IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 11, NOVEMBER 2000 1251

An Efficient Full-Vectorial Finite-Element Modal
Analysis of Dielectric Waveguides Incorporating
Inhomogeneous Elements Across Dielectric

Discontinuities

Day-Uei Li and Hung-chun Chan&enior Member, IEEE

Abstract—A new vectorial finite-element method (FEM) free of a vectorial finite-element formulation in terms of all three
spurious modes is proposed for analyzing optical waveguides with components of the magnetic fielf, which can accurately
sharp corners in the cross section. The method is formulated in analyze the propagation characteristics of a waveguide with an
terms of the transverse field componentdi,. and H,, or E. and bit i Th t . difficulty i Ivi
E,, and it explicitly shows the relationships between the semivec- arpiirary cross sec.|on. . € mos ser|ous imculty in aPp y'”g
torial and the full-vectorial wave equations. In this method, we in- the FEM to three-dimensional (3-D) inhomogeneous dielectric
troduce the distribution concept and an inhomogeneous element waveguides is the appearance of spurious solutions [4], [5].
to describe the field across the dielectric interface, and the error These unphysical solutions do not satisfy the divergence-free
in the numerical solution cau;ed by the o!lelectrlc discontinuity is relationV - H = 0. To solve the spurious solution problem,
reduced. We show how the width of such inhomogeneous elements,[h h b | thod d th t 20
and the number of nodes would affect the numerical result and €€ have been several metho ,S proposed over theé pas
its convergent rate using the dielectric-loaded rectangular wave- Years [6]-[12]. The penalty function method [6]-[9] used to
guide, the channel waveguide, and the rib waveguide as analysis ex-solve this problem can eliminate the spurious modes. At the
amples. For the dielectric-loaded rectangular waveguide, we com- same time, however, it causes the accuracy of solutions to
pare our results with the exact_solutlons._Forthe rib waveguide, we be precariously dependent on the magnitude of the penalty
compare our results with previously published data based on other fficient. S th 101112 d f lati .
methods. Also, field convergence near the corners is discussed. Coetiicient. Some authors [_ -12] pr(_)po_se ormu a_lqns In

terms of transverse magnetic or electric fields by explicitly or
implicitly enforcing the continuity of the tangential compo-
nents of the transverse fields at the interfaces. Because most
finite-element formulations utilizeZ® continuous elements
to describe the fields, the added constraints would alter the
. INTRODUCTION optimum condition [16]. Another serious problem is that the

IELECTRIC waveguides have been fundamental stryfields near the corners could not be easily described, and

tures in optoelectronic, microwave, and millimeter-wavé® formulation is too sensitive to the type of element that
devices. With the rapid advance of semiconductor technolodye choose. A completely different way of avoiding spurious
these waveguide structures can be easily integrated ont§Oitions usingedge elementfas also been proposed, and
single substrate. Various complicated waveguide structures gtare generalizedangential element$iave been developed
continuously proposed, such as directional couplers, polarizdfs3}-{15]. In this formulation, usually two components of the
nonlinear optical switches, optical sensors, etc. The desif{d are expressed in terms of the edge elements and the third
of these waveguide components and the analysis of the@mponentis described by the node-based elements. However,
propagation characteristics, such as birefringence and dispgBthe formulations of [13] and [15], the sparsity of the matrices
sion, demand highly accurate numerical methods. To mé&fost.
this need, many forms of the vectorial finite-element method In this paper, we derive in detail a highly efficient node-based
(VFEM) have been developed [1]-[15]. It is well known thafull-vectorial finite-element formulation based on the transverse
the longitudinal £.-H. formulation contains mathematicalfields by adding inhomogeneous elements and applying the dis-
singularities [1], [2]. In early yearKonrad [3] proposed tribution concept, which are used to analyze dielectric waveg-

uides with step dielectric discontinuities in the transverse plane.

) ) . ) We study, by adjusting the size of the added inhomogeneous el-
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2) The spurious solution problem is solved since the diver-
gence-free relation for the magnetic fieM,- H=0,is
included in the formulation.

3) Thefinal eigenvalue problem preserves the sparsity of the
matrices.

4) The permittivity of the dielectric material is always con-
tinuous across any interelement interfaces.

5) The distribution of the abrupt dielectric interfaces is taken
into account in the added inhomogeneous elements and, (a)
thus, corner singularities and interface singularities can
be dealt with.

Moreover,C* continuous elements can also be utilized under

this formulation for faster convergence [16]. X
Formulation of the present method is described in Sections Il

and Ill. Numerical results are presented in Section IV. The ac-

curacy of the proposed method is examined and compared with (b)

previous results using other methods by using the dielectric-

loaded rectangular waveguide, the channel waveguide, and the

rib waveguide as examples. The conclusions are in Section V.

m

<

Il. MATHEMATICAL FORMULATION

We consider a wave witexp[j(wt — 3z)] dependence prop- ©
agating in thez-direction along a dielectric waveguide, where

/3 is the propagation constant. Maxwell’s curl equations for thﬁg. 1. (a) Conventional element division. (b) The calculated field alprg

wave are ys.. (c) Derivative of the calculated field with respectito
VxE= —jwuoﬁ 1) v . . .
=y 9 i
V x H = jwen®(z, 1) B 2 | |
wheree¢y and g are the permittivity and permeability of free 3( . =4 .

space, respectively, amdz, y) is the refractive-index distribu-
tion of the waveguide. From (1) and (2), we can derive a wave
equation for the transverse magnetic field compoént

1 1
— (Vth /32Ht) +i2H, ~V, < ) X Vex H, =0 (3)

whereV; is the del operator in the transverse plane &ang the
wavenumber in free space. Note that the relatitbn= (V, - Fig.2. Element division of the corner using inhomogeneous elements.
H,)/Jﬁ has been included in (3) and hence the spurious modes
will not be presentin the solution. Similarly, we can also obtainfor C* elements, although the field functldﬁ(x, y) is always
nonhomogeneous wave equation for the transverse electric fietmhtinuous across the interfaces, its derivatives, for example,
componentt, AF /dz, will not be continuous. Therefore, if we enforce the
. continuity of the field componentd, andE, across the dielec-
= = Vin?-E tric interfaces, the added constraints would alter the optimum
2 2,2 _ 32 AL . o - -
Vik + (kon” = ) E + Vy < n2 ) 0. (4) condition. Especially at the corner, the continuity conditions for
H_. andE. cannot be fulfilled simultaneously. Unlike the con-
ventional element division scheme, we divide the waveguide
. THE INHOMOGENEOUSEIGHT-NODE ELEMENT cross section as shown in Fig. 2. The dielectric interface is en-
closed within an inhomogeneous element, and thus the dielectric
Fig. 1(a)—(c) shows a conventional element division schem
for a waveguide at a dielectric discontinuity corner, the calcﬁonStant across any interelement interface will be continuous,
9 y which implies thatt', and H., can automatically satisfy a con-
lated field ' alongy = w3, and its denvatlve?F/ax, respec-
. L e . vergent continuity condition. If we want to ensure titat and
tively. We can see that the refractive inde:, v) is piecewise
will be always continuous across the dielectric interfaces,
continuous within each element. Equations (3) and (4) becomé 1
we can apply theC* continuous elements to do the analysis.

V2H, + k2n2H, = 82H H_owever, under thg new formulation we propose, the 21([_) _
o He ot kon”Hy =7 H, ©®) eight-node quadratic node-based elements would be sufficient,
VZ2E, + kin’E, = 3°E,. (6) as shown in the later numerical examples. The reason why we
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element will thus be cancelled by those of other elements.
This formulation is different in the following two respects
from that in [18], which claims to be able to automatically
deal with various inhomogeneities in the medium. First, if
1/n? is a step function-n29(1/n?)/0u # (O(lnn?)/0u).
Second, in [18], the continuity conditiod$($) = H(—¢) and
(1/et) - OH(8)/0x = (1/e7) - JH(—8)/0x are enforced as
two interelement boundary conditions. In fact, these constraints
are only theoretically correct & — 0. If we really put these
constraints in the numerical implementation, the results will
converge to wrong values. In numerical implementation, the
true constraints aré{(6) — H(0) and H(-6) — H(0),
and since the value af{(0) is unknown, the constraints can
only be included in the formulation implicitly. That is why the
formulation in [18] is not suitable to deal with the sharp edge
A=(et—e)/(et +e7) = 1.

By assembling all the element equations, we have

Fig. 3. An inhomogeneous element.

employ eight-node quadratic node-based elements is for their Dite

Mpoy €IS ! o o SICINETs | <>VH ndl—i-z

simplicity in theoretically describing the field distributions for t

waveguides with right-angle corners. If the corners are not of .

right-angle, the formulation could be modified using other co- At ve  vH v, (L) 9H:

ordinate transformation techniques [17]. tPice) - Vellu = P Ve | 73 du
We show in the following discussion that the dielectric in- 52

terfaces will play an important role in determining the propa- <k0 £ ) H.¢iey| dedy =0 (10)

gation characteristics. Consider an inhomogeneous element as

depicted in Fig. 3, where the coordinate of the centéris y.). _ . . :

We then arrange the dielectric interfaces to lie along the m|d ereu E v ofr yl Cis :hchoTputatlo?altbOL:ndla;y, ,;Niﬂzs d

lines and use the eight-nod# quadratic element to descnbet € numde:[Lo fe”emgn s ?;_fr._. a:,twe wz ?a cg-a € thethr

the magnetic field components, andH,. Within the element, erm, and the foflowing coetlicients are defined.

S(e)

the field components$l, .y and H (. could be expressed as _ a(1/n?) ()
Qex,ij = 9 (/)7(9) dz dy (11)
s x ox
(e)
ac(e) &€, y Z hTJ¢J(e) &€, y) (7) / 8(1/712) 8¢j(€)
Dyz, iy = — Pice ~drdy. (12)
=t yws v Ste) dy ©) "oz
y( ) (z Z hyidiey (@, y) 8 In ordgrto dgql with the corner singul_arit.ies .orthe abrupt_inter-
face singularities, we introduce the distribution concept, i.e.,
where¢;y (j = 1,..., 8) represents the bases of the el- 9(1/n*) _ < 11 )6(3: _s) (13
ement. Using Galerkin's method, we multiply (3) with.) Oz n2(xt,y)  n2(zs,y) ¢
(i=1, ..., 8),andintegrate through the elemei, to obtain 9(1/n?) 1 1
= - — oy —y.) (14)
o 5 = (s )
b} VtHu, -ndl
Cry T and
1 1\ 0H,
Y 1 . Hu - Pi(e S 1T — Ue = c
+ /S(e) l 2 Vidice) + Vi bi(e) Vit <n2> T /u F)b(u —ue) du = flu.) (15)
/2 where é(-) is the Dirac delta function. Substituting (13) into
<k° oz ) Hudite)| dody =0 ©) (11), (11) becomes

whereu = x ory andC(.) is the boundary of the element Qua,ij

S(ey- The first term of (9) should be dealt with very care- _ _/y" <i 3 i) b (e 7) 9¢;(e) dy
fully. For example, Fig. 2 shows element 1 is surrounded yeeT,/2\ 13 07 ie)\tes x|,

by elements 2, 3, 4, and 5. Sineg(z, y) and ¢;., are vty /2

continuous, and the magnetic field and its derivatives are _/ o <1 1 >¢ (ze, y) 9Pie) dy.
always continuous across the interelement boundaries by e n3 Hepte oz |,_,.
this arrangement, the contribution of the first term within the (16)
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By assuming thaf = 2(¢ — x.)/L, andn = 2(y — v.)/Ly, (o (AL !
whereL, andL, are the width and height of the element, re- =¥ = n3 n2) )1 \n3 ni/) )
spectively, (16) can be written as 9100,
iy (£ =0, -~ dn. 26
L1 1 0 L1 L Pie)(€ ) I n (26)
o =TT \m R LT\ T . . .
* 2 1/ /-1 3 4770 By assembling all the element equations, we obtain
ad) e
’ (/)i(e) (S = 07 77) é]g ) d7’] (17) |:K + Qacac Pyac :| |:hac:|
¢=0 Py K+ Quy | ynyan LM
Similarly, we can derive the expression faf. ;; as _ g [M 0 } {h,}} 27)
1 1 0 1 1 1 0 M 2N X2N hy
Pye,id =7 Kn_i B n_§> /_1 + <n_§ B n_§> /0 } whereN is the number of nodes. For the first term of (10), the
£y computational boundarg' may be a perfect electric conductor
< Bice)(& n=10) i) d¢. (18) (PEC), aDirichlet boundary, a Neumann boundary, or an infinite
98 n=0 element boundary. After adding the contribution of the compu-
The coefficientg.. ;; exists only whem, # na Of ny £ n4; tational boundary condition, (27) can be rewritten as
thatis, the dielectric discontinuity in thedirection mainly con- K +Q, P, hy
tributes tog,.., ;5. From (17), we observe that, ;; will be very nggy K"+ 9 h,,

large whenL, becomes small, implying that the weighting of
the element containing the dielectric interface alongtheec- — g { "0 } {hx} . (28)
tion can be very large and should not be neglected. We therefore 0 M anxan LI
predict that the effect on the effective index caused by the dielec- . . :
tric discontinuities will be very significant. Similarly, the coeﬁi-‘?:cor the semivectorial FEM formulatiod;
cientpy, i; # 0whenny # ng 0rngs # ng. Inthe semivectorial
formulation,p,. ;; is assumed to be zero; it can be negligible |:K/(//) + QW
only when the waveguide is weakly guiding and the operating e
frequency is far away from the cutoff frequency.

We rewrite the second integral of (9) far= x as the fol-
lowing matrix equation:

([K]e + [Quale){hate + [Pyaleihy}e = B2[M]c{ha}e (19)

where N.

(/)i(e)vtEu -ndl + Z /
ji e=1 75

=P, =0,and

"y

(28) becomes

[ha] = 32 [M/(”)} [ha]  (29)

:|N><N NxN

whereu, = z or y, corresponding to different polarized modes,
and the prime (double prime) correspondsite: z(y). We can

also derive the electric field formulation from (4) and follow
the same procedure as proposed above for the magnetic field to
obtain a linear equation similar to (10)

1
(K]e,ij = _/s [ﬁvtd)i(e) “Vidjce)
©

' |:_Vt(/)v‘(€) VB, — 1 %) Vin? - E
+ k3¢i(e)¢j(e):|dx dy (20) o n*  Ou
1 + (k§n2 - /32) Eud)i(ﬁ)} dx dy = 0. (30)
Mlesi = [ oz bty dody (21)

St Although there would be field singularities at the waveguide
[Quzle i =z, ij (22) corners, it will be shown in the next section that (30) is suffi-
ciently accurate to calculate effective indexes and field distribu-

[PUT]FHJ =Dy=,ij (23) tions.

and{h.}. and{h, }. are vectors composed of theandy com-
ponents, respectively, of the magnetic fields at the nodal points
within the element. Similarly, for. = y in (9), we can obtain In order to check the effectiveness of the full-vectorial FEM
with eight-node inhomogeneous elements, we present in this
[Peyle{Ps}e + (Ko + [Quul){hy}e = B°[M]c{hy}e (24) section some numerical examples, including dielectric-loaded
metallic rectangular waveguides, channel waveguides, and rib
waveguides.

0 1
[Quule. i = _% Ki? — %) / + <i2 — %) / } A. Dielectric-Loaded Metallic Rectangular Waveguide
v LA P "s /o Fig. 4(a) shows the cross section of a half-filled dielectric
Pj(e) de (25) waveguide. For the fundamental LgEmode in this wave-
an guide, the field componentd, = 0; hence, the field can be

IV. NUMERICAL RESULTS

where

" die) (& m=0)

n=0
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PEC

(b) = —
|- 2t >
(@)
- Wi |«
(0

Fig. 4. Dielectric-loaded metallic rectangular waveguide. (a) Waveguide
structure and (b) element division.

A *Y) Koshiba et al. [15]
AN LN

Fig. 6. Cross section of a square channel waveguide. (a) Waveguide structure.

(b) Element division.

> |-

Wi
(b)

w 10
(@]
-
@ k !
o By
> 10'5. 0.8] 0.8
=
© 0.6 06
D ES E)
o 10° 0.4 0.4
0.2 0.2
107l . % 0z oa 06 o8 1
oiDFEM '°2x10°b xit
o 2DFEM ©2x10b  2x107b ®)
10-8 1 ” 1 5 I 5 1 H
10 10 10 08 y
Number of unknowns
0.6 0.6
= b
Fig. 5. Convergence of solutions using different FEMs for the fundamental = 0.4 > 04
LSE;, mode in a dielectric-loaded metallic waveguide. ’ ’
0.2
approximated by one-dimensional (1-D) quadratic elements o
Fig. 4(b) shows the 1-D element division scheme. To check the ~ ° 2 4 08 08 1 002 ne e

accuracy of our two-dimensional (2-D) full-vectorial formula-
tion, we also use square 2-D eight-node quadratic elements witn
L, = L, combined with the added inhomogeneous elementsfg. 7. Contours of the magnetic field distributions for the fundamental mode
approximate the field. Fig. 4(c) shows the 2-D element divisiot the square channel waveguide. &). (b) £, . () H,. (d) H,.

scheme, wher#&; is the width of the inhomogeneous element.

The refractive indexes of the loaded dielectric and the vacuum[15], the relative error is defined &8cxact — SrEM )/ Bexact s
aren; = 1.5 andny = 1.0, respectively, andyb = 3.0. Fig. 5 wheref..... andSrry are the exact and the calculated values,
shows the relative error of the computed propagation constartespectively. The exact effective index for the LgEnode

for the LSE, mode using different formulations (1-D and 2-Dconsidered iSier = fexact/ko = 1.27575555. For a mesh of
FEMs) with different#?;s ranging fron2.10~75t02-10~*b. As  83x 41 with W; = 2 - 10~ 7b, the calculated effective index

(©) (d)
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1.35645 T T — 0.06 T T T T T T T T T
Te) O 15x15W;=2x10"*1
Wi=2x10°t © 0.05 - O 23x23,W;=2x10"1 |
s 1:3564 | L ) A 43x43,W;=2x10"1
g > — 43x43,W;=2x10°t
= C 0.04]
$ 135635 °
g ©
o —_— . L
E _'(2 0.03
A cC
1:3563 —a- E formulation S 0.0}
——o-H formulation 2
| T
1.35625 10’ 10 = 001
X
Nx+ Ny T
0 L 1 1 1 1 1 1 1 1
(a) 0 0.2 0.4 0.6 0.8 1
. : x/t

Fig. 9. Minor magnetic field profilesH,) alongy = 0.5t near the corner.
2. i Different curve represents numerical results obtained by using different division
W,=2x10"t By grids and different¥;s.

-
o
&

given node. For the method using mixed elements proposed in
[15] and the formulation in [14], the matrices storage is about
60N . For the method in [15], the formulation contains inverse
matrices and the sparsity of the matrices is lost, so the matrices
storage isK - N4, wherel < d < 2 andK is a constant. We
can see that if the number of total unknowns is very large, the
matrices storage of [15] will increase significantly.

2x10%t |

-
o
&

Relative error (B, - B.. )B4

4

. B. Channel Waveguides
Nx+ Ny Fig. 6(a) shows the cross section of a square channel

-
[=]

10

waveguide with width¢ and the refractive indexes of the
(b) waveguide and the vacuum being = 1.5 andn, = 1.0,

respectively. For calculation simplicity, let us assume that
Fig. 8. (a) Effective index for the fundamental mode of the channéhere is a PEC surrounding the waveguide ang 2r. By
waveguide obtained using oiit and &2 formulations with differentV;s and - making use of structure symmetry, the computational window
(b) examination of convergence of the FEM solutions for théormulation. . . . : .

is designed as shown in Fig. 6(b). For the normalized frequency

V = koty/n? —n3/m = 2.0, the contours of the computed
iS neg = 1.27575552. Compared with the exact value, thdield componentst,, E,, H,, and H, for the fundamental
difference is on the order df0—2. In Fig. 5, we also compare mode are shown in Fig. 7(a), (b), (c), and (d), respectively.
our results with those obtained by Koshigtaal. [15]. Koshiba Fig. 8(a) shows the effective index as a function of the total
et al.employed edge elements, while we utilize nodal elemenisknownsV,. 4+ N, for different W;s and for different for-
to approximate the real fields and eliminate the spurious modesulations.V,(=X,) is the number of nodes. Seven division
It is seen in the results of [15] that the convergence rate of tggds—(7x 7), (11x 11), (15x 15), (19x 19), (23x 23),
formulation with high-order mixed-interpolation-type elementé43 x 43), and (83« 83)—were considered in the numerical
(triangle data points) is much faster than that with lower ordeomputations, and the total unknowns are 80, 192, 352, 560,
elements (black circle data points). In our calculation, as tl8d46, 2816, and 10416, respectively. We can see tha¥as
width of the added inhomogeneous elemBntdecreases and decreases, the computed results converge closer to the value
the number of the mesh points increases, the calculated resul&638307 for théf formulation and to the value 1.35638381
are seen to converge to the exact solution. Our formulatiofts the F formulation, respectively, which are the calculated
can give more accurate results. The computational efficieneffective indexes using 88 83 grid (the number of unknowns
can also be compared with edge element formulations [14] asd x (83 x 83 — 41 x 41) = 10 416) with the inhomogeneous
[15]. For our formulation, the matrices storage is abg8udV, element widthiW; = 2 - 10~5¢. The difference in the effective
with N being the number of total unknowns, which is easilindex for theH and theE formulations is about.4 x 10~7.
obtained by checking the number of adjacent nodes of aRig. 8(b) shows the relative error of the propagation constant
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0.5 T T T T T
— 79x79
Wi=2x10°um
O 79x79
Wi=2x102 m
iy O 43x43
2 o4 W;i=2x10%um ]
c
— Wi=2x105ym |
Q
| .
@©
o’
x 0.3
w
0.2 * . . * * * . *
-1 -08 06 -04 -02 0 02 04 06 08 1
-7
agn o x 10
Position along ¢ =45~ (m)
(a)
0.45 :
(b)
035
E Fig. 11. (a) Cross section of a rib waveguide. (b) Element division.
[=
: . . .
.5' 0.25 In order to check the field convergence of the electric fields,
= we consider another square channel waveguide proposed in
© L A
~ [19]—a square waveguide in the free space having jaml-
™ width and a core refractive index; = 1.5 operating at
015 wavelengthA = 1.5 um. We performed the calculation with
different division grids and differei¥’;s using the electric field
formulation. Fig. 10(a) shows the major field componét
0.05° - along the diagonal of the waveguide near a corner, i.e., along

-1 08 06 04 02 0 02 04 06 )(().:0'71 1) = 45° in Fig. 6(a), where four different curves represent re-
e T L) sults obtained using different division grids (¥¥9, 43x 43,
Position along ¢ =45~ (m) and 23x 23) andW; = 2-1072 gmor2.10~% um. The
(b) data points' correspon.d.to the positions of the grid points, a_md
Fig. 10. Electric field profiles along the diagonal of the waveguide neartarl].e cor_ner is at the origin. Fig. 10(b) shows the cor.respon.dlng
corner obtained from using different division grids and differéis. (a)E,. Minor field component,. We observe that as the grid spacing
(b)E,. is reduced withi¥; fixed at2 - 107¢ ;m, the peak field value
increases, while the field away from the corner has converged
to some fixed value, demonstrating the divergence nature of the
singularity. In the two calculations using the same division grid
ﬁg?x 79) but different widths of the inhomogeneous element,
we find that the electric field component profiles are coincident

for the fundamental mode for differei¥;s and for theH
formulation. The relative error is defined 884 — SBca)/B4,
whereg3,s = 1.35638307ko and 3., is the calculated propa-
gation constant. The convergent behavior is seen to be sim

to that of Fig. 5. . )
9 everywhere with each other except near the corneriiads

Fig. 9 shows the minor fieldH,) alongy = 0.5t near the ) . )
corner. Different curves represent numerical results obtained'S uced, the peak field value increases, showingithaplays

using differentdivisions and differeitt;s. Thefield Convergesasa |mport_ant role in the prgsent fo.rmulat!on. By comparing our
the number of grid points increases. We observe that the Wigth r_esults with those shown in [20, Fig. 5], it can be seen that our
doesnotsignificantly affectthefield profile althoughitdoes aﬁe(}&eld Vall.JeS at positions away from_ the corner corverge much
the effective index, and that the field profile is mainly decideo'l'f‘Ster with respect to the grid spacing.

by the number of the grid points. From Figs. 8 and 9, althou
the fields have already converged with larggy, the effective
index still varies. We observe that in this case the magnetic fieldFig. 11(a) shows the cross section of a typical rib waveguide
singularity does not exist, so the effects caused by the cornerstructure. Fig. 11(b) sketches the element division scheme when
the effective index and the field convergence are quite small. utilizing our formulation, where symmetry conditions are used.

h
%. Semiconductor Rib Waveguides
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TABLE |
EFFECTIVE INDEX FOR THERIB WAVEGUIDE, SHOWN IN FIG. 11,FOR DIFFERENT D's COMPUTED BY DIFFERENTAUTHORS COLUMN 1 (RAHMAN AND DAVIES
[21]): VECTORFINITE-ELEMENT METHOD. COLUMN 2 (HADLEY AND SMITH [22]): ITERATIVE FINITE-DIFFERENCEMETHOD. COLUMN 3 (STERN [23]):
SEMIVECTORIAL FINITE-DIFFERENCEMETHOD. COLUMN 4 (ABID et al.[11]): VECTOR TRANSVERSEMAGNETIC FIELD FINITE-ELEMENT METHOD. COLUMN 5
(KosHiBa et al.[15]): VECTORFINITE-ELEMENT METHOD WITH HIGH-ORDER MIXED-INTERPOLATION-TYPE ELEMENTS. COLUMNS 6 AND 7: PRESENTWORK
WITH A MESH OF19 X 33 USING THE SEMI- AND FULL-VECTORIAL FEMS WITH INHOMOGENEOUSELEMENTS WITH WW; = 0.002 pzm

D (um) | VFEM | FDM | SV-FDM | TFEM | Edge-FEM | SV-FEM-I | FV-FEM-I

0.0 3.41210 | 3.41200 | 3.41188 | 3.40970 | 3.41194 3.411987 | 3.411991
0.1 3.41220 | 3.41211 | 3.41200 | 3.40971 | 3.41209 3.412088 | 3.412094
0.2 3.41235 | 3.41226 | 3.41217 | 3.41003 | 3.41224 3.412237 | 3.412246
0.3 3.41255 | 3.41247 | 3.41240 | 3.41025 | 3.41247 3.412439 | 3.412449
0.4 3.41285 | 3.41275 | 3.41271 | 3.41057 | 3.41278 3.412725 | 3.412737
0.5 3.41315 | 3.41311 | 3.41310 | 3.41097 | 3.41312 3.413086 | 3.413098
0.6 3.41365 | 3.41355 | 3.41358 | 3.41148 | 3.41358 3.413526 | 3.413339
0.7 3.41410 | 3.41408 | 3.41415 | 3.41210 | 3.41414 3.414058 | 3.414069
0.8 3.41475 | 3.41472 | 3.41484 | 3.41298 | 3.41480 3.414713 | 3.414721
0.9 3.41560 — 3.41568 | 3.41446 | 3.41568 3.415608 | 3.415611

1 x 10
o
X
S~
——
§ 0
eal
i
E SV-FEM-l Wi=2x 103um ]
o —o Koshiba et al. [15]
e' -1t —=a Rahman and Davies [21] -
—* Hadley and Smith [22]
4 —4  Stern [23]
0 0.2 0.4 0.6 0.8
D (um)
-2
Fig. 12. Differences in the effective refractive index between other methods o 1 2 3 0 1 2 3
and the present method. x (um) X (um)

(c) C)

We have analyzed two well-studied semiconductor rib wave-

guide structures in order to compare our results with those d;t%ﬂtht?’ﬁrstcr?b”tx:\ffe gl‘:}g:r?:lg:‘%fgf C("Cs)tgz‘{“(%r)‘g‘:ftgilgigd;;egft%']gwde
tained by other methods. For the first case, the operating waygs,tational window is shown.

lengthA = 1.15 pm, rib widthW = 3.0 yum, andH + D =

1.0 pm. The outer slab dept varies from 0 to 0.94m. The ) ) ) .
refractive indexes of the cover, the guiding layer, and the suddthors using different methods: the VFEM with Aitken ex-
strate arenc = 1.0, ng¢ = 3.44, andns = 3.4, respec- trapolation [21], the iterative finite-difference method (IFDM)
tively. The parameters for the computational window Bre=  [22], the semivectorial FDM (SV-FDM) [23], the transverse
2.952 pm, C' = 1.025 pm, andS = 5.025 um. We present in field VFEM with continuity of £, and H. imposed (TFEM)
the last two columns of Table | the computed effective indd#1], and the VFEM with high-order mixed-interpolation-type
of the lowest ordetH?, mode obtained by our semivectorialelements (Edge-FEM) [15].

(SV) and full-vectorial (FV) FEMs with inhomogeneous ele- We have also used’; = 2-10~* pm andW; = 2-107° um
ments (FEM-1) and with¥; = 2 - 10~2 ;m. Calculations were and a finer grid mesh 38 53 to analyze the same waveguide.
performed using theéd formulation under a mesh of 2033 The effective indexes for differerd’s are shown in Table I,
with infinite elements being used. The number of elementsasd the process of convergence in the calculated results is ob-
9x 16 = 144, and the number of nodes is (¥933 — 9 x served as the value d¥; is reduced and finer grid mesh is
16) = 483. Table | also provides values obtained by previoussed. In fact, a calculation with; = 2 - 10~¢ um and a grid
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TABLE I

1259

EFFECTIVE INDEX FOR THERIB WAVEGUIDES, SHOWN IN FIG. 11,WITH DIFFERENT D's OBTAINED USING THE FULL-VECTORIAL FINITE-ELEMENT FORMULATIONS

WITH INHOMOGENEOUSELEMENTS WITH DIFFERENT W, S AND MESHES

D (pm)| Grd =10x33 | 10x33 | 33 x53 | 33 x 53 | 45 x 53 (H) | 45 x 53 (E)

Wi=2x10""pm | 2x1075 | 2x 107 { 2x107° | 2x107° 9 % 107°
0.0 3.412003 3.412004 | 3.412009 | 3.412010 3.412011 3.412011
0.1 3.412105 3.412107 | 3.412113 | 3.412114 3.412115 3.412115
0.2 3.412257 3.412258 | 3.412265 | 3.412267 3.412268 3.412268
0.3 3.412460 3.412461 | 3.412478 | 3.412479 3.412481 3.412481
0.4 3.412749 3.412750 | 3.412761 | 3.412762 3.412764 3.412764
0.5 3.413110 3.413111 t 3.413119 | 3.413120 3.413122 3.413122
0.6 3.413551 3.413552 | 3.413557 | 3.413558 3.413561 3.413561
0.7 3.414080 3.414082 | 3.414088 | 3.414089 3.414091 3.414092
0.8 3.414733 3.414734 | 3.414739 | 3.414740 3.414742 3.414742
0.9 3.415622 3.415623 | 3.415627 | 3.415628 3.415631 3.415631

0.02

0.01¢

Hy (arbi. units) along x=1.5 um

O 19x33,W;=2x102um
O 45x 53, W; =2 x 10%um ]
W A 57 x77, W; =2 x 10" um |

um

o 0:018F

=0.

y
[=4
[=]
pury
-

0.01

0.006

x (arbi. units) along

I 0.002 .
1 1.2

Fig. 14. Minor magnetic field profilesH..) along (a)r = 1.5 gm and (b)

1.‘4 1..6 I 1:8
X (um)
(b)

y = 0.5 pm, with different division grids and differeit’.

examines the differences between the results obtained by other
methods and the present method. The difference is calculated as
(Botner — Brem-1)/ ko, WhereS,u,e, is the propagation constant
obtained by other methods apigy-1 is that obtained by the
present full-vectorial formulation with grid mesh 33%3 and
W, =2-10~° um. We observe that the results given by Hadley
and Smith [22] using the FDM is uniformly closest to ours.
We also show in this figure the difference between the result
obtained by the semivectorial FEM-1 with grid mesh 433
andW; = 2-10~2 um and the above full-vectorial result. It
is clear that, in this case, we can obtain an accurate result by
the semivectorial FEM-I. Fig. 13(a)—(d) shows the field con-
tours of the field component®&’,, E,, H,, and H,, respec-
tively, for D = 0.5 xm. Although the contours of the fields are
shown, we have to check the field convergence around the wave-
guide corners. Fig. 14(a) and (b) shows the minor field profiles
(H,) alongz = 1.5 pm andy = 0.5 um, respectively. From
Fig. 14(a), it seems that the field has converged for the rough
division 19x 33, while Fig. 14(b) shows that the field has not
yet converged. The other division grids %3 and 57 77 are
designed that the grid spacings near the waveguide corners are
small. The effective indexes for the division grid 453 are
shown in the last two columns of Table Il for th¢ and the
E formulations, respectively. The effective indexes obtained by
the H formulation coincide well with those obtained by the
formulation. From the discussion above, we conclude that, to
generally obtain the accurate effective index, we first use some
rough division grid with large#¥; to locate the possible sin-
gularities. We then add some dense grid points near the field
singularities to obain convergent fields, and finally reduce the
width W; to obtain the accurate effective indexes.

The second case is another rib waveguide with the rib width

w

2.0 pm, the outer slab thicknes® = 0.2 pxm, and

D + H = 1.3 ym. The refractive indexes of the cover, the
guiding layer, and the substrate ate = 1.0, ng = 3.44,
andns = 3.34, respectively. The operating wavelengthis=
1.55 pm. The parameters for the computational window are

R = 30um,C = 1.7 um, andS = 3.0 um. We used a

mesh of 35« 49 (the number of nodes 35 x 49 — 17 x 24
= 1307) to calculate the propagation constant. As in the case
mesh 63x 81 has also been performed, and further change discussed above, infinite elements were used. The effective in-
the effective index appears to be smaller thanli0=. Fig. 12 dexes and normalized propagation constants forH¥ge and
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TABLE 1lI
COMPARISON OF THEEFFECTIVE INDEX n¢ AND THE NORMALIZED PROPAGATION CONSTANT b AT A = 1.55 pm OBTAINED BY THE PRESENT
METHOD AND OTHER METHODS

i | Method Number of Nodes HY HY,

o b Teff b
1 VM {24] 3.388408 | 0.4804 | 3.387657 | 0.4729
2 | SIM {25] — 3.38874 | 0.4837 | 3.38788 | 0.4751
3 | SV-BPM|[26] — 3.388711 | 0.4834 | 3.387924 | 0.4756
1 | MMM [27] — 3.388690 | 0.48322 — —
5 | SFDM [28] 1280 x 1280 3.388658 | 0.4829 | 3.387868 | 0.4750
6 | FDM[29] 508 x 394 3.388687 | 0.48319 — —
7 | FEM-T(H), W; =2 x 1072 um | 35 x 49 — 17 x 24 | 3.388655 | 0.48286 | 3.387829 | 0.47461
8 | FEM-1(H), W; =2 x 1074 pum | 35 x 49 — 17 x 24 | 3.388684 | 0.48316 | 3.387857 | 0.47489
9 | FEM-1(H), W; =2 x 107 um [ 35 x 49 — 17 x 24 | 3.388687 | 0.48319 | 3.387859 | 0.47491
10 | FEM-T(H), W; =2 x 1075 um | 35 x 49 — 17 x 24 | 3.388687 | 0.48319 | 3.387859 | 0.47491
11 | FEM-I(E), W; = 2x 107 %um | 35 x 49 — 17 x 24 | 3.388687 | 0.48319 | 3.387859 | 0.47491

H{, modes using the variational method (VM) [24], the spectralith inhomogeneous and/or anisotropic media and is suitable
index method (SIM) [25], the semivectorial beam propagatidor analyzing dielectric waveguides with multilayer structure,
method (SV-BPM) [26], the mode-matching method (MMM}uch as multiple-quantum-well waveguides. We conclude that
[27], the semivectorial FDM (SFDM) [28], the FDM [29], andthis method is highly efficient and accurate.

the present method with different widlliv;s are summarized

in Table Ill, where the normalized propagation constaistde-

fined ag(nZ;—n%)/(n—n%). From Table lll, we canseeinthe [
last few rows that the computed results converge as we reduce
the widthW; from2-10~2 zmto2-10~% um. Compared with 2
those obtained by the semivectorial FDM or the full-vectorial
FDM, the dimensions of the matrices in (28) are much smaller;
therefore, (28) can be easily solved using personal computers.[3

V. CONCLUSION (4]

A highly efficient full-vectorial node-based finite-element 5]
method for the analysis of dielectric waveguides with corners
in the cross section have been proposed. We have demonstrated
the convergence in the calculation of the effective index. By [€]
using the transverse field formulations and applying the distri-
bution concept to treating the dielectric discontinuity, we have [7]
successfully analyzed structures with abrupt dielectric disconti-
nuities and corner singularities and have successfully obtainecﬁg]
field contributions around the dielectric interfaces. Spurious
modes are totally eliminated by adding the divergence-freel®
conditonV - H = 0 into the formulation. In Section I,
we have discussed the corresponding relationship betwegtn]
the FEM formulations for the semi- and the full-vectorial
analyzses. Compared with the conventional approaches, su q]
as the finite-difference method, the number of nodes needed In
our method is greatly reduced. The accuracy of our algorithm
has been examined through several numerical examples l%/z]
comparing our results with either the exact solution or the
results obtained by other methods. The comparison with th&3l
edge-element method has also been made. The accuracy and
efficiency of the present method are better than the edge-ejt4]
ement method. It is shown in Section IV that, for accurately
determining the propagation constant, we first locate the fielcﬂlS]
singularities and then modify the formulation by adding denser
grid points around the singularities to obtain the convergent
fields. Lastly, we adjust the width; to obtain a convergent ef- [16]
fective index. This approach can be used to analyze waveguides
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