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High-Resolution Neural Temperature
Sensor Using Fiber Bragg Gratings
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Abstract—We demonstrate a novel high-resolution neural tem- neural networks (ANN’s), which have self-learning ability
perature sensor using two fiber Bragg gratings (FBG's) and and are trainable to interpret raw data, are good information
a modular artificial neural network which is used to learn processing tools. In recent years, some ANN's have been

the mapping relation among frequency, temperature, and the . . ,
normalized transmission power spectrum. Because of the fast applied to sensing systems [11]-{15]. ANN's are used to learn

computational ability of the modular artificial neural network  the functional mapping relationship from the raw data to the
and the sensitivity of FBG's, the sensor can make high-resolution physical quantities. Based on the characteristics of ANN’s,

temperature and frequency measurements in real time. The they can be classified as supervised methods (classification
experimental results show that the temperature resolution of this [13] or regression [11], [14]) and unsupervised methods [15]
sensor can reach 0.005C. ! :

_ These neural processing type sensors, based on the general
~ Index Terms—Feedforward neural networks, fiber Bragg grat-  ability of the trained ANN'’s, can achieve high resolution and
ings, fuzzy neural networks, temperature sensor. accuracy. Sensors with ANN’s can be implemented directly by

using parallel computation chips to process distributed signals

. INTRODUCTION in real time.
VER THE PAST ten years, most of the reported fiber In this Paper, we propose a novel neural FBG tempgrgture
} sensor, which combines the features the good sensitivity of
Bragg grating (FBG) sensors used the phenomen

PBG sensors and real neural processing. This sensor improves

of power spectrum drifting with temperature to detect te he sensing speed and accuracy, reduces cost, and eliminates
perature variations [1], [2]. The dependence between Th‘e gsp Y '

temperature and the Bragg wavelength caused by ther gprocess of scanning over the entire power spectrum of the

. , . . G. In the future, fiber optics and small-size neural networks
expansion of the fiber and change of the refractive index in the X . ; ; -
\HI” potentially make the integration of sensing, training,

core can be theoretically predicted and experimentally verifie : . :
nd processing functions in one compact smart apparatus

Based on the amount of wavelength shift, the magnitude of the . . : . :
o easible. The remainder of this paper is organized as follows.

temperature variation can be deduced. Therefore, measureme .
ection I, the modular ANN used to learn the many-to-

e : . In
of the wavelength shift is a key issue for in-fiber Bragg- : . o : . 7
. ; one _mapping relationship is described. The sensing principle
grating sensors. Several sensing schemes, such as the ed . . : .
. . X ) ! and procedures are discussed in Section Ill. The experimental
filter, tunable filter, and interferometric scanning method, have ; ' :
.setup and the results, which demonstrate that resolution as high
been proposed to measure the degree of wavelength shiff ¢ : : .
. : as 0.005°C can be achieved, are both presented in Section IV.
an FBG [3]-[8]. Some experiments using CCD spectrometers . . . .
) ) . g inally, the conclusions are given in Section V.
have also been reported in the literature with promising results.
A CCD line array with a holographic grating can be fixed in

a mechanical breadboard [9], [10]. However, these schemes  Il. MODULAR ARTIFICIAL NEURAL NETWORK
utilize either the entire power spectrum of the FBG or phase|n this paper, we use a modular artificial neural network

detection to identify the degree of wavelength shift. There agghich combines a multi-layer perceptron (MLP), ANN’s [16],

three general requirements for a useful sensor: 1) good regay a fuzzy network [17], [18] to learn a two-input-to-one-
lution with enough measurement range; 2) cost effectiveneggiput mapping as

and 3) compatibility with multiplexing. According to these
requirements, we must design a fiber sensor with the benefits RT = S(M1, M>) Q)
of artificial neural networks.
In many practical cases, the amount of raw data is hugdere RT is the detected response of the sens@ié,, M>)
and, most of the time, is difficult to interpret. Artificial are the physical quantities to be measured in the environment,
and S(-) represents the mapping function of the sensor from
Manuscript received September 18, 1998; revised May 25, 1999, and J(/1, M>) to RT. The MLP ANN is a powerful tool for
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Fig. 1. The signal flow chart of the modular ANN.

as a modular ANN to learn the nonlinear mapping functions. —

This modular ANN is a network containing localized compu- o To) amd T

tation nodes in which each module is an independent system T

interacting with other modules to perform a more complex

function. H(Take experimental data, R7, RTJ

The architecture of the modular ANN is illustrated in Fig. 1.
The fuzzy network as depicted by the left side of Fig. 1 can

be trained to learn the mapping relationship fréam to RT° Minimize )
as follows: with
a initial value fp
Z C;k'ﬂnlzj (M2)
_Ji=
RT == 2 @: -
Z M (MQ)
j=1
and
. My — mao; 2 Mi‘fvli?ﬁize F(T)
Himo; (MQ) =exp [_< T ) (3 initial value Tp

whereRT is the output of the modular ANNy,,, (-) is thejth
membership function of the linguistic descriptions of the input

variable Ms, ¢; is the output of thgith MLP ANN, andm; GetT=T
ando;, with j =1,2,.-., ¢, are the adjustable parameters of
the fuzzy network.

The MLP ANN is trained to learn the mapping relationship : No Check -Typ<T *T< T J
from M, with M» = ms; to ¢;, as shown by the right side of
Fig. 1. The symbob: represents an adaptive linear combiner Yes

(ALC), which simply performs a weighted sum of the input
with a bias term as in the following expression:

Set (b, ) = (1 T)

Jast—

P
Yy = Z zw; + w, = XTW + w, (4) Fig. 2. The sensing procedure.
i=1

wherey is the output of the ALC,X is an input vector of [19]. EachM, with M, = mgy; maps to the submodel ef;

the ALC, W is a weighting vector of the ALC, and is the and thenM, maps to the submodel a®7".

bias term. The symbof in Fig. 1 represents an activation For simplicity, we denote each submodel by the same
transfer function, which calculates the output of the nodenctional form as
with the weighted input signal (the output of the ALC). We

use the hyperbolic tangent functieanh(-) as the activation

transformation. Therefore, we can train each submodel in thwbere y is the output of a submodelk; is the input of the
modular ANN separated by the back-propagation algorithsubmodel, andW is a vector representing the adjustable

y = fneu(z, W) (5)
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Fig. 3. The experimental setup.
weights of the submodel. Then, for a given training set, FBG, & FBG, : 20T~28C
(xi,9:),¢ = 1,2,---,N, we define the sum square error 08——— T T ; " ; : : 5
function as ' : ' ' ' ; ; : : :
1 &
EW) =3 Y (i = frcu(z:, W))*. ©
i=1 8
Based on the back-propagation algorithm, the weight vect‘éjr

W41 can be adjusted as
Wi =Wy — 6+ VwE" (7)

where the learning raté is usually chosen to be smaller than
one, andVw £ represents the gradient of the error functiong
LE(W) with respect td¥. The weighting vectoW is updated
until E(W) reaches the preset values.

rmalized Reflecti

Frequency in THz

[ll. SENSING PRINCIPLE AND PROCEDURES
The observed normalized transmission power spectrum fé§- 4 The measured reflective spectra of two FBG's.
an FBG can be represented by the following general form:
computational process easier and more robust to handle, we

BRI =5(1,1) (8) convert (9) into a minimization problem instead of solving (9)
where RT is the detected normalized transmission powaelirectly. We define an objective function as follows:
spectrum, f is the laser frequencyl” is the temperature of 9
the environment, and(-) means the function mapping from J(,T) = (BT = Sneu(f, T))". (10)
(f,T) to the normalized transmission power spectrid®. The minimization algorithms such as the steepest descent
Obviously, mapping from(f,7) to RT is a multiple-to-one method [20] can now be applied. In (1QRT —Snecu(f,T))?,
mapping, which is suitable for the ANN to learn. Thereforayith fixed f or 7', is a good convex function around the
we can utilize the learning ability of the ANN, denoted asolution of the other variable. This characteristic of (10) will
Sneu(-), to approximate the functior5(:). If Sneu(:) is enhance the accuracy of the solution. Here, we use the ANN to
sufficiently trained to approximaté(-) in a finite region{2, learnS(-), not only to take the advantage of the general ability
then we can represent the right-hand side of (8) in the finibé the ANN to overcome model mismatching between the

region €2 as follows: theoretical design and the practical normalized transmission
_ power spectrum profile of the FBG, but also to use the first
RT = {Sneu( [, D)|(f,T) € 4} ©) order differentiability of the ANN.
According to (1), if we takef as M; andT” as M, then we In this paper, two FBG’s, FBGand FBG, are used to
can use the modular ANN to forrineu(-). sense the frequency and temperature simultaneously [21], and

Since Sneu(-) replaces the normalized transmission powewo ANNS, Sneuy(-) and Sneus(-), are employed to present
spectrum,S(-) and RT can be measured. So, based on (9he normalized transmission power specii@-) and.Sz(-) for
(f,7) may be obtained fromRT. In order to make the FBG, and FBG, respectively. In the following experiment,
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Fig. 5. (a) Frequency measurement with triangular driving laser. (b) Frequency measurement difference with triangular driving laser. (curéemperat
measurement with triangular driving laser. (d) Temperature measurement difference with triangular driving laser.

we measure two points of the normalized transmission poweavelength. This method can be used in any system with
spectra RT; for Si(-) and RT, for S2(-)) at a fixed laser embedded narrow-linewidth lasers.
frequency. Then, we can use the minimization method to
minimize the following objective functions sequentially for
every incoming experimental data pai7; and R7». The
one-variable objective functions are given by Fig. 3 shows the experimental setup of the high-resolution
. " neural temperature sensor using two FBG’s. We employ a
Ji(f) =(RIy — Sneuy(f,T))%, withT =T* (11) diode-pumped Nd:YAG laser operating around 227.245 THz
and as a narrow-linewidth light source. The light is split into two
Jr(T) = (RTy — Sneus(f, T))Q, with f = f* (12) branches by the coupléf; and sent to a frequency counter and
. o the couplerC), which splits the light again into two branches,
where f* and 7™ are the solutions of minimizing (11) andgne for a4 couplerC;, and the other for another coupléh,
(12). At each step of iteration, we take the last solutiffis  followed by the FBG’s and two power detectors to detect
and Ty, as the initial values for (11) and (12), respectivelyne entering reference power. At the outputs of the FBG's,
Of course, the temperature variation can be estimated by sy use two other power detectors to detect the transmitted
an iteration. Before starting the sensing procedure, we cgbwers. We measure the reflective spectra with a power meter
initialize (f,,7,) and 1y, intuitively. The whole procedure and frequency counter as shown in Fig. 4. As the temperature
is illustrated in Fig. 2. The method used in this paper fdncreases from 20C to 28°C, the reflective spectra will shift
resolving the laser light frequency and temperature simultia-the opposite direction. Then, a microprocessor is used to
neously does not require a stabilized laser having a specifiadculate the detected normalized transmission power spectra

IV. EXPERIMENTAL SETUP AND RESULTS
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Fig. 6. (a) Frequency measurement with a free-running laser. (b) Temperature measurement with a free-running laser. (c) Frequency measterogent diff
with a free-running laser. (d) Temperature measurement difference with a free-running laser.

RT; and RT>» for FBG; and FBG, respectively. We put FBG model mismatch betweefneu(-) and Si(-) that is small,
in ambient air to detect the variation of frequency and pla@s shown in Fig. 5(b). The measured temperature values from
FBG; in a heat reservoir to detect the temperature variationthe thermocouple (with interpolation) and our sensor system
During the measurement, we allow FGB the air at room are plotted in Fig. 5(c), and the difference is again very
temperature £23.2 °C) and then increase the temperaturemall, as shown in Fig. 5(d). The rms errors of frequency and
of the heat reservoir including FBG The accuracy of the temperature are 6.0 MHz and 0.00C, respectively.
temperature can exceed 0.0C, which is the best resolution Next, we let the laser run without control and the optical fre-
of the electrical temperature probe used as a reference in tiency drift freely. The measured frequency and temperature
experiment. In order to improve the resolution of the referencare shown in Fig. 6(a) and (b). The measurement differences
we continuously and steadily increase the temperature of @@ presented in Fig. 6(c) and (d). It is observed that the
heat reservoir, thereby obtaining a linearly increasing tempems errors for frequency and temperature are 4 MHz and
ature with respect to time. Subsequently, linear interpolati@005°C, respectively. With our experimental setup, the short-
is applied to increasing the reference resolution, which is usexim (over one week) stability of the measurement has been
for comparison with the measurement of our sensor. studied. The frequency sensing stability can be maintained
To demonstrate the sensor, we first change the tempemader 12 MHz by using a frequency counter (model no.
ture of the heat reservoir steadily and electrically tune thdF9630A). Some spurious data measured by this frequency
optical frequency of the laser frequency periodically. Theounter (solid line) as shown in Fig. 6(a), caused by repeated
direct frequency readings from the frequency counter amgechanical sweeping of the inteferometer in the frequency
the measured frequency from our sensor system are depiatednter, should be ignored. Data measured by using our sensor
in Fig. 5(a). It is seen that the difference, in which thgield the accurate results (triangle spot) shown in Fig. 6(a).
periodic variation of the frequency difference is caused by tiNeglecting the spurious data, the long-term stability will be
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better than 4 MHz as shown in Fig. 6(c). Similarly, we studieds] , “Matched-filter interrogation technique for fiber Bragg grating
the accuracy of temperature sensing as shown in Fig. 6(a) agﬁi arrays,”Electron. Lett, vol. 31, pp. 822-823, 1995.

- . A.D. Kersey, D. A. Tackson, and M. Corke, “A simple fiber Fabry-Perot
(b). In fact, long-term stability of the sensing process can be" sensor,"0pt. Commun.vol. 45, pp. 71-74, 1983.

achieved [22]. The temperature differences shown in Fig. 6(d)] A.D. Kersey and T. A. Berkoff, “Fiber-optic Bragg-grating differential-

are induced by imperfect PID control of the heater and some tggpigggre sensorEEE Photon. Technol. Lejtvol. 4, pp. 1183-1185,

environmental vibration sensed by the fiber sensor. In a] Y. J. Rao, D. A. Jackson, L. Zhang, and |. Bennion, “Dual-cavity

uncontrolled environment’ i.e_’ both Optical frequency dnft'ng interferometric wavelength-shift detection for in-fiber Bragg grating

d h - £ | imil d | sensors,"Opt. Lett, vol. 21, pp. 1556-1558, 1996.
and temperature changing freely, similar measured results Cg§) w. Ecke, J. Schauer, K. Usbeck, R. Willsch, and J. P. Dakin, “improve-

be obtained. This demonstrates that, based on the proposed ment of the stability of fiber grating interrogation systems using active

structure of two EBG’s and the modular ANN. a compact high- and passive polarize_lti_on scrambling devices,”Rroc. 12th Optical
. . ! P 9 . Fiber Sensor Conf.Williamsburg, VA, 1997, pp. 484-487.
resolution and real-time temperature and frequency Sensof1i§ K. Usbeck, W. Ecke, V. Hagemann, R. Mueller, and R. Willsch,

potentially achievable. “Temperature referenced fiber Bragg grating refractometer sensor for
on-line quality control of petrol products,” iRroc. 13th Optical Fiber
Sensor Conf.Kyongju, Korea, 1999, pp. 163-166.
V. CONCLUSIONS [11] W. J. Bock, E. Porada, and M. B. Zaremba, “Neural processing-type
. . fiber-optic strain sensor,IEEE Trans. Instrum. Measwvol. 41, pp.
We have demonstrated a novel high-resolution temperature 1062-1066, 1992.

sensor employing a modular ANN and two FBG’s. The Opticé}z] P. _Dacosta‘, C. Kordich,_D. WiIIiams_, and _J. B._Gomm, “Estirr_lation
itted d the diff iabili f th dul of inaccessible fermentation states with variable inoculum sizasif.
transmitted power and the differentiability of the modular |y Eng, vol. 11, pp. 383-392, 1997.

ANN are applied to resolve the optical frequency and temperas] S. Aisawa, K. Noguchi, and T. Matsumoto, “Neural processing type

; ; ; displacement sensor employing multimode waveguidEEE Photon.
ture. A temperature measuring range oveéris presented in Technol. Lett, vol. 3, pp. 394396, Apr. 1991.

this paper. According to our experiments, a temperature Sensj H. Eren, C. C. Fung, K. W. Wong, and A. Gupta, “Artificial neural

ing range of at least 20C is achievable. The sensing range can  nhetworks in estimation of hydrocyclone parameter d50¢ with unusual

be extended by designing the thermal expansion coefficients '{g’;; variables,"|EEE Trans. Instrum. Measvol. 46, pp. 908-912,

of the two FBG sensors for a wider temperature range. [15] K. Zhang, C. Butler, Q. Yang, and Y. Lu, “A fiber optic sensor for

In our experiment, we exploit the modular ANN with the measurement of surface roughness and displacement using artificial

' . . neural networks,"lEEE Trans. Instrum. Measvol. 46, pp. 899-902,

some advantages. The modular model can deal with physical ;997 as PP

parameters and improve the accuracy of the modeling. It alg6] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

reduces the number of network connections. With the network networks are universal approximatorsyeural Networks vol. 2, pp.
359-366, 1989.

sparsely connected, we can improve the computational Spgeq L. A. zadeh, “Fuzzy sets,Inform. Contro| vol. 8, pp. 338-353, 1965.

and generalization ability. At the same time, interference frofél —a “Outline of a ne‘;VEég)g?aCh tOSthet af’:AalySiSé Oécomﬁ'e; systems

irrelevant or redundant learning can be avoided. When the 5g°,, 7993 P o oo rans. syst., Man, Lybeniol. 3, pp-

nonlinear mapping changes, the modular ANN can be modifigd] F.-C. Chen, “Back-propagation neural networks for nonlinear self-tuning
i i adaptive control,TEEE Control Systems Magpp. 44—-48, 1990.

and uDdated ee_15|ly, becaus.;e only a portion of the Wh_ ] R.L.Burden and J. D. Faireblumerical Analysis6th ed. New York:

network is required to retrain. As a matter of fact, hybri PWS, 1997.

models, which have modules of varying characteristics, cédi]l S.-L. Tsao and J. Wu, “Highly accurate temperature sensor using two

be developed to suit specific applications. gg'_arggf’sgggraltg‘gg_JEEE‘]' Select. Topics Quantum Electiovl. 2,
The relationship among the detected power spectrum, lage] S.-L. Tsao, J. Wu, and B.-C. Yeh, “A fiber Bragg grating temperature

frequency, and temperature is suitable for the ANN to learn, sensor with artificial r\eural networks,” iAroc. 13th Int. Conf. Optical
. Fiber SensorsKyongju, Korea, 1999, pp. 438-441.

because our sensing scheme does not suffer the one-to-many

mapping problem. Based on the generalization ability and
required small training region of the ANN, the neural nel
work can be trained easily. Meanwhile, the ANN can als
compensate for the modeling error of the spectrum profil
Our sensing scheme does not need the information of 1
entire power spectrum or phase detection. That makes
measuring procedure faster and more efficient. It is expeci
that this sensor can combine with multiplexing schemes, su
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