Bubble-sort approach to channel routing

S.-S.Chen, C.-H.Yang and S.-J.Chen

Abstract: An efficient bubble-sort technique for solving the two-layer non-Manhattan channel-
routing problem is presented. The time and space complexities of our algorithm are O(kn) and

O(n), respectively, where k is the number of sorting passes required and # is the total number of

two-terminal nets in a routing channel. The algorithm is easily extended to handle the cases with
multiterminal nets distributed in a channel. Various tests verify the efficiency of the bubble-sort
based router. Experimental results indicate that the router is time-efficient for routing. A three-
layer algorithm having O(kn) time based on an identical problem formulation is proposed for

solving the non-Manhattan channel routing.

1 Introduction

Channel routing plays an important role in minimising the
routing area at the physical design level of VLSI circuits.
In the last two decades various channel routing results have
been reported based on the Manhattan model [1-7], which
restricts the routing wires to be either vertical or horizontal.
An example of the Manhattan routing is shown in Fig. 1,
which solution needs some extra columns. Nowadays, the
VLSI fabrication process does not preclude a layout style
to be in a non-Manhattan routing model. As shown in Fig.
2, the vertical constraints which occurred in the Manhattan
routing model no longer exist in the non-Manhattan case.

The first non-Manhattan diagonal channel router, intro-
duced by Lodi, et al. [8], realises a layout of two-terminal
nets on a two-layer channel using a diagonal channel
routing model (DCRM), where only wires of 45° and
—45° can be used. Later, Wang and Kuh [9, 10] proposed
a mini-swap sorting method to solve the non-Manhattan
channel routing problem. Fig. 3 shows a four-track solution
for the example of Fig. 1 using Wang’s mini-swap router.

A heuristic algorithm for the non-Manhattan channel
routing based on the bubble-sort technique has been
proposed by Chaudhary and Robinson [11]. The basic
concept of the algorithm was derived from the inversion
table introduced by Knuth [12]. Two types of inversion
tables were used in Chaudhary’s algorithm: left and right
inversion tables. The criteria of sorting direction depends
on the numbers of nonzero elements in the left and the
right inversion tables. The sorting direction is from left to
right (right-step) if the number of nonzero entries in the
left inversion table is greater than that in the right inversion
table and vice versa. But the algorithm hides a short-
coming, the sorting direction is set as from right to left
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Fig. 1 Nine-track channel routing using Manhattan model
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Fig. 2 Vertical constraints to not list in non-manhattan model
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Fig. 3  Four-track solution for Fig. 1 using Wang's mini-swap model
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Fig. 4 Four-track solution for Fig. 1 using Chaudhary’s routing model
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Fig. 5 Optimal three-track solution is obtained using our approach

(left-step) when the numbers of nonzero entries in the left
and in the right inversion tables are equal. Therefore it
cannot guarantee an optimal solution in terms of routing
tracks required. Intuitively, the example shown in Fig. 4 is
nonoptimal because a truly optimal solution needs only
three routing tracks. In addition, the time and space
complexities of the algorithm are O(kn?) and O(n), respec-
tively, where k is the number of sorting passes required and
n is the total number of two-terminal nets in a routing
channel.

Recently, an optimal bubble-sort algorithm in terms of
routing tracks for the non-Manhattan channel routing has
been proposed by Chen, et al. [13]. The optimal sorting
sequence is generated by applying a left-step sorting and a
right-step sorting to the nonequivalent sorting vectors in
each pass of the bubble-sort. The procedure is iterated until
some completely sorted vectors are found. This kind of
enumerative algorithm can achieve an optimal solution
with minimum number of sorting passes required. But
the time and space complexities of the algorithm are not
optimal because they still preserve an order of O(k*x) and
O(kn), respectively. We present in this paper a bubble-sort
based algorithm under the same problem formulation as in
[9, 11, 13] and this algorithm can be extended easily to
handle the cases of multiterminal nets. The time and space
complexities of our algorithm are O(kn) and O(n), respec-
tively. Obviously, our algorithm has a significant improve-
ment in time and space complexities over the existing
algorithms [11, 13]. An optimal routing solution for
the example in Fig. 1 using our algorithm is shown in
Fig. 5.

2 Problem formulation

Our research on non-Manhattan channel routing carries on
with previous literature, such as Wang [9], Chaudhary [11],
and Chen [13]. A non-Manhattan router has the following
advantages over its Manhattan counterpart: The number of
routing tracks and vias required is less than the Manhattan
router (see Fig. 8 in Wang [9] and Fig. 1 in Chen [13]); the
vertical constraints are not necessary; the total wire length
is shorter than the Manhattan router; and no need of using
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Fig. 6 Two identical channel routing problems
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extra columns outside the width of a channel to have the
routing task done. For simplicity and making the concept
clear, we assume that each net has two terminals over a
channel, one terminal is from the top column vector and
the other from the bottom column vector. The handling of
multiterminal nets is described later. At first the terminals
located in these column vectors are randomly labelled as
integers. But we renumber the terminal labels in the top
column vector to be 1 through n and corresponding
changes are made to the bottom terminal labels. For
instance, assume that the top column vector=(2, 3, 6, 4,
1, 5) and the bottom column vector=(4, 2, 3, 5, 6, 1). If
the top column vector is renumbered as (1, 2, 3, 4, 5, 6),
the bottom column vector will be changed to (4, 1, 2, 6,
3, 5), as shown in Fig. 6.

The objective of channel routing is to interconnect nets
having the same terminal labels and to minimise the
number of routing tracks required, the time, and the
space complexities as much as possible. In this paper we
apply the bubble-sort technique to accomplish channel
routing. Before describing our algorithm for the non-
Manhattan channel routing, we first define some terminol-
ogies as follows.

Definition 1: Left major table. (b, b,,...,b,) is said to be
the left major table of a permutation V= (v, v,,...,v,) if
b, is set to 1, when there exists in Vat least one element to
the left of v; and greater than v;, for j=1to n and v; € V]
otherwise, b, is set to 0.

For exampjle, given a permutation V'=(5,1,9, 2,8, 6, 4,
7, 3), we have the following left major table (1, 1, 1, 1, 0,
1, 1, 1, 0).

Definition 2: Right minor table. (¢, ¢,,...,c,) is said to
be the right minor table of a permutation V=(v,
Vy,...,v,) if ¢, is set to 1, when there exists in } at least
one element to the right of v; and less than v;, for j=n to 1
and v, eV, otherwise, ¢, is set to 0.

For example, given the permutation V'=(5, 1, 9, 2, 8,
4,7, 3) we have the following right minor table (0, 0, 0,
L,1,1, 1, 1).

Definition 3: Lexicographical ordering. Given two tables
B=(b,, b,,...,b,) and C=(c;, ¢;,...,c,) which belong
to a left major table and a right minor table or vice versa.
Their lexicographical order is determined as follows:

0,
1

>

(i) Initially, let j be equal to 1.

(i) If b;>c; (or ¢;>b;) we say that B is greater (less) than C
and can immediately terminate the comparison between B
and C.

(iii) Otherwise, if b; =c; we increase the index j by 1 and
continue steps 2 and 3 to compare the next pair of elements
in the tables until j =n. Besides, we say B=C if b; =; for
all j=1 to n.

For instance, given two tables B=(1,0,1, 1,0, 1, 1, 1, 0)
and C=(1,0,1,0,0, 1, 1, 1, 1), we say that table B is
greater than table C.
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3 Two-layer non-Manhattan channel routing

3.1 Non-Manhattan routing model

Traditionally, the most common channel routing model,
known as a Manhattan model, uses vertical and horizontal
wires for routing (also known as an H-V routing model) on
two or more layers over a channel. In a non-Manhattan
channel routing model three wiring types are used: diag-
onal (run at 45° or —45° direction), horizontal and vertical
wires as shown in Fig. 7. The routing model we use is a
non-Manhattan model with two available layers for the
routing of two-terminal nets over a channel. We reserve
one layer for metal-1 wires and the other layer for metal-2
wires and a contact cut is required while making connec-
tion between these two layers.

Chaudhary [11] made an interesting observation about
the bubble-sort as follows. Given a vector V=
(Vs Vo, ..., v,), if the sorting direction for V either traver-
sing from left to right (denoted as right-step) or from right
to left (denoted as left-step) in each bubble sorting pass is
fixed, it will yield worse results in terms of total number of
routing tracks in a channel. Intuitively, one can obtain an
optimal result if the sorting direction has been properly
determined such that elements in ¥ can be moved more
steps (distances) in each pass of the bubble-sort. The
effects of using different types of sorting directions on
the final routing tracks are shown in Fig. 7. Therefore we
have to further explain in the following Section how to
determine the sorting direction by using the left major and
the right minor tables in each of the sorting passes.

3.2 Algorithm for bubble-sort router

We propose an efficient bubble-sort algorithm for the non-
Manhattan channel routing. First, assume that the unsorted
and bottom column-vector is the input sorting vector. The
algorithm has two important phases. The purpose of first
phase is to generate both the left major table and the right
minor table for a sorting vector. Let the sorting vector
V=(y, v3,...,v,) be a permutation of the natural
sequence (1, 2,...,n). Entries in the left major table and
the right minor table are generated by applying the follow-
ing lemma.

Lemma I: For a sorting vector V= (v, v,,...,v,), the left
major table and the right minor table of V in each of
sorting passes can be constructed in 7,(n)=0(n) time
each, where n is the number of elements in V]

Proof: Let (b, b,,...,b,) and (¢, ¢,,...,c,) be the left
major table and the right minor table of this vector V]
respectively. These two tables are constructed as follows.
If v; > Max _val, then set bvj to a value of zero and replace
Max _val with v;. Otherwise set bv/ to a value of one; for
j=1, 2,...,n (from left to right). Obviously, the /left
major table construction takes O(n) time. Similarly, if
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Fig. 7 Effects of different sorting directions

a Left-step only
b Right-step only
¢ Left- & right-steps.
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v; < Min _val, then set ¢, toa value of zero and replace
Min _val with v;. Otherwise set ¢, toa value of one; for
j=nn—1,...,2, 1 (from right to left). This right minor
table construction also takes O(n) time. Here the initial
values of Max_val and Min _val are zero and a large

positive number, respectively. O

The second phase purpose is to properly choose a
sorting direction for each pass of the bubble-sort, since a
good sorting direction will reduce the number of sorting
passes required by the bubble-sort. From the previous
phase we have constructed two sets of tables: the left
major table and the right minor table. We choose the
sorting direction to be left-step (respectively, right-step)
if the number of nonzero entries in the left major table is
less (respectively, greater) than that in the right minor
table. If the numbers of nonzero entries in the left major
table and in the right minor table are equal, we must
compare their lexicographical order. We choose the sorting
direction to be right-step if the left major table is greater
than the right minor table referring to the lexicographical
ordering definition in Section 2; and left-step otherwise.
Once the sorting direction for the sorting vector is deter-
mined a pass of bubble-sort is performed. These phases are
repeated until the completely sorted vector is found.

To make the principle of our algorithm clear we describe
the sorting passes of a non-Manhattan channel routing as
follows. Given an example with a top column vector=
(1,2, 3,4,5,6,7,8,9) and a bottom column vector =
(2,3,9,4,5,6,7, 8, 1). The bubble sorting process begins
with the bottom sorting vector. At each intermediate step
of the sorting, a new sorting vector is generated as the
result of a permutation of the natural sequence (1, 2,...,n)
and this vector will require one routing track in a channel.
Initially, the left major table and the right minor table can
be constructed by scanning the input sorting vector. For
this example, we have the first left major table and the first
right minor table as (1,0,0,1,1,1,1,1,0)and (0, 1, 1, 1,
1, 1, 1, 1, 1), respectively. Obviously, the numbers of
nonzero entries in the left major table and the right
minor table are 6 and 8, respectively. Hence the sorting
direction will be chosen as Ileft-step. After having
performed this left-step bubble-sort, a new sorting vector
is produced as (1, 2, 3, 9, 4, 5, 6, 7, 8). Similarly, in the
second pass, the left major table and the right minor table
constructed are (0, 0,0, 1,1, 1, 1, 1, 0) and (0, 0, 0, 0, 0, O,
0, 0, 1), respectively. As the numbers of nonzero entries in
the left major table and the right minor table are 5 and 1,
respectively, the sorting direction will be chosen as right-
step and the current sorting vector is changed to (1, 2, 3, 4,
5, 6, 7, 8, 9) which is already in order. Therefore two
passes of bubble-sort are required to complete the sorting
work. The illustration for the example is shown in Fig. 8
and its corresponding non-Manhattan channel routing
solution is plotted in Fig. 9. The description of our
bubble-sort router is depicted in algorithm 1.

Theorem 1: The time and space complexities of using our
bubble-sort algorithm to route a two-layer non-Manhattan
channel take 7),(n)=O(kn) time and O(n) space, respec-
tively, where £ is the number of sorting passes required and
n is the number of two-terminal nets in a channel.

Proof: In each of the bubble-sorting passes the sorting task
for a sorting vector V= (v, v,,...,v,) will be performed
by choosing a left-step or a right-step direction, which runs
in O(n) time. Referring to lemma 1, we need 7,(n) = O(n)
time to generate a table in each sorting pass. Assume that
the sorting task is completely sorted after the kth bubble-
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Pass  Sorting vector Max _val Sorting vector Min _val
no. e — I —

Left major table Right minor table

1 DOOOOEIDRO® 2
(239456781)

DOBOEEIDRO 1
(239456781)

(m0emmmmmnm) (Oeemmmmmm)

(239456781) 3 (239456781) 1

(m00mmmmmm) (Oemmmmmlm)

(239456781) 9 (239456781) 1

(m00mmmmm0) (Owmmmmllm)

the operation continues. ..

(239456781) 9 (239456781) 1

(m00111110) (Om1111111)

(239456781) 9 (239456781) 1

(100111110) (011111111)

New sorting vector (1 23 94 5 6 7 8) is generated by applying a pass of left-step
bubble-sort to current sorting vector.

2 (123945678) 1 (123945678) 8

(OEeEEmEmEmEm) (mmmmmmm(Om)

the operation continues. . .

(123945678) 9 (123945678) 2

(0001111m0) (m00000001)

(123945678) 9 (123945678) 1

(000111110) (000000001)

Numbers of nonzero entries in lefi major and right minor tables are 5 and 1, respectively.
Thus a pass of right-step bubble-sort 1s applied to this sorting vector and then the
completely sorted vector is found at pass two.

Fig. 8 Example to illustrate sorting process of our algorithm

2nd pass

| 1st pass

2 3 9 4 5 6 7 8 1
Fig. 9 Non-Manhattan channel routing solution corresponding to Fig. 8

sorting pass. As a result the overall time complexity 7,(n)
of our algorithm is formulated as

k k

Ty(n) =) In+2T,(m)] = ) [n+2n]

i=1 i=1

k
=3 n=3kn= O(kn)

i=1

In the worst case the time complexity takes O(n*) when all
elements in a sorting vector Vare in reverse order and then
k is asymptotic to n. On the space complexity side, for
storing the information needed in sorting vectors, the left
major table and the right minor table used in all of the
sorting passes need n space each. Obviously, the total
space complexity of our algorithm is preserved in O(n)
because the required space for the sorting vectors and
tables is reusable in each sorting pass of the bubble-sort.

O

3.3 Handling of multiple terminal nets

In general, multiterminal nets usually exist in a routing
channel. We first transform these multiterminal nets into
sets of two-terminal nets before the bubble-sort router. For
simplicity, we classify these multiterminal nets into type-I,

418

Algorithm 1: Two-layer bubble-sort channel router

Algorithm TwoLayer_BubbleSortRouter()
{
PASS = 0;
Sorting_Vector = Input_Vector ;
write( Sorting_Vector);
while( unsorted for Sorting_Vector ) {
Compute_Tables( Sorting_Vector );
Set_Step_Type( Sorting_Direction );
switch( Sorting_Direction ) {
case L_to_R : /* the sorting direction is right-step */
forG=1;j <n;j++)
if( Sorting_Vector([j] > Sorting_Vector[j + 1])
swap( Sorting_Vector[j], Sorting_Vector[j + 1]);
break;
case R_to_L : /* the sorting direction is lefi-step */
for(j=mn;j > 1;j-)
if ( Sorting_Vector[j] < Sorting_Vector[j — 1])
swap( Sorting_Vector[j], Sorting_Vector[j — 1]);
}
write( Sorting_Vector ); /* output the sorting vector to a file */
PASS ++; /* increase the number of sorting passes by one*/

}
}/* end of the TwoLayer_BubbleSortRouter() Algorithm */

Compute_Tables( Sorting_Vector )
{ /* compute the left major table and the right minor table */
Initialize Left_table, Right_table;
Left_val = Right_val = 0;
Max_val = 0;
for(j = 1;j <=n; j ++) /* construct the left major table */
if( Sorting_Vector[j] > Max_val)
Left_table[ Sorting_Vector[j]] = 0;
Max_val = Sorting_Vector][j];
else
Left_table[ Sorting_Vector[j]] = 1;
Left_val ++;
Min_val = oc;
for( = n;j >=1;j--) /* construct the right minor table */
if ( Sorting_Vector[j] < Min_val)
Right_table[ Sorting_Vector[j]] = 0;
Min_val = Sorting_Vector[j];
else
Right_table[ Sorting_Vector[j]] = 1;
Right_val ++;
} /" end of the subroutine */

Set_Step_Type(Sorting_Direction)
{ /* decide the sorting direction for a sorting vector */
switch(Left_val - Right_val) {
case > 0 : Sorting_Direction = L_to_R;
break;
case = 0 : if (Left_table > Right_table in terms of lexicographical order)
Sorting_Direction = L_to_R;
else Sorting_Direction = R_to_L;
break;
case < 0 : Sorting_Direction = R_to_L;
}

}/* end of the subroutine */

type-II and type-III nets. A net is called type-I net if their
terminals are distributed only on the upper or lower side of
a channel. For example, the terminals (b, b,) of net b in
Fig. 10a can be directly routed together and be dropped
from consideration in later sorting phase. A type-II
m-terminals net has m-1 terminals (m >2) on one side
and only one terminal on the opposite side of a channel. If
the m-1 terminals are on the upper side, we first connect
them together and then one of the terminals on this side
and the only terminal on the lower side are chosen to form
a two-terminal net to be routed in a later sorting phase.

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000
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Fig. 10 Classification of multiterminal nets in bubble-sort router

a Type-I nets
b Type-II nets
¢ Type-III nets

Similarly, if the m-1 terminals are located on the lower
side, they will be connected to the upper terminal at a
single column in later sorting phase. This type-II case is
plotted in Fig. 10b. A net is called type-III net if there are
some x terminals distributed on the upper side and some
(m-x) terminals on the lower side of a channel. This case is
illustrated in Fig. 10c. For the upper x terminals, we first
connect them together and choose a suitable terminal as the
final representative terminal. Then this upper representa-
tive terminal is connected to all (m-x) terminals on the
lower side as in the type-II case. After this process, all
multiterminal nets can be transformed into two-terminal
nets, and we can then apply the same bubble-sort router to
complete the routing of multiterminal nets.

4 Three-layer non-Manhattan channel routing

Advances in VLSI technology mean that more than two
layers are available for routing. We now extend the bubble-
sort router to solve the same routing problem over a three-
layer channel.

During three-layer routing, our two-layer bubble-sort
router (algorithm 1) can first be invoked to generate a
sorting sequence S for an unsorted vector V=(v,
V,,...,v,). Each element in the sorting sequence is either
a left-step (L) or a right-step (R). The sorted vector can be
represented as SV=A4,A4;_,...A,A,V, where A; is either a
left-step pass or a right-step pass of bubble-sort and
1 <i<k Now we scan the S from right to left until a
pass of lefi-step bubble-sort, 4;, is found with index j in S.
In other words,

S:AkAkfl ...Aj+1LRR...RR.
j-1
Again, by repeatedly applying the theorem LRV =RLV in
[13], we have
SV:AkAk—l A/+1LRRRRV:
j-1
:AkAk—l A]+1RRRRL V
j-1

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, November 2000

This process is iterated for the finding of left-steps until all
left-step sorting passes in S are moved to the right side of
the sorting sequence S. Finally, the sorting sequence is
represented as follows:

SV =A4,LRR...RLL...LV
—_—

c—1
=RRR...RLLL...LV = R°LF°V
c k—c

where k is the number of sorting passes required for Vand ¢
is a constant, 0 <c <k.

Lemma 2: The completely sorted sequence S=R°LF~¢ of a
sorting vector V' generated by our bubble-sort router can be
adjusted to be R (right-step) and L (left-step) alternatively
in T.(n)=0(k) time, where k is the number of sorting
passes required for Vand 0 <c¢ <k.

Proof: Consider a completely sorted sequence S=R°Lf~¢
of a sorting vector V. Using the theorem LRV=RLV as
proved in [13], the sorting sequences of LR and RL in a
bubble-sort solution to V are interchangeable. That is, the
sorting result only depends on the number of lefi-step (L)
or right-step (R) passes rather than their permutation
positions in a bubble-sort solution. As a result,

SV = R°LF°V = (L*|R*)RLRL .. .RLV
[

is obtained in O(k) time, where 0 <x < k. Here, the symbol
(L*|R) represents the extra L* or R* when the numbers of
Ls and Rs are not equal. Ul

Since three layers are available for routing in a channel,
if the routings of a pass of R and a pass of L bubble-sort
occupy different horizontal layers, they can be integrated
into a single track. Therefore the number of routing tracks
for an unsorted vector ¥ is equal to the value of maximum
{c, k—c}.

Following closely the foregoing discussion, the sorting
result has been generated as a series of intermediate
permutations. The criteria presented in [11] will be used
for layer assignment of wire segments as follows. In an
intermediate permutation the wire segments which have
been moved toward to the right are assigned to layer 1,
those moved toward the vertical are assigned to layer 2, and
those moved toward the left are assigned to layer 3. This
characteristic of layer assignment is similar to the conven-
tional HVH Manhattan routing model. Finally, the routing
is done by integrating a pair of adjacent intermediate
permutations into one routing track in a channel. An
outline of the three-layer routing algorithm is depicted
in algorithm II. For example, given an unsorted vector

Algorithm II: Three-layer bubble-sort channel router

Algorithm ThreeLayer_BubbleSortRouter()
{
/* k is the number of sorting passes */
V' = Input_Vector;
Invoke TwoLayer_BubbleSortRouter() presented in Algorithm I to generate a
sorting sequence, S for the unsorted vector V;
Represent the completely sorted vector as SV = R°LFV, 0 <c < k;
Adjust the sorted vector R°L*V into (L*|R*) RLRL ...RLV such that any two
NEZAS SRRTAC

adjacent sorting directions appear to be R and L alternatively, where 0 <x < k;

Generate the sorting result as a series of intermediate permutations;

while (routing is incomplete) {
Wire segments jogging to the right, vertical, and left directions are assigned
to layers 1, 2, and 3 in a channel, respectively; /* layer assignment */
Integrate a pair of adjacent intermediate permutations into a routing track;

}
} /* end of the ThreeLayer_BubbleSortRouter() Algorithm */
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Fig. 11  Example of three-layer non-Manhattan channel routing solution
using our bubble-sort router

V=(6,5,3,4,7,9,8, 2, 1). A three-layer non-Manhattan
channel routing solution S¥'=RRLLV =RLRLV using our
bubble-sort router is shown in Fig. 11.

Theorem 2: The time complexity 7,(n) of using our
bubble-sort algorithm to route a three-layer non-Manhattan
channel takes O(kn) time, where k and » stand for the
number of sorting passes required and the number of two-
terminal nets in a channel, respectively.

Proof: The time complexity of our three-layer bubble-sort
algorithm is calculated as follows. Consider a completely
sorted vector R°LF~°V obtained by our two-layer bubble-
sort based algorithm takes 7,(n) time, where
V=({,v5,...,V,). By lemma 2, to adjust the completely
sorted sequence R°LF~¢ such that any two adjacent sorting
directions appear to be R and L alternatively takes 7.(n)
time. Formally stated, the overall time complexity 7,(n) of
our three-layer algorithm is

Ty(n) = Ty(n) 4 To(n) = O(kn) + O(k) = O(kn)

Table 1: Experimental results on running some benchmarks

As a result, the time complexity is bounded in O(k%) on the
average. In the worst case, a time complexity O(n?) is
obtained when all elements in a sorting vector V are in
reverse order and k is asymptotic to . ]

5 Experimental results

Our bubble-sort channel router, Chaudhary’s [11] router,
and Chen’s [13] router have been implemented in C
language and tested on a Sun Ultra-SPARC-1 workstation
running the Solaris 2.6 platform. Furthermore, we have
conducted many testing examples collected from the
literature [9, 11, 13] and some cases originated by
ourselves to evaluate the effectiveness and correctness of
our router. The experimental results are compared and
analysed as follows.

First, the results of running different routers on several
benchmarks are shown in Table 1. From the testing results
of Lodi [8] in Table 1, many situations of ‘no solution’
occur under the constraint of no allowance of using extra
column(s) in a channel. Next, the comparisons of complex-
ity among two-layer algorithms are listed in Table 2. In
Table 2 the time complexity of the diagonal router
proposed in [8] runs O(n). But it fails to complete the
routing without magnifying the row spacing by +/2 and
without using extra column(s) in a channel for most of the
cases. We next compare the experimental results with the
mini-swap router [9] which has a time and a space
complexities of O(kn) and O(n), respectively. But it could
not generate optimal solutions in terms of routing tracks
required. We also run the same instances using Chaud-

Order of nets

Routing tracks for different non-Manhattan routers

Benchmarks terminals nets Lodi [8] Wang [9] Chaudhary [11] Chen [13] ours
Circuit 1 14 7 no 3 3 3 3
Fig. 8 in [9] solution
Circuit 2 16 8 no 6 5 5 5
Fig. 3in [13] solution
Circuit 3 16 8 6 6 4 4 4
Fig. 7 in [13]
Circuit 4 18 9 no 8 2 2 2
Fig. 5in [11] solution
Circuit 26 13 no 4 4 3 3
Fig. 5 [our] solution
Circuit 6 32 16 no 5 5 3 3
Fig. 5in [13] solution
Circuit 7 34 17 no 7 5 5 5
Fig. 9in [9] solution

Table 2: Comparisons for two-layer routing algorithms

Complexity Time complexity Space complexity Bubble sort
average worst average worst approach?

Algorithms

Lodi [8] O(n) no solution need extra columns NO

Wang [9] O(kn) o(n?) O(n) O(n) NO

Chaudhary [11] O(kr?) o(n’) O(n) O(n) YES

Chen [13] O(K*n) o(n?) O(kn) O(n?) YES

Our Router O(kn) o(r?) O(n) O(n) YES
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Table 3: Comparison with other routers for randomly generated examples

300-net examples

Ex Chaudhary [11] Chen [13] Ours

375-net examples

Ex Chaudhary [11] Chen [13] Ours

no. tracks time tracks time tracks time no. tracks time tracks time tracks time
1 142 3.47 142 1.37 142 0.07 1 185 7.02 184 2.82 185 0.10
2 157 3.83 156 1.63 157 0.08 2 197 7.48 195 3.17 195 0.13
3 162 3.97 162 1.75 162 0.08 3 203 7.70 200 3.32 203 0.12
4 157 3.83 155 1.62 156 0.07 4 185 7.02 185 2.85 185 0.10
5 150 3.65 147 1.45 150 0.07 5 177 6.70 176 2.60 177 0.10
avg 153 3.75 152 1.56 153 0.12 avg 189 7.18 188 2.95 189 0.20
450-net examples 525-net examples
1 228 12.43 228 5.07 228 0.15 1 264 19.48 257 7.50 262 0.20
2 240 13.10 239 5.62 240 0.17 2 266 19.67 266 8.05 266 0.20
3 238 12.95 236 5.45 238 0.15 3 272 20.08 270 8.37 272 0.20
4 236 12.80 235 5.38 236 0.17 4 266 19.70 265 8.02 266 0.20
5 236 12.82 235 5.45 236 0.15 5 268 19.77 268 8.20 268 0.20
avg 235 12.82 234 5.39 235 0.28 avg 267 19.74 265 8.03 266 0.32
600-net examples 675-net examples
1 298 28.72 295 11.38 297 0.25 1 334 40.75 334 16.33 334 0.32
2 311 30.08 311 12.58 311 0.27 2 338 41.18 337 16.67 338 0.32
3 314 30.33 313 12.80 314 0.28 3 332 40.57 332 16.08 332 0.32
4 308 29.80 306 12.25 308 0.25 4 370 45.10 368 19.70 370 0.35
5 297 28.62 296 11.45 297 0.25 5 355 43.22 351 17.88 355 0.33
avg 305 29.51 304 12.09 305 0.46 avg 345 42.16 344 17.33 345 0.52

hary’s [11] router. Its time complexity not only takes
O(kn?) on the average, even O(n®) in the worst case (i.e.
the case where all elements in a sorting vector are in
reverse order). In general this router cannot generate an
optimal solution in terms of routing tracks required and
time performance. Chen [13] has presented an optimal
router in terms of routing tracks required for the non-
Manhattan channel routing. But the time and space
complexities of the router preserved a high order of
O(k’n) and O(kn) ‘respectively’ on the average, even
O(n?) time in the worst case, where k is asymptotic to .
Our proposed algorithm spends O(kn) on the average or
O(n?) in the worst case for time complexity, and O(n) for
space complexity.

To explore the features of our proposed router, we tested
the last three bubble-sort based algorithms on randomly
generated examples as shown in Table 3. Experimentally,

120

100
® 80
g
o 60
Q
E 4
g
= 20

0

300 375 450 525 600 675
number of nets E—

Fig. 12 Comparison on performance improvement for examples in
Table 3

B Chaudhary [11]
Chen [13]
[ Our router
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Table 4: Comparisons for three-layer routing algorithms

Complexity Time complexity Space complexity

average worst average worst
Algorithms
Chaudhary [11]  O(kn?) o(n’) O(n) O(n)
Chen [13] O(kn) o(n’) O(kn) o(r?)
Our router O(kn) O(r?) O(n) O(n)

our CPU-time T (in seconds) performance is 97% better
than that of [11] and 40% better than that of [13] as shown
in Fig. 12. The time performance improvement of [11] is
denoted as zero in Figure 12 because we compare both our
and Chen’s [13] routers to [11]. And the number of routing
tracks required by our router as shown in Table 3 is only
1% more than that of the optimal router [13].

Finally, the complexity comparisons among our and
other three-layer non-Manhattan routing algorithms are
shown in Table 4. It is seen that the time complexity of
our approach is better than the other algorithms [11, 13].

6 Conclusions

We have described efficient bubble-sort-based algorithms
for the two- and three-layer non-Manhattan channel rout-
ing problems. Based on the same routing model, the time
complexities of our algorithm, two previous algorithms
Chaudhary’s [11], and Chen’s [13] for the two-layer (and
three-layer) non-Manhattan channel routings are O(kn),
O(kn?), and O(k%n), respectively, where k is the number
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of sorting passes required and # is the number of two-
terminal nets in a channel.

To further conduct the performance analysis of the three
bubble-sort based algorithms, we tested them on a set of
examples. Experimental results indicate that our algorithm
requires only 1% more routing tracks than the optimal
Chen’s router [13] and the time improvement is over 40%
of [13] on the average. Clearly, the time performance of our
algorithm is better than previous algorithms [11, 13]. In
future, we plan to integrate our bubble-sort router into an
over-the-cell (OTC) channel router to reduce the final
channel height in VLSI chip design.
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