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An Efficient Full-Vectorial Finite-Element Modal
Analysis of Dielectric Waveguides Incorporating

Inhomogeneous Elements Across Dielectric
Discontinuities

Day-Uei Li and Hung-chun Chang, Senior Member, IEEE

Abstract—A new vectorial finite-element method (FEM) free of
spurious modes is proposed for analyzing optical waveguides with
sharp corners in the cross section. The method is formulated in
terms of the transverse field components and or and

, and it explicitly shows the relationships between the semivec-
torial and the full-vectorial wave equations. In this method, we in-
troduce the distribution concept and an inhomogeneous element
to describe the field across the dielectric interface, and the error
in the numerical solution caused by the dielectric discontinuity is
reduced. We show how the width of such inhomogeneous elements
and the number of nodes would affect the numerical result and
its convergent rate using the dielectric-loaded rectangular wave-
guide, the channel waveguide, and the rib waveguide as analysis ex-
amples. For the dielectric-loaded rectangular waveguide, we com-
pare our results with the exact solutions. For the rib waveguide, we
compare our results with previously published data based on other
methods. Also, field convergence near the corners is discussed.

Index Terms—Dielectric waveguides, finite-element method, op-
tical waveguide theory, rectangular waveguides, rib waveguides,
waveguide corner singularities.

I. INTRODUCTION

D IELECTRIC waveguides have been fundamental struc-
tures in optoelectronic, microwave, and millimeter-wave

devices. With the rapid advance of semiconductor technology,
these waveguide structures can be easily integrated onto a
single substrate. Various complicated waveguide structures are
continuously proposed, such as directional couplers, polarizers,
nonlinear optical switches, optical sensors, etc. The design
of these waveguide components and the analysis of their
propagation characteristics, such as birefringence and disper-
sion, demand highly accurate numerical methods. To meet
this need, many forms of the vectorial finite-element method
(VFEM) have been developed [1]–[15]. It is well known that
the longitudinal - formulation contains mathematical
singularities [1], [2]. In early yearsKonrad [3] proposed
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a vectorial finite-element formulation in terms of all three
components of the magnetic field , which can accurately
analyze the propagation characteristics of a waveguide with an
arbitrary cross section. The most serious difficulty in applying
the FEM to three-dimensional (3-D) inhomogeneous dielectric
waveguides is the appearance of spurious solutions [4], [5].
These unphysical solutions do not satisfy the divergence-free
relation . To solve the spurious solution problem,
there have been several methods proposed over the past 20
years [6]–[12]. The penalty function method [6]–[9] used to
solve this problem can eliminate the spurious modes. At the
same time, however, it causes the accuracy of solutions to
be precariously dependent on the magnitude of the penalty
coefficient. Some authors [10]–[12] proposed formulations in
terms of transverse magnetic or electric fields by explicitly or
implicitly enforcing the continuity of the tangential compo-
nents of the transverse fields at the interfaces. Because most
finite-element formulations utilize continuous elements
to describe the fields, the added constraints would alter the
optimum condition [16]. Another serious problem is that the
fields near the corners could not be easily described, and
the formulation is too sensitive to the type of element that
we choose. A completely different way of avoiding spurious
solutions usingedge elementshas also been proposed, and
more generalizedtangential elementshave been developed
[13]–[15]. In this formulation, usually two components of the
field are expressed in terms of the edge elements and the third
component is described by the node-based elements. However,
in the formulations of [13] and [15], the sparsity of the matrices
is lost.

In this paper, we derive in detail a highly efficient node-based
full-vectorial finite-element formulation based on the transverse
fields by adding inhomogeneous elements and applying the dis-
tribution concept, which are used to analyze dielectric waveg-
uides with step dielectric discontinuities in the transverse plane.
We study, by adjusting the size of the added inhomogeneous el-
ements and the number of nodes, to what extent the interface
affects the numerical result. The characteristics of this formula-
tion include the following.

1) The numerical efficiency can be optimized since the for-
mulation only uses the two transverse components of the
field.
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2) The spurious solution problem is solved since the diver-
gence-free relation for the magnetic field, , is
included in the formulation.

3) The final eigenvalue problem preserves the sparsity of the
matrices.

4) The permittivity of the dielectric material is always con-
tinuous across any interelement interfaces.

5) The distribution of the abrupt dielectric interfaces is taken
into account in the added inhomogeneous elements and,
thus, corner singularities and interface singularities can
be dealt with.

Moreover, continuous elements can also be utilized under
this formulation for faster convergence [16].

Formulation of the present method is described in Sections II
and III. Numerical results are presented in Section IV. The ac-
curacy of the proposed method is examined and compared with
previous results using other methods by using the dielectric-
loaded rectangular waveguide, the channel waveguide, and the
rib waveguide as examples. The conclusions are in Section V.

II. M ATHEMATICAL FORMULATION

We consider a wave with dependence prop-
agating in the -direction along a dielectric waveguide, where

is the propagation constant. Maxwell’s curl equations for the
wave are

(1)

(2)

where and are the permittivity and permeability of free
space, respectively, and is the refractive-index distribu-
tion of the waveguide. From (1) and (2), we can derive a wave
equation for the transverse magnetic field component

(3)

where is the del operator in the transverse plane andis the
wavenumber in free space. Note that the relation

has been included in (3) and hence the spurious modes
will not be present in the solution. Similarly, we can also obtain a
nonhomogeneous wave equation for the transverse electric field
component

(4)

III. T HE INHOMOGENEOUSEIGHT-NODE ELEMENT

Fig. 1(a)–(c) shows a conventional element division scheme
for a waveguide at a dielectric discontinuity corner, the calcu-
lated field along , and its derivative , respec-
tively. We can see that the refractive index is piecewise
continuous within each element. Equations (3) and (4) become

(5)

(6)

Fig. 1. (a) Conventional element division. (b) The calculated field alongy =

y . (c) Derivative of the calculated field with respect tox.

Fig. 2. Element division of the corner using inhomogeneous elements.

For elements, although the field function is always
continuous across the interfaces, its derivatives, for example,

, will not be continuous. Therefore, if we enforce the
continuity of the field components and across the dielec-
tric interfaces, the added constraints would alter the optimum
condition. Especially at the corner, the continuity conditions for

and cannot be fulfilled simultaneously. Unlike the con-
ventional element division scheme, we divide the waveguide
cross section as shown in Fig. 2. The dielectric interface is en-
closed within an inhomogeneous element, and thus the dielectric
constant across any interelement interface will be continuous,
which implies that and can automatically satisfy a con-
vergent continuity condition. If we want to ensure that and

will be always continuous across the dielectric interfaces,
we can apply the continuous elements to do the analysis.
However, under the new formulation we propose, the 2-D
eight-node quadratic node-based elements would be sufficient,
as shown in the later numerical examples. The reason why we
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Fig. 3. An inhomogeneous element.

employ eight-node quadratic node-based elements is for their
simplicity in theoretically describing the field distributions for
waveguides with right-angle corners. If the corners are not of
right-angle, the formulation could be modified using other co-
ordinate transformation techniques [17].

We show in the following discussion that the dielectric in-
terfaces will play an important role in determining the propa-
gation characteristics. Consider an inhomogeneous element as
depicted in Fig. 3, where the coordinate of the center is .
We then arrange the dielectric interfaces to lie along the middle
lines and use the eight-node quadratic element to describe
the magnetic field components and . Within the element,
the field components and could be expressed as

(7)

(8)

where represents the bases of the el-
ement. Using Galerkin’s method, we multiply (3) with

, and integrate through the element to obtain

(9)

where or and is the boundary of the element
. The first term of (9) should be dealt with very care-

fully. For example, Fig. 2 shows element 1 is surrounded
by elements 2, 3, 4, and 5. Since and are
continuous, and the magnetic field and its derivatives are
always continuous across the interelement boundaries by
this arrangement, the contribution of the first term within the

element will thus be cancelled by those of other elements.
This formulation is different in the following two respects
from that in [18], which claims to be able to automatically
deal with various inhomogeneities in the medium. First, if

is a step function, .
Second, in [18], the continuity conditions and

are enforced as
two interelement boundary conditions. In fact, these constraints
are only theoretically correct as . If we really put these
constraints in the numerical implementation, the results will
converge to wrong values. In numerical implementation, the
true constraints are and ,
and since the value of is unknown, the constraints can
only be included in the formulation implicitly. That is why the
formulation in [18] is not suitable to deal with the sharp edge

.
By assembling all the element equations, we have

(10)

where or , is the computational boundary, and is
the number of elements. For , we first calculate the third
term, and the following coefficients are defined:

(11)

(12)

In order to deal with the corner singularities or the abrupt inter-
face singularities, we introduce the distribution concept, i.e.,

(13)

(14)

and

(15)

where is the Dirac delta function. Substituting (13) into
(11), (11) becomes

(16)
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By assuming that and ,
where and are the width and height of the element, re-
spectively, (16) can be written as

(17)

Similarly, we can derive the expression for as

(18)

The coefficient exists only when or ;
that is, the dielectric discontinuity in thedirection mainly con-
tributes to . From (17), we observe that will be very
large when becomes small, implying that the weighting of
the element containing the dielectric interface along thedirec-
tion can be very large and should not be neglected. We therefore
predict that the effect on the effective index caused by the dielec-
tric discontinuities will be very significant. Similarly, the coeffi-
cient when or . In the semivectorial
formulation, is assumed to be zero; it can be negligible
only when the waveguide is weakly guiding and the operating
frequency is far away from the cutoff frequency.

We rewrite the second integral of (9) for as the fol-
lowing matrix equation:

(19)

where

(20)

(21)

(22)

(23)

and and are vectors composed of theand com-
ponents, respectively, of the magnetic fields at the nodal points
within the element. Similarly, for in (9), we can obtain

(24)

where

(25)

(26)

By assembling all the element equations, we obtain

(27)

where is the number of nodes. For the first term of (10), the
computational boundary may be a perfect electric conductor
(PEC), a Dirichlet boundary, a Neumann boundary, or an infinite
element boundary. After adding the contribution of the compu-
tational boundary condition, (27) can be rewritten as

(28)

For the semivectorial FEM formulation, , and
(28) becomes

(29)

where or , corresponding to different polarized modes,
and the prime (double prime) corresponds to . We can
also derive the electric field formulation from (4) and follow
the same procedure as proposed above for the magnetic field to
obtain a linear equation similar to (10)

(30)

Although there would be field singularities at the waveguide
corners, it will be shown in the next section that (30) is suffi-
ciently accurate to calculate effective indexes and field distribu-
tions.

IV. NUMERICAL RESULTS

In order to check the effectiveness of the full-vectorial FEM
with eight-node inhomogeneous elements, we present in this
section some numerical examples, including dielectric-loaded
metallic rectangular waveguides, channel waveguides, and rib
waveguides.

A. Dielectric-Loaded Metallic Rectangular Waveguide

Fig. 4(a) shows the cross section of a half-filled dielectric
waveguide. For the fundamental LSEmode in this wave-
guide, the field component ; hence, the field can be
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Fig. 4. Dielectric-loaded metallic rectangular waveguide. (a) Waveguide
structure and (b) element division.

Fig. 5. Convergence of solutions using different FEMs for the fundamental
LSE mode in a dielectric-loaded metallic waveguide.

approximated by one-dimensional (1-D) quadratic elements.
Fig. 4(b) shows the 1-D element division scheme. To check the
accuracy of our two-dimensional (2-D) full-vectorial formula-
tion, we also use square 2-D eight-node quadratic elements with

combined with the added inhomogeneous elements to
approximate the field. Fig. 4(c) shows the 2-D element division
scheme, where is the width of the inhomogeneous element.
The refractive indexes of the loaded dielectric and the vacuum
are and , respectively, and . Fig. 5
shows the relative error of the computed propagation constant
for the LSE mode using different formulations (1-D and 2-D
FEMs) with different s ranging from to . As

Fig. 6. Cross section of a square channel waveguide. (a) Waveguide structure.
(b) Element division.

Fig. 7. Contours of the magnetic field distributions for the fundamental mode
of the square channel waveguide. (a)E . (b)E . (c)H . (d)H .

in [15], the relative error is defined as ,
where and are the exact and the calculated values,
respectively. The exact effective index for the LSEmode
considered is . For a mesh of
83 41 with , the calculated effective index
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Fig. 8. (a) Effective index for the fundamental mode of the channel
waveguide obtained using ourH andE formulations with differentW s and
(b) examination of convergence of the FEM solutions for theH formulation.

is . Compared with the exact value, the
difference is on the order of . In Fig. 5, we also compare
our results with those obtained by Koshibaet al. [15]. Koshiba
et al.employed edge elements, while we utilize nodal elements
to approximate the real fields and eliminate the spurious modes.
It is seen in the results of [15] that the convergence rate of the
formulation with high-order mixed-interpolation-type elements
(triangle data points) is much faster than that with lower order
elements (black circle data points). In our calculation, as the
width of the added inhomogeneous elementdecreases and
the number of the mesh points increases, the calculated results
are seen to converge to the exact solution. Our formulations
can give more accurate results. The computational efficiency
can also be compared with edge element formulations [14] and
[15]. For our formulation, the matrices storage is about ,
with being the number of total unknowns, which is easily
obtained by checking the number of adjacent nodes of any

Fig. 9. Minor magnetic field profiles (H ) alongy = 0:5t near the corner.
Different curve represents numerical results obtained by using different division
grids and differentW s.

given node. For the method using mixed elements proposed in
[15] and the formulation in [14], the matrices storage is about

. For the method in [15], the formulation contains inverse
matrices and the sparsity of the matrices is lost, so the matrices
storage is , where and is a constant. We
can see that if the number of total unknowns is very large, the
matrices storage of [15] will increase significantly.

B. Channel Waveguides

Fig. 6(a) shows the cross section of a square channel
waveguide with width and the refractive indexes of the
waveguide and the vacuum being and ,
respectively. For calculation simplicity, let us assume that
there is a PEC surrounding the waveguide and . By
making use of structure symmetry, the computational window
is designed as shown in Fig. 6(b). For the normalized frequency

, the contours of the computed
field components , , , and for the fundamental
mode are shown in Fig. 7(a), (b), (c), and (d), respectively.
Fig. 8(a) shows the effective index as a function of the total
unknowns for different s and for different for-
mulations. is the number of nodes. Seven division
grids—(7 7), (11 11), (15 15), (19 19), (23 23),
(43 43), and (83 83)—were considered in the numerical
computations, and the total unknowns are 80, 192, 352, 560,
816, 2816, and 10 416, respectively. We can see that as
decreases, the computed results converge closer to the value
1.35638307 for the formulation and to the value 1.35638381
for the formulation, respectively, which are the calculated
effective indexes using 83 83 grid (the number of unknowns

2 (83 83 41 41) 10 416) with the inhomogeneous
element width . The difference in the effective
index for the and the formulations is about .
Fig. 8(b) shows the relative error of the propagation constant
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Fig. 10. Electric field profiles along the diagonal of the waveguide near a
corner obtained from using different division grids and differentW s. (a)E .
(b) E .

for the fundamental mode for different s and for the
formulation. The relative error is defined as ,
where and is the calculated propa-
gation constant. The convergent behavior is seen to be similar
to that of Fig. 5.

Fig. 9 shows the minor field ( ) along near the
corner. Different curves represent numerical results obtained by
usingdifferentdivisionsanddifferent s.The fieldconvergesas
thenumberofgridpoints increases.Weobserve that thewidth
doesnotsignificantlyaffect thefieldprofilealthoughitdoesaffect
the effective index, and that the field profile is mainly decided
by the number of the grid points. From Figs. 8 and 9, although
the fields have already converged with larger, the effective
index still varies. We observe that in this case the magnetic field
singularity does not exist, so the effects caused by the corner on
the effective index and the field convergence are quite small.

Fig. 11. (a) Cross section of a rib waveguide. (b) Element division.

In order to check the field convergence of the electric fields,
we consider another square channel waveguide proposed in
[19]—a square waveguide in the free space having a 1-m
width and a core refractive index operating at
wavelength m. We performed the calculation with
different division grids and different s using the electric field
formulation. Fig. 10(a) shows the major field component
along the diagonal of the waveguide near a corner, i.e., along

in Fig. 6(a), where four different curves represent re-
sults obtained using different division grids (7979, 43 43,
and 23 23) and m or m. The
data points correspond to the positions of the grid points, and
the corner is at the origin. Fig. 10(b) shows the corresponding
minor field component . We observe that as the grid spacing
is reduced with fixed at m, the peak field value
increases, while the field away from the corner has converged
to some fixed value, demonstrating the divergence nature of the
singularity. In the two calculations using the same division grid
(79 79) but different widths of the inhomogeneous element,
we find that the electric field component profiles are coincident
everywhere with each other except near the corner. Asis
reduced, the peak field value increases, showing thatplays
an important role in the present formulation. By comparing our
results with those shown in [20, Fig. 5], it can be seen that our
field values at positions away from the corner converge much
faster with respect to the grid spacing.

C. Semiconductor Rib Waveguides

Fig. 11(a) shows the cross section of a typical rib waveguide
structure. Fig. 11(b) sketches the element division scheme when
utilizing our formulation, where symmetry conditions are used.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 4, 2009 at 02:02 from IEEE Xplore.  Restrictions apply.



1258 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 11, NOVEMBER 2000

TABLE I
EFFECTIVE INDEX FOR THERIB WAVEGUIDE, SHOWN IN FIG. 11,FOR DIFFERENTDs COMPUTED BY DIFFERENTAUTHORS. COLUMN 1 (RAHMAN AND DAVIES

[21]): VECTORFINITE-ELEMENT METHOD. COLUMN 2 (HADLEY AND SMITH [22]): ITERATIVE FINITE-DIFFERENCEMETHOD. COLUMN 3 (STERN [23]):
SEMIVECTORIAL FINITE-DIFFERENCEMETHOD. COLUMN 4 (ABID et al. [11]): VECTORTRANSVERSEMAGNETIC FIELD FINITE-ELEMENT METHOD. COLUMN 5
(KOSHIBA et al. [15]): VECTORFINITE-ELEMENT METHOD WITH HIGH-ORDER MIXED-INTERPOLATION-TYPE ELEMENTS. COLUMNS 6 AND 7: PRESENTWORK

WITH A MESH OF19� 33 USING THE SEMI- AND FULL-VECTORIAL FEMS WITH INHOMOGENEOUSELEMENTS WITHW = 0:002 �m

Fig. 12. Differences in the effective refractive index between other methods
and the present method.

We have analyzed two well-studied semiconductor rib wave-
guide structures in order to compare our results with those ob-
tained by other methods. For the first case, the operating wave-
length m, rib width m, and

m. The outer slab depth varies from 0 to 0.9 m. The
refractive indexes of the cover, the guiding layer, and the sub-
strate are , , and , respec-
tively. The parameters for the computational window are

m, m, and m. We present in
the last two columns of Table I the computed effective index
of the lowest order mode obtained by our semivectorial
(SV) and full-vectorial (FV) FEMs with inhomogeneous ele-
ments (FEM-I) and with m. Calculations were
performed using the formulation under a mesh of 1933
with infinite elements being used. The number of elements is
9 16 144, and the number of nodes is (1933 9
16) 483. Table I also provides values obtained by previous

Fig. 13. Contours of the magnetic field distributions for the fundamental mode
of the first rib waveguide. (a)E . (b)E . (c)H . (d)H . Only a part of the
computational window is shown.

authors using different methods: the VFEM with Aitken ex-
trapolation [21], the iterative finite-difference method (IFDM)
[22], the semivectorial FDM (SV-FDM) [23], the transverse
field VFEM with continuity of and imposed (TFEM)
[11], and the VFEM with high-order mixed-interpolation-type
elements (Edge-FEM) [15].

We have also used m and m
and a finer grid mesh 33 53 to analyze the same waveguide.
The effective indexes for different ’s are shown in Table II,
and the process of convergence in the calculated results is ob-
served as the value of is reduced and finer grid mesh is
used. In fact, a calculation with m and a grid
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TABLE II
EFFECTIVEINDEX FOR THERIB WAVEGUIDES, SHOWN IN FIG. 11,WITH DIFFERENTDs OBTAINED USING THEFULL-VECTORIAL FINITE-ELEMENT FORMULATIONS

WITH INHOMOGENEOUSELEMENTS WITH DIFFERENTW s AND MESHES

Fig. 14. Minor magnetic field profiles (H ) along (a)x = 1:5 �m and (b)
y = 0:5 �m, with different division grids and differentW .

mesh 63 81 has also been performed, and further change in
the effective index appears to be smaller than 110 . Fig. 12

examines the differences between the results obtained by other
methods and the present method. The difference is calculated as

, where is the propagation constant
obtained by other methods and is that obtained by the
present full-vectorial formulation with grid mesh 3353 and

m. We observe that the results given by Hadley
and Smith [22] using the FDM is uniformly closest to ours.
We also show in this figure the difference between the result
obtained by the semivectorial FEM-I with grid mesh 1933
and m and the above full-vectorial result. It
is clear that, in this case, we can obtain an accurate result by
the semivectorial FEM-I. Fig. 13(a)–(d) shows the field con-
tours of the field components , , , and , respec-
tively, for m. Although the contours of the fields are
shown, we have to check the field convergence around the wave-
guide corners. Fig. 14(a) and (b) shows the minor field profiles
( ) along m and m, respectively. From
Fig. 14(a), it seems that the field has converged for the rough
division 19 33, while Fig. 14(b) shows that the field has not
yet converged. The other division grids 4553 and 57 77 are
designed that the grid spacings near the waveguide corners are
small. The effective indexes for the division grid 4553 are
shown in the last two columns of Table II for the and the

formulations, respectively. The effective indexes obtained by
the formulation coincide well with those obtained by the
formulation. From the discussion above, we conclude that, to
generally obtain the accurate effective index, we first use some
rough division grid with larger to locate the possible sin-
gularities. We then add some dense grid points near the field
singularities to obain convergent fields, and finally reduce the
width to obtain the accurate effective indexes.

The second case is another rib waveguide with the rib width
m, the outer slab thickness m, and

m. The refractive indexes of the cover, the
guiding layer, and the substrate are , ,
and , respectively. The operating wavelength is

m. The parameters for the computational window are
m, m, and m. We used a

mesh of 35 49 (the number of nodes 35 49 17 24
1307) to calculate the propagation constant. As in the case

discussed above, infinite elements were used. The effective in-
dexes and normalized propagation constants for the and

Authorized licensed use limited to: National Taiwan University. Downloaded on February 4, 2009 at 02:02 from IEEE Xplore.  Restrictions apply.



1260 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 11, NOVEMBER 2000

TABLE III
COMPARISON OF THEEFFECTIVE INDEX n AND THE NORMALIZED PROPAGATION CONSTANT b AT � = 1:55 �m OBTAINED BY THE PRESENT

METHOD AND OTHER METHODS

modes using the variational method (VM) [24], the spectral
index method (SIM) [25], the semivectorial beam propagation
method (SV-BPM) [26], the mode-matching method (MMM)
[27], the semivectorial FDM (SFDM) [28], the FDM [29], and
the present method with different width s are summarized
in Table III, where the normalized propagation constantis de-
fined as . From Table III, we can see in the
last few rows that the computed results converge as we reduce
the width from m to m. Compared with
those obtained by the semivectorial FDM or the full-vectorial
FDM, the dimensions of the matrices in (28) are much smaller;
therefore, (28) can be easily solved using personal computers.

V. CONCLUSION

A highly efficient full-vectorial node-based finite-element
method for the analysis of dielectric waveguides with corners
in the cross section have been proposed. We have demonstrated
the convergence in the calculation of the effective index. By
using the transverse field formulations and applying the distri-
bution concept to treating the dielectric discontinuity, we have
successfully analyzed structures with abrupt dielectric disconti-
nuities and corner singularities and have successfully obtained
field contributions around the dielectric interfaces. Spurious
modes are totally eliminated by adding the divergence-free
condition into the formulation. In Section III,
we have discussed the corresponding relationship between
the FEM formulations for the semi- and the full-vectorial
analyzses. Compared with the conventional approaches, such
as the finite-difference method, the number of nodes needed in
our method is greatly reduced. The accuracy of our algorithm
has been examined through several numerical examples by
comparing our results with either the exact solution or the
results obtained by other methods. The comparison with the
edge-element method has also been made. The accuracy and
efficiency of the present method are better than the edge-el-
ement method. It is shown in Section IV that, for accurately
determining the propagation constant, we first locate the field
singularities and then modify the formulation by adding denser
grid points around the singularities to obtain the convergent
fields. Lastly, we adjust the width to obtain a convergent ef-
fective index. This approach can be used to analyze waveguides

with inhomogeneous and/or anisotropic media and is suitable
for analyzing dielectric waveguides with multilayer structure,
such as multiple-quantum-well waveguides. We conclude that
this method is highly efficient and accurate.
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