the sum square error

function as

(6)

Based on the back-propagation algorithm, the weight vector
can be adjusted as

(7)

where the learning rate is usually chosen to be smaller than
one, and represents the gradient of the error function

with respect to . The weighting vector is updated
until reaches the preset values.

III. SENSING PRINCIPLE AND PROCEDURES

The observed normalized transmission power spectrum of
an FBG can be represented by the following general form:

(8)

where is the detected normalized transmission power
spectrum, is the laser frequency, is the temperature of
the environment, and means the function mapping from

to the normalized transmission power spectrum.
Obviously, mapping from to is a multiple-to-one
mapping, which is suitable for the ANN to learn. Therefore,
we can utilize the learning ability of the ANN, denoted as

to approximate the function . If is
sufficiently trained to approximate in a finite region
then we can represent the right-hand side of (8) in the finite
region as follows:

(9)

According to (1), if we take as and as then we
can use the modular ANN to form .

Since replaces the normalized transmission power
spectrum, and can be measured. So, based on (9),

may be obtained from . In order to make the

Fig. 4. The measured reflective spectra of two FBG’s.

computational process easier and more robust to handle, we
convert (9) into a minimization problem instead of solving (9)
directly. We define an objective function as follows:

(10)

The minimization algorithms such as the steepest descent
method [20] can now be applied. In (10),
with fixed or is a good convex function around the
solution of the other variable. This characteristic of (10) will
enhance the accuracy of the solution. Here, we use the ANN to
learn not only to take the advantage of the general ability
of the ANN to overcome model mismatching between the
theoretical design and the practical normalized transmission
power spectrum profile of the FBG, but also to use the first
order differentiability of the ANN.

In this paper, two FBG’s, FBG and FBG, are used to
sense the frequency and temperature simultaneously [21], and
two ANNS, and are employed to present
the normalized transmission power spectra and for
FBG and FBG respectively. In the following experiment,
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(a) (b)

(c) (d)

Fig. 5. (a) Frequency measurement with triangular driving laser. (b) Frequency measurement difference with triangular driving laser. (c) Temperature
measurement with triangular driving laser. (d) Temperature measurement difference with triangular driving laser.

we measure two points of the normalized transmission power
spectra ( for and for ) at a fixed laser
frequency. Then, we can use the minimization method to
minimize the following objective functions sequentially for
every incoming experimental data pair, and . The
one-variable objective functions are given by

with (11)

and

with (12)

where and are the solutions of minimizing (11) and
(12). At each step of iteration, we take the last solutions
and as the initial values for (11) and (12), respectively.
Of course, the temperature variation can be estimated by such
an iteration. Before starting the sensing procedure, we can
initialize and intuitively. The whole procedure
is illustrated in Fig. 2. The method used in this paper for
resolving the laser light frequency and temperature simulta-
neously does not require a stabilized laser having a specified

wavelength. This method can be used in any system with
embedded narrow-linewidth lasers.

IV. EXPERIMENTAL SETUP AND RESULTS

Fig. 3 shows the experimental setup of the high-resolution
neural temperature sensor using two FBG’s. We employ a
diode-pumped Nd:YAG laser operating around 227.245 THz
as a narrow-linewidth light source. The light is split into two
branches by the coupler and sent to a frequency counter and
the coupler which splits the light again into two branches,
one for a coupler and the other for another coupler
followed by the FBG’s and two power detectors to detect
the entering reference power. At the outputs of the FBG’s,
we use two other power detectors to detect the transmitted
powers. We measure the reflective spectra with a power meter
and frequency counter as shown in Fig. 4. As the temperature
increases from 20C to 28 C, the reflective spectra will shift
in the opposite direction. Then, a microprocessor is used to
calculate the detected normalized transmission power spectra
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(a) (b)

(c) (d)

Fig. 6. (a) Frequency measurement with a free-running laser. (b) Temperature measurement with a free-running laser. (c) Frequency measurement difference
with a free-running laser. (d) Temperature measurement difference with a free-running laser.

and for FBG and FBG respectively. We put FBG
in ambient air to detect the variation of frequency and place
FBG in a heat reservoir to detect the temperature variation.

During the measurement, we allow FGBin the air at room
temperature ( 23.2 C) and then increase the temperature
of the heat reservoir including FBG. The accuracy of the
temperature can exceed 0.01C, which is the best resolution
of the electrical temperature probe used as a reference in this
experiment. In order to improve the resolution of the reference,
we continuously and steadily increase the temperature of the
heat reservoir, thereby obtaining a linearly increasing temper-
ature with respect to time. Subsequently, linear interpolation
is applied to increasing the reference resolution, which is used
for comparison with the measurement of our sensor.

To demonstrate the sensor, we first change the tempera-
ture of the heat reservoir steadily and electrically tune the
optical frequency of the laser frequency periodically. The
direct frequency readings from the frequency counter and
the measured frequency from our sensor system are depicted
in Fig. 5(a). It is seen that the difference, in which the
periodic variation of the frequency difference is caused by the

model mismatch between and that is small,
as shown in Fig. 5(b). The measured temperature values from
the thermocouple (with interpolation) and our sensor system
are plotted in Fig. 5(c), and the difference is again very
small, as shown in Fig. 5(d). The rms errors of frequency and
temperature are 6.0 MHz and 0.007C, respectively.

Next, we let the laser run without control and the optical fre-
quency drift freely. The measured frequency and temperature
are shown in Fig. 6(a) and (b). The measurement differences
are presented in Fig. 6(c) and (d). It is observed that the
rms errors for frequency and temperature are 4 MHz and
0.005 C, respectively. With our experimental setup, the short-
term (over one week) stability of the measurement has been
studied. The frequency sensing stability can be maintained
under 12 MHz by using a frequency counter (model no.
MF9630A). Some spurious data measured by this frequency
counter (solid line) as shown in Fig. 6(a), caused by repeated
mechanical sweeping of the inteferometer in the frequency
counter, should be ignored. Data measured by using our sensor
yield the accurate results (triangle spot) shown in Fig. 6(a).
Neglecting the spurious data, the long-term stability will be

Authorized licensed use limited to: National Taiwan University. Downloaded on January 23, 2009 at 00:46 from IEEE Xplore.  Restrictions apply.



TSAO et al.: HIGH-RESOLUTION NEURAL TEMPERATURE SENSOR USING FIBER BRAGG GRATINGS 1595

better than 4 MHz as shown in Fig. 6(c). Similarly, we studied
the accuracy of temperature sensing as shown in Fig. 6(a) and
(b). In fact, long-term stability of the sensing process can be
achieved [22]. The temperature differences shown in Fig. 6(d)
are induced by imperfect PID control of the heater and some
environmental vibration sensed by the fiber sensor. In an
uncontrolled environment, i.e., both optical frequency drifting
and temperature changing freely, similar measured results can
be obtained. This demonstrates that, based on the proposed
structure of two FBG’s and the modular ANN, a compact high-
resolution and real-time temperature and frequency sensor is
potentially achievable.

V. CONCLUSIONS

We have demonstrated a novel high-resolution temperature
sensor employing a modular ANN and two FBG’s. The optical
transmitted power and the differentiability of the modular
ANN are applied to resolve the optical frequency and tempera-
ture. A temperature measuring range over 8C is presented in
this paper. According to our experiments, a temperature sens-
ing range of at least 20C is achievable. The sensing range can
be extended by designing the thermal expansion coefficients
of the two FBG sensors for a wider temperature range.

In our experiment, we exploit the modular ANN with
some advantages. The modular model can deal with physical
parameters and improve the accuracy of the modeling. It also
reduces the number of network connections. With the network
sparsely connected, we can improve the computational speed
and generalization ability. At the same time, interference from
irrelevant or redundant learning can be avoided. When the
nonlinear mapping changes, the modular ANN can be modified
and updated easily, because only a portion of the whole
network is required to retrain. As a matter of fact, hybrid
models, which have modules of varying characteristics, can
be developed to suit specific applications.

The relationship among the detected power spectrum, laser
frequency, and temperature is suitable for the ANN to learn,
because our sensing scheme does not suffer the one-to-many
mapping problem. Based on the generalization ability and
required small training region of the ANN, the neural net-
work can be trained easily. Meanwhile, the ANN can also
compensate for the modeling error of the spectrum profile.
Our sensing scheme does not need the information of the
entire power spectrum or phase detection. That makes the
measuring procedure faster and more efficient. It is expected
that this sensor can combine with multiplexing schemes, such
as wavelength, time, and space division multiplexings.
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