
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 11, NOVEMBER 2006 4411

Robust Calculation of Chromatic
Dispersion Coefficients of Optical Fibers From

Numerically Determined Effective Indices Using
Chebyshev–Lagrange Interpolation Polynomials

Po-Jui Chiang, Chin-Ping Yu, and Hung-Chun Chang, Senior Member, IEEE, Member, OSA

Abstract—Numerical calculation of chromatic dispersion co-
efficients of optical fibers is conducted using a procedure
involving Chebyshev–Lagrange interpolation polynomials. Only
numerically determined effective indices at several wavelengths
are needed for obtaining the dispersion curve, and no direct nu-
merical differentiation of the effective refractive index is involved.
A silica-filled metallic rectangular waveguide having analytical
solutions for the effective refractive index and the chromatic
dispersion is used as an example for confirming the accuracy and
efficiency of the proposed method. The method is then also applied
to the analysis of holey fibers.

Index Terms—Dispersion, fiber properties, optical waveguides,
photonic-crystal fibers (PCFs), spectral method.

I. INTRODUCTION

THE CHROMATIC dispersion coefficient of an optical
fiber in units of picoseconds per nanometer kilometer is

a key quantity in various analysis and design issues in fiber
transmission systems, including recent intensive investigation
of photonic-crystal fibers (PCFs) or holey fibers [1]–[3]. It is
defined as D = −(λ/c)d2neff/dλ2, where neff is the effective
refractive index of the optical fiber mode, λ is the wavelength,
and c is the speed of light in a vacuum. For a given fiber or
waveguide structure, neff can be solved at different wavelengths
using various numerical methods. Then, in principle, one sim-
ple way to obtain D at a particular wavelength is to perform
direct numerical differentiation using the central difference
scheme based on three neff values at three nearby wavelengths.
Therefore, to obtain D values at N wavelengths, one needs
to calculate neff at 3N wavelengths. From the basic theory of
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the finite difference method, the separation between adjacent
wavelengths should be small enough to maintain the required
accuracy but should not be too small such that the error would
explode [4]. Thus, some suitable ∆λ has to be determined.
Furthermore, one might worry about the effect of the numerical
accuracy of the calculated neff on the degree of accuracy of
its second derivative. Kuhlmey et al. [5] have reported in
their analysis of holey fibers that they generally considered
∼1000 points per unit λ/Λ, with Λ being the pitch of the air-
hole lattice of the holey fiber, to obtain satisfactory results of
dispersion curves.

To ensure accurate determination of D, over the past two
decades, some more elaborate approaches have been proposed
including, for example, that based on the matrix perturba-
tion method [6] and those through formulating two associated
problems for evaluating the first and second derivatives of
the propagation constant [7]–[10]. In this paper, we propose
a simple approach utilizing Chebyshev–Lagrange interpola-
tion polynomials as in the Chebyshev spectral method or the
Chebyshev collocation method (CCM) [11] and demonstrate
its efficiency and robustness in calculating D. For instance,
over the wavelength range from 0.6 to 1.5 µm, calculation of
neff at only 13 wavelength points would guarantee accurate
prediction of the D curves. Most importantly, no numerical
differentiations of neff are required, and thus, computational
burden can be greatly reduced.

The rest of this paper is organized as follows: The CCM
is described in Section II. The proposed procedure for chro-
matic dispersion coefficient calculation is given in Section III,
along with the analysis of a silica-filled metallic rectangular
waveguide. The application to holey fibers and comparison with
published results are presented in Section IV. Conclusions are
drawn in Section V.

II. CCM

We first explain the approximation of a function f(x) in
the domain −1 ≤ x ≤ 1 under the CCM [11]. The Chebyshev
polynomial TN (x) of degree N is defined as TN (x) =
cos(N cos−1 x), where |x| ≤ 1, and the collocation points to
be used are given by the Chebyshev–Gauss–Lobatto points
defined as the roots of the polynomial (1 − x2)T ′

N , where
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Fig. 1. Chromatic dispersion coefficient curve for the TE10 mode of a silica-
filled metallic rectangular waveguide obtained from the exact solution and by
the CCM of different degrees.

the prime denotes the derivative. One merit to employ the
Chebyshev polynomial is the available analytical formula for
its collocation points, which is given by xi = cos(iπ/N),
i = 0, 1, 2, . . . , N . The CCM provides an N th-order approx-
imation of f(x) as (LNf)(x) =

∑N
i=0 f(xi)gi(x), where the

Chebyshev–Lagrange interpolation polynomials are given by
gi(x) = [(1 − x2)T ′

N (x)(−1)i+1]/[ciN
2(x − xi)] with c0 =

cN = 2, and ci = 1 for 1 ≤ i ≤ N − 1. The polynomials gi(x)
have the properties that gi(xj) = 1 for i = j and gi(xj) = 0
for i �= j. Therefore, (LNf)(xi) = f(xi) and the derivatives
of f(x) at a collocation point xi can be computed by a ma-
trix operator, with the matrix entries Dij = g′j(xi), through

df(xi)/dx =
∑N

j=0 g′j(xi)f(xj) =
∑N

j=0 Dijf(xj). The ex-
plicit expressions for Dij , as given in [11], are Dij =
(ci/cj)[(−1)i+j/(xi − xj)] for i �= j, i, j = 0, 1, 2, . . . , N ,
Dii =−xi/[2(1−x2

i )] for 1 ≤ i ≤ N−1, D00 = (2N2+ 1)/6,
and DNN = −(2N2 + 1)/6. The matrix with elements Dij

is termed the differential matrix and will be denoted as ¯̄D in
the following. In summary, in the CCM, the function f(x)
is approximated by a summation of N + 1 terms involving
N + 1 known continuous interpolating functions gi(x), and the
numerical derivative of f(x) is easily evaluated in terms of the
known derivative values of gi(x).

III. IDEALISTIC WAVEGUIDE HAVING ANALYTICAL

CHROMATIC DISPERSION CHARACTERISTICS

We describe in this section our proposed method and ex-
amine its accuracy in calculating chromatic dispersion coef-
ficient curves by referring to some analytical results of an
idealistic waveguide, as shown in the inset of Fig. 1. It is a
silica-material-filled metallic rectangular waveguide with side
widths a = 5.28 µm and b = 4.13 µm. The waveguide is
assumed to be enclosed by perfect electric conductor (PEC)
walls. From the theory of metallic waveguide [12], the prop-
agation constant of the fundamental TE10 mode has the ex-
pression β = [k2

0ε − (π/a)2]1/2 = neffk0, or we have neff =
[ε − (λ/2a)2]1/2, where k0 is the wavenumber in free space,
and ε is the relative permittivity of silica. Even when taking
into account the material dispersion of silica described by the
four-term Sellmeier formulas [13], [14] for ε as a function of
λ, the derivatives of neff with respect to λ can be analytically

TABLE I
SELLMEIER COEFFICIENTS [13], [14]

derived, and thus, D versus λ has an analytical expression. The
related formulas are given as follows:
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=
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with the Sellmeier coefficients [13], [14] given in Table I. The
exact analytical result is shown in Fig. 1 as the solid line for
wavelength varying from 0.6 to 1.5 µm.

To apply the CCM, we first do a linear coordinate transforma-
tion by mapping the domain λ1 ≤ λ ≤ λ2 to the domain −1 ≤
x ≤ 1 of the x-axis. By employing Chebyshev polynomial of
degree N = 12, we have 13 Chebyshev–Gauss–Lobatto points
in the domain −1 ≤ x ≤ 1 and the corresponding ones in the
wavelength domain λ1 ≤ λ ≤ λ2. We calculate neff of the
fundamental core mode of the rectangular waveguide of Fig. 1
at these 13 wavelengths and use these 13 numbers to construct
a 13 × 1 column vector [neff ]. The mode solver we use is
that based on the finite-difference frequency-domain (FDFD)
method [15]. Then, the D values to be determined at these 13
wavelengths are taken to be the entries of the 13 × 1 vector [D].
It is easy to obtain the following relationship using the simple
chain rule given as follows:

[D] = − (
4λ/c(λ2 − λ1)2

) ¯̄D ¯̄D[neff ]. (6)

Therefore, once the vector [neff ] is known, the vector [D]
can be obtained readily, and no numerical differentiation is
needed. The 13 circles in Fig. 1 show such results, and it
is seen that they agree with the analytical solution. In fact,
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TABLE II
COMPARISON OF FDFD CALCULATIONS OF THE EFFECTIVE INDICES OF

THE TE10 MODE OF THE SILICA-FILLED METALLIC RECTANGULAR

WAVEGUIDE USING DIFFERENT GRID SIZES

TABLE III
COMPARISON OF CHROMATIC DISPERSION COEFFICIENTS OBTAINED

BASED ON THE CCM USING THE CORRESPONDING

neff(FDFD) VALUES OF TABLE II

we can obtain a continuous curve for D since d2f(x)/dx2 =∑N
j=0(d

2gj(x)/dx2)f(xj). In addition, if we plot the obtained
continuous curve for D in Fig. 1, it would be indistinguishable
from the solid line. To examine what the enough value for
N would be, we have considered N = 8 and 4, and the two
continuous curves are plotted in Fig. 1. For this waveguide,
we found that the N = 8 curve is almost consistent with the
N = 12 one, but the N = 4 curve is far from enough. We
have found that N = 12 would provide a very good result
for waveguide structures generally encountered, including the
examples to be discussed in the next section.

In the FDFD method [15], the waveguide cross section is
made up of uniform finite-difference grids (Yee mesh). It is well
known that numerical accuracy in the calculation of neff would
increase with decreasing grid size. Assuming equal numerical
grid sizes in the horizontal and vertical directions (∆x =
∆y = ∆), we have examined the possible dependence of
the accuracy of D on the numerical accuracy of the calcu-
lated neff . Table II lists the calculated neff values for ∆ =
0.02, 0.1, and 0.66 µm, respectively, along with the exact
values at the 13 collocation wavelength points, and Table III
lists the corresponding D values obtained using the CCM with
N = 13 along with the exact ones. It is observed in Table II
that for ∆ = 0.02 µm, the FDFD-calculated neff has seven

Fig. 2. (a) Cross section of the three-ring holey fiber. (b) Cross section of the
six-ring holey.

digits of accuracy after the decimal point at shorter wavelengths
and six digits of accuracy at longer wavelengths and that for
∆ = 0.66 µm, it decreases to four digits and three digits,
respectively. It is found in Table III that with ∆ = 0.02 µm,
the error in the prediction of D is less than 0.09% over the
wavelength range considered and that even with quite coarse
grids of ∆ = 0.66 µm, the error is at most 3.82% near the zero-
dispersion wavelength. The proposed method for calculating D
curves is, thus, quite robust as far as good numerical accuracy
is concerned. That is, with only three to four digits of accuracy
after the decimal point for neff , D curves of reasonable accu-
racy can be obtained for this case. Such accuracy in neff can
be easily achieved using typical waveguide eigenmode solvers
based on different numerical methods.

IV. DISPERSION IN HOLEY FIBERS

One of the attractive features of holey fibers is the better
flexibility in designing the D curves through varying the geo-
metrical arrangement of the air holes. Here, we first compare
our calculation with that of Kuhlmey et al. [5] by considering
the lowest core mode of one three-air-hole-ring structure in
their Fig. 3. As mentioned in Section I, Kuhlmey et al. [5]
generally considered ∼1000 points per unit λ/Λ in their cal-
culation to obtain satisfactory results of the D curves. The
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Fig. 3. Chromatic dispersion coefficient curve for the lowest core mode of
the three-ring holey fiber of Fig. 2(a), with Λ = 2.3 µm and d/Λ = 0.6
obtained by the CCM of different degrees. Also shown is the result calculated
by Kuhlmey et al. [5].

cross section of the three-ring holey fiber is shown in Fig. 2(a).
The parameters considered are Λ = 2.3 µm and d/Λ = 0.6,
where d is the diameter of each air hole. Again, we employ
our Yee-mesh-based FDFD waveguide eigenmode solver [15]
using the grid size ∆x = ∆y = ∆ = 0.1 µm to calculate neff

at 13 wavelengths from λ = 0.6 to 1.7 µm, corresponding to the
Chebyshev–Gauss–Lobatto points for N = 12. The material
dispersion of silica has been taken into account by using the
four-term Sellmeier formulas [13], [14]. Then, the D curve is
determined using the CCM as in Section III. The D values at the
13 collocation points are presented as the circles in Fig. 3 with
the solid line being that shown in [5, Fig. 3]. The agreement is
obviously very good. If we plot our calculated continuous curve
for D in Fig. 3, it would, again, be indistinguishable from the
solid line. We have also considered N = 8, 6, and 4, and the
three continuous curves are plotted in Fig. 3. Again, N = 4 is
not enough for obtaining correct curve. As N is increased, the
results converge with the maximum errors occurring near the
two ends. This is the characteristic of the Chebyshev spectral
method. It can be seen that there exist some noticeable differ-
ences at the two ends between the N = 8 and N = 12 lines.
This example demonstrates a general feature that a suitable
value of degree N can be determined by examining the numeri-
cal convergence at the ends of the wavelength domain. As long
as the difference between the results for degrees N − 1 and N ,
respectively, at the ends is small enough for specific application,
the whole curve of degree N will surely be acceptable.

In our FDFD eigenmode solver, as discussed in [15], we have
two schemes in treating the dielectric interface problem, that
is, the interface between silica and air, namely 1) the simple
staircase approximation and 2) the more elaborative boundary
condition (BC) matching method. The latter has been shown to
be much more accurate than the former. We have analyzed the
structure of Fig. 3 using both schemes, and the results are given
in Table IV. It can be observed that although the neff values
of the staircase scheme agree with those of the BC matching
scheme only up to three digits after the decimal point, the
difference in D results is at most 0.64%, which occurs near
λ = 1.7 µm. Again, this demonstrates the robustness of the
proposed method for calculating D.

We then consider a six-ring holey fiber recently analyzed
by Saitoh and Koshiba using the finite element method

TABLE IV
COMPARISON OF EFFECTIVE INDICES AND CHROMATIC DISPERSION

COEFFICIENTS OBTAINED BASED ON THE FDFD METHOD USING

THE BOUNDARY MATCHING SCHEME AND THE STAIRCASE

APPROXIMATION, RESPECTIVELY, FOR THE CASE OF FIG. 3

Fig. 4. Chromatic dispersion coefficient curves for the lowest core mode
of the six-ring holey fiber of Fig. 2(b), with Λ = 1.0 µm for different d/Λ
values obtained by the CCM of different degrees. Also shown are sample points
extracted from the results calculated by Saitoh and Koshiba [16, Fig. 16(a)].

(FEM) [16], with the cross section as shown in Fig. 2(b). In
[16, Fig. 16(a)], six D curves of the lowest core mode were
plotted for d/Λ = 0.5, 0.6, 0.7, 0.8, and 0.9, respectively,
and Λ = 1.0 µm. We employ the FDFD eigenmode solver [15]
using the grid size ∆x = ∆y = ∆ = 0.067 µm and the CCM
with N = 12 to obtain the corresponding results and plot them
as the five lines in Fig. 4. These five lines agree well with those
in [16, Fig. 16(a)]. The circles are sample points extracted from
the results of [16].

In the numerical examples presented so far, as in most sit-
uations in the holey-fiber study, the dispersion variations were
seen to vary by over hundreds of picoseconds per nanometer
kilometer within the interested wavelength range. We finally
consider an extreme situation in which the holey fiber is de-
signed to possess nearly zero dispersion-flattened characteris-
tics. One such structure was demonstrated in [16], with the
cross section as shown in Fig. 5 and the dispersion designed
to remain between 0.1 and 0.3 ps/(nm · km) for the wavelength
range from 1.41 to 1.68 µm. The structure parameters of this
ten-air-hole-ring holey fiber were Λ = 1.6 µm, d1 = 0.47 µm,
d2 = 0.71 µm, d3 = 0.74 µm, d4 = 0.62 µm, and d5 = · · · =
d10 = 0.65 µm, where di is the air-hole diameter of the
ith air-hole ring. For this structure, we have found that the
numerical accuracy in the calculation of neff is quite critical
in determining the D curve. As shown in Fig. 6, the dots are
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Fig. 5. Cross section of the nearly zero dispersion-flattened holey fiber with
ten air-hole rings.

Fig. 6. Chromatic dispersion coefficient curve for the lowest core mode of
the ten-ring holey fiber of Fig. 5, with Λ = 1.6 µm and a designed air-hole
diameter distribution obtained by the FDFD eigenmode solver using different
grid sizes and the CCM of degree 12. Also shown are sample points extracted
from the results calculated by Saitoh and Koshiba [16, Fig. 19].

sample points extracted from the D curve of the lowest core
mode given in [16, Fig. 19], and the three continuous lines are
obtained using our FDFD eigenmode solver with the grid sizes
∆x = ∆y = ∆ = 0.1, 0.05, and 0.033 µm, respectively, and
the CCM with N = 12. The BC matching scheme has been em-
ployed in the FDFD calculation of neff to ensure high accuracy.
It is seen that the dispersion calculation for this case is quite
sensitive to the grid size in the FDFD method. The grid size of
0.1 µm is obviously not fine enough for this calculation. It
should be emphasized here that the CCM still works as an
efficient scheme in determining the D curve from the neff

calculation. The key point is that to obtain enough accurate D
curve, we need to have neff values of enough high accuracy,
and in the present case, the demand of the neff accuracy is quite
high, as can be understood from the following discussion.

We approximate the D curve to be determined for the pre-
sent holey fiber in the wavelength range of Fig. 6 by the expres-
sion A + B sin[π(λ̄ − 1.55)/0.3], which can be considered as
the first two terms in a Taylor series expansion, where λ̄ = λ/
(1 µm) is a dimensionless variable. According to the result of
[16] in Fig. 6, A≈ 0.2 ps/(nm · km) and B≈ 0.1 ps/(nm·km).

The expression above should be equal to −(λ/c)d2neff/dλ2,
which can be approximately written as −[(λ0/c)/(1 µm)2]
d2neff/dλ̄2 = −(1.55/3)×104d2neff/dλ̄2ps/(nm·km), with λ0

being taken to be 1.55 µm. Thus, we have 0.2 + 0.1 sin[π(λ̄ −
1.55)/0.3] ≈ −(1.55/3)×104d2neff/dλ̄2, which gives neff ≈
−(0.6/1.55)×10−4(C2+ C1λ̄+λ̄2/2)−(0.3/1.55)(0.3/π)2×
10−4 sin[π(λ̄−1.55)/0.3]= −3.87×10−5(C2+C1λ̄+λ̄2/2)−
1.76 × 10−7 sin[π(λ̄ − 1.55)/0.3], where C1 and C2 are
constants. It can be seen that due to the small value of
B(≈0.1 ps/(nm · km)), the amplitude of the sine term in
neff is as small as in the order of 10−7, which implies that
one needs to achieve very high accuracy in the numerical
calculation of neff in order to be able to resolve this sine
variation. This implication is also true even when A is not
small (dispersion-flattened but not nearly zero). When B is in
the order of hundreds of picoseconds per nanometer kilometer
as in the earlier examples, the amplitude of the sine term
becomes three orders larger, and the demand of the numerical
accuracy of neff is greatly reduced.

V. CONCLUSION

We have proposed a simple procedure for the numeri-
cal calculation of chromatic dispersion coefficients of op-
tical fibers. The procedure employs the CCM involving
Chebyshev–Lagrange interpolation polynomials. No direct
numerical differentiation of the propagation constant or of the
effective index is involved. From the application of the pro-
posed method to an idealistic silica-filled metallic waveguide,
which provides analytical solutions for the effective indices and
chromatic dispersion coefficients of the waveguide modes, we
have demonstrated the robustness of this simple scheme and
its efficiency and accuracy. Our analysis of a three- and a six-
ring holey fiber also shows very good agreement with published
results based on different methods. We have found that calcu-
lating the effective indices at 13 wavelengths, corresponding to
the Chebyshev–Gauss–Lobatto collocation points for N = 12,
would generally provide very good results for the D curves. The
proposed method can be very easily applied to any structure
by using (6) with the entries of the differential matrix ¯̄D
given at the end of Section II. It should be noticed that in the
determination of a dispersion-flattened curve, as demonstrated
in the final example of the ten-ring holey fiber, the CCM still
works well as an efficient scheme, but the achievement of the
correct result relies highly on the numerical accuracy of the
effective index calculation.
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