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Abstract—New full-vectorial optical waveguide eigenmode
solvers using pseudospectral frequency-domain (PSFD) formula-
tions for optical waveguides with arbitrary step-index profile are
presented. Both Legendre and Chebyshev collocation methods are
considered in the formulation. By applying Legendre-Lagrange
or Chebyshev-Lagrange interpolating polynomials to the approx-
imation of spatial derivatives at collocation points, the Helmholtz
equations for the transverse-electric or transverse-magnetic com-
ponents are converted into a matrix eigenvalue equation which is
then solved for the eigenmodes by the shift inverse power method.
Suitable multidomain division of the computational domain is
arranged to deal with general curved interfaces of the refrac-
tive-index profile together with a curvilinear mapping technique
for each subdomain so that field continuity conditions can be care-
fully imposed across the dielectric interfaces, which is essential
in achieving high numerical accuracy. The solver is applied to
the optical fiber for the assessment of its numerical performance,
to the classical benchmark rib waveguide for comparing with
existing high-accuracy results, and to the fused fiber structure for
demonstrating its robustness in calculating the form birefingence.

Index Terms—Full-vectorial mode solver, fused fiber couplers,
Helmbholtz equation, optical waveguides, pseudospectral method.

I. INTRODUCTION

ALCULATION of full-vectorial modes on optical waveg-
uides with high accuracy has been pursued using different
numerical methods, e.g., the finite difference method [1]-[3]
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and the finite element method [4]. Such effort is important in
the design of certain waveguide structures and devices, for ex-
ample, in the analysis of form birefringence of the fiber coupler
structure [3]. We have recently presented a novel method with
remarkably high accuracy, the pseudospectral mode solver [5]
which is based on multidomain pseudospectral methods. The
multidomain advantage also helps in proper fulfillment of di-
electric interface conditions, which is essential in achieving high
numerical accuracy. In this paper, we discuss in detail the for-
mulation of the pseudospectral mode solver and more numerical
examples are shown.

The pseudospectral method is a well-known technique in
fluid dynamics problems [6]. It has in recent years attracted
more attention in the area of computational electromagnetics
as an alternative solution technique owing to its high-order ac-
curacy and fast convergence behavior over traditional methods.
Its applications to electromagnetic analysis in time domain
[7]-[10] and in frequency domain [11] have both been re-
ported. Although the theory of pseudospectral method has
been well applied to time-domain problems, the application
to frequency-domain problems has received relatively less
attention in electromagnetic problems. In contrast to pseu-
dospectral time-domain (PSTD) techniques for time-domain
problems, the so-called pseudospectral frequency-domain
(PSFD) method was proposed in [11] for solving the nonho-
mogeneous (nonzero-source) Helmholtz equation in a simple
rectangular-shape problem divided into two subdomains. In
this paper, we establish waveguide mode solving schemes in
frequency domain by employing the multidomain Legendre
or Chebyshev collocation method, and will term the proposed
method the PSFD mode solver (PSFD-MS). The curvilinear
mapping technique [12] is utilized in the multidomain ap-
proach to facilitate the analysis of general waveguide structures
having curved dielectric interfaces. To obtain high-accuracy
full-vectorial modal solutions for dielectric waveguides, proper
fulfillment of field continuity conditions across dielectric
interfaces is an essential issue in whichever analysis scheme
employed. Such proper treatment of continuity conditions
will be carefully managed in our multidomain formulation.
The Chebyshev and Legendre polynomials are appropriate
for different circumstances depending on whether integral or
derivative formula will be used. A matrix eigenvalue equation
is finally obtained in the formulation and the eigenmodes can
be readily solved by existing mathematical techniques. One
recent work by Huang ef al. [13] employed the multidomain
pseudospectral method in the modal analysis of dielectric

0018-9197/$25.00 © 2007 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on February 4, 2009 at 02:27 from IEEE Xplore. Restrictions apply.



CHIANG et al.: FULL-VECTORIAL OPTICAL WAVEGUIDE MODE SOLVERS

Fig. 1. Boundary between two homogeneous regions with refractive indexes
n, and n, in the waveguide cross-section. # is a unit vector normal to the
boundary.

waveguides with step-index profiles. However, their formula-
tions were based on rectangular-shaped subdomains and only
applied to waveguides with horizontal and vertical dielectric
interfaces. Moreover, they chose to use Chebyshev polynomials
in the finite subdomains and Laguerre-Gauss functions with a
scaling factor in the semi-infinite regions. The optimum scaling
factor for a given degree of the function, however, needs to be
decided with additional efforts. In our PSFD formulation, only
one kind of polynomials (Chebyshev and Legendre) is utilized,
leading straightforwardly to the eigenvalue equation.

We have recently applied the similar multidomain pseu-
dospectral method to the analysis of 2-D photonic-crystal band
diagrams [14], in which the Helmholtz equation for one field
component within the unit cell was solved along with the
required periodic boundary conditions. For the problem in this
paper, since full-vectorial modes are concerned, the eigenvec-
tors to be solved contain two transverse field components and
the formulation is a little more involved compared with the
scalar problem of [14].

The rest of this paper is outlined as follows. The physical
equations are described in Section II along with the required
Dirichlet and Neumann type boundary conditions across the di-
electric interfaces. Section I1I briefly discusses the Legendre and
Chebyshev spectral methods. The formulation of the PSFD-MS
is presented in Section IV. Numerical examples including the
optical fiber, the rib waveguide, and the fused fiber structure are
given in Section V to demonstrate the remarkable performance
of the proposed scheme. The conclusion is drawn in Section VI.

II. PHYSICAL EQUATIONS

Consider an isotropic-material optical waveguide of arbitrary
shape with piece-wise uniform refractive index n and magnetic
permeability 1ig. Fig. 1 shows a boundary of arbitrary shape be-
tween two homogeneous regions with n = n, and n = ny, re-
spectively, in the cross section of the waveguide. In this paper,
we particularly pay our attention to the simple step-index struc-
ture to demonstrate the PSFD-MS’s superior accuracy for op-
tical waveguides with dramatic index change across the material
interface. For an optical waveguide uniform along the z axis, the
magnetic field vector of a mode propagating in the z direction
can be expressed as ﬁ(l y) exp(—jBz), where 3 is the propa-
gation constant, which satisfies

(V2 + k‘o2n2) [ﬁ(my) exp(—jﬁz)] =0 )
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where V is the del operator, ky = w/c is the free-space wave
number, w is the angular frequency, and c is the velocity of light
in vacuum. Equation (1) can be reduced to

8—2+8—2+k 202 ) H (z,y) = 2H (z,y). )
92 8;/2 0 YY) = Y)-
Utilizing the pseudospectral Legendre or Chebyshev method
which will be introduced in Sections III and IV, (2) will finally
yield a B-formulation matrix eigenvalue equation of the form

Al = 31 3)
where
= [ ] = |7 |

where the superscript 7’ denotes transpose, H,, and Hy are vec-
tors composed of H, and H, values, respectively, at Legendre
or Chebyshev collocation points, H, and H, are the z- and

y-components, respectively, of the magnetic field, and A is the
operator matrix which will be deduced in Section IV. The eigen-
values of (3) can be solved by applying the shift inverse power
method (SIPM).

The dielectric waveguides are assumed to be non-magnetic
and lossless. Referring to regions a and b in Fig. 1 where . =
N2 +n,Y is a normal unit vector at the interface, the boundary
conditions and Maxwell’s equations lead to the Dirichlet type
boundary conditions (DBCs)

H; = H;
Hy = H) *)

and the Neumann type boundary conditions

OH¢ N OH¢ OHY  9HY OH}
Ng—— Ny ——=n, [—
or Y oy y or dy

OHY  (n,\> (0H) oHY
or n_;, or y

)

+ny

OHy  OHy oH: 9HY OH,
Ny —2 4ny—2L=n, |—
ox Y oy v oz oz oy

OH® (ng\>(0H! oH!
+(— — .
Jdy np oz Jdy

(6)

+1g

Note that we have employed the H,-H, formulation, and (4),
(5), and (6) are in terms of H, and H,,. In our numerical scheme,
between the adjacent regions, the DBCs and NBCs are imposed
across the interface to guarantee numerical stability.

III. LEGENDRE AND CHEBYSHEV SPECTRAL METHODS

We will formulate the multidomain PSFD-MS using the Le-
gendre spectral method and the Chebyshev spectral method [6].
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‘We describe the basic ideas of these two collocation methods in
this section and show their 2-D applications.

A. Legendre Spectral Method
The Legendre polynomial Py (z) of order N is defined as

1 dN

_ 2
= oIy T

Py () ny (7
where || < 1 and the collocation points are given as the
Legendre—Gauss—Lobatto points, defined as the roots of the
polynomial (1 — z%) P4 (), where the prime means derivative.
Although there exists no analytical formula for these roots
which can only be obtained numerically, the utilization of
Gauss—Lobatto points can take advantage of the Gauss—Lobatto
quadrature formula to significantly ameliorate accuracy in
related integrals over traditional numerical integrations. If f(z)
is a polynomial of degree 2N — 1, we have the formula

N

o1
> Fmi)wi = /Af(é‘) d¢ ®)

=0

where z;’s are the Legendre—Gauss—Lobatto collocation points
and w;’s are the Gauss—Lobatto weights given as

2 1 1<i<N-1
w; = — s ST S —_
N +1 Py (:Ei)P]/V_l (ZE,)
2
“o =N = IR T )

In addition, the Legendre collocation method provides a means
to approximating the function f(z) by global Legendre-La-
grange interpolating polynomials of degree N

flz)~ Zf(xqz)g,; (z) (10)

where the interpolating Legendre—Lagrange polynomials are
given as
() (1—2?%) Py (z)
i\ r) = — .
g N(N +1)(z — 2) Py (1)

Y

Then, with the interpolation of (10), the spatial derivatives of
f () at a collocation point z; can be computed by a matrix op-
erator with element entries D;; = gj’- (z;), ie.,

X

@M%ZQMﬂm=mem (12)

J=0

where the explicit expression for D;; is given in [6] as

_N<51V+1)7 t=75=0
Pn(wi) 1 ;L
D;; = § Pn(z;) mi—x;? P 13)
, 1<i=j<N-1
NN+L) i=j=N.
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B. Chebyshev Spectral Method
The Chebyshev polynomial Ty () of degree N is defined as

Tn (x) = cos(N cos™" z) (14)
where |z| < 1, and the collocation points are given by the
Chebyshev—Gauss—Lobatto points, defined as the roots of the
polynomial (1 — z2)T%(x). One of the merits to employ
Chebyshev polynomials is the existence of the analytical for-
mula for their collocation points, given by

mi:cos(%>7 1=0,1,2,...,N.

Similarly, the Chebyshev collocation method provides
a means to approximating the function f(z) by global
Chebyshev-Lagrange interpolating polynomials of degree
N, expressed by the same (10) where g;(x) now denotes the
interpolating Chebyshev—Lagrange polynomials given by

(1 —2?) Ty (2)(=1)"*
¢iN? (x — x;)

15)

g9i (z) = (16)
withey = ey = 2ande; = 1forl < i < N — 1. And
the spatial derivatives of f(z) at a collocation point x; can be
approximated by the same (10) with the explicit expression for
D;; given as in [6] as

Cj _Iiv—ﬂf]‘ ? ? ;é .] '
2N 41 i=ji=0

2N241 . .
——6"' , t=j5=N.

C. 2-D Formulas

The general waveguide analysis involves 2-D functions. A
2-D function, f(z,y), can be approximated as

M N
Flaoy) = > > F@iys) gi (o) g5 (v)

=0 5=0

(18)

where y; has been introduced as either the Legendre—Gauss—Lo-
batto grid or the Chebyshev—Gauss—Lobatto grid. Such approx-
imation has the advantage that the derivatives of f(z,y) can
be calculated using the 1-D formula (12), and thus the approx-
imate expressions of the spatial derivatives, Of (z,y)/dz and
Of (x,y)/0y, at the 2-D collocation points arranged in a rect-
angular domain can be written in the following matrix multipli-
cation form:

9f(z0,Y0) Af(z0,y1) Af(zo,yn)
oz oz oz

9f(z1,Y0) Of(z1,y1) Af(z1,yn)
oz oz oz

Of(awe)  Of(aryr) . Of(waun)
_63: oz oz

8f = =
= 81;Ct = D(M+1)><(1\'[+1)frect (192)
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(-1, 1) 1, b

>

0 s

> (-1,-1)

0 >x (4.-1)

Fig. 2. Domain mapping between a region of curvilinear quadrilateral shape in
the Cartesian coordinates (x, y) and a square region [—1,1] x [—1,1] in the
general curvilinear coordinates (&, 7).

9f(z0,Y0) Of(wo,y1) ... Of(zo,yn)
dy oy Jy
Of(x1,y0) Of(x1,y1) .. Of(ziyn)
oy dy Jy
af(xl'w,yo) af(-rl.w:'yl) 3f($1L1,yN)
Oy Oy 9y
af = =T
= a—myjt = freet D(N41)x (N +1) (19b)
where f,.. is an (M + 1) x (N + 1) matrix with entries

f(ziyyi), 1 = 0,1,2,...,M and j = 0,1,2,..., N, corre-
sponding to collocation points in rectangular arrangement, and
Dari1yx(v41y is an (M 4 1) x (M 4+ 1) matrix with entries
D;; as defined by (13) or (17) but with IV replaced by M. Equa-
tions (19) have been given in [14] and we repeat them here for
the completeness of the present formulation. Until now, the ex-
pressions of spatial derivatives in terms of matrix products are
restricted to rectangular grids, which is not general enough to
deal with curved boundaries. In the next section, the generaliza-
tion using a curvilinear representation will be described.

IV. MULTIDOMAIN PSEODOSPECTRAL SCHEME

A multidomain formulation will be established in this section.
The numerical scheme described above on rectangular grids will
be extended to the analysis of structures with curved boundaries
through the modified differential matrices. The curvilinear rep-
resentation of the Helmholtz equation will be derived first and
the formulation of the PSFD-MS will then be presented. Again,
(20)—(22) have been presented in [14] and we describe them here
for easiness of reference in later discussion.

A. Curvilinear Representation of Helmholtz Equation

The whole computational domain is divided into a suitable
series of nonoverlapping curvilinear quadrilaterals by consid-
ering the profile of the waveguide cross section and material
distribution. Each of these curvilinear quadrilateral regions in
Cartesian (z,y) coordinates is then mapped onto a square one
[-1,1]x[—1, 1] in curvilinear (£, ) coordinates using the trans-
finite blending function presented in [12], as illustrated in Fig. 2,
under the transformation

§=E&(n,y),

The spatial derivatives O f (z,y)/0z and O f (x,y)/Oy in a sub-
domain with curved boundaries can thus be calculated by the

n=n(ry). (20)
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formulae defined on this unit element. We employ the differ-
ential matrices [D;;] described in Section III based on the Le-
gendre or Chebyshev polynomial as (13) or (17) and take the
degrees in &- and n-directions in the new (&,7) coordinates to
be equal to M and N, respectively. By the chain rule, the mod-
ified differential matrices are expressed as

15) 0 =
E(z,y) 0 De.
0x  0¢
£60Doo &61 Dot EonrPomt

&foDwo  &iDu & D1

X € €
ExroDno E3p1 Do v D (M+1)x(M+1)

(21a)
on(wx, g =
n(a,y) 9 Dy
Jor On
nooDoo M1 D10 nonDno

TIfOD(n nt1 D11 TIfNDNl

NMvoDon  nxiDin MNNDNNd (v v

(21b)
dK(z,y) 0
— 7 — ~ Dg,
ay a§ gy
&5oDoo &1 Do & Don

&oD1o &1 D1 & vDim

&roPvo &y Dan & Drinm (M+1)x (M+1)

2lc)
on(z,y) 9 5
ay 87] ~ Hny
ngoPoo 51 D1o non Do
77¥NDN1

Yy y
Mo Do n1 D1

MvoPon i Div TN DNy (vgay v

(21d)
where
A oz A Oz
g = 8@ay) oy _ On(iy)
Y gy Oy

and x; and y; are discrete grid points corresponding to Legendre
or Chebyshev collocation points in the real (x,y) coordinates.
Please note that when referring to (13) or (17) for the values of
D;;’s in (21), the x coordinate in (13) and (17) would become
& or 7 coordinate. We can thus write the approximations for
the derivatives of f (x,y) in a single subdomain in terms of the
operators defined in the (&, ) coordinates as

8?cur i A 7 iy n
W = f:rfcur = Dfl‘.fcur + fcuaniE (22a)
8}(‘,11r a7 a7 7 A
a—y = Dyf(‘,ur = Dﬁyfr,ur + f(‘,urD"?y' (22b)

Please note that the matrix fcur is in general different from }rect
in (19) in that the latter was defined on rectangular grids while
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the former is on modified locations of grids deformed according
to the shape of the subdomain, and thus the operator matrices
D, and D, are different from the D matrices in (19). We then
have the discrete form of (2) in a single subdomain via (22) as

D, (Bﬁ) +D, <1=)yI:{> +kn2H = PH  (23)

where the matrix H = H, or H > and H, _(I_{ y) has entries that
are the values of the 2-D field _distribution H, (H,) at deformed

locations of grids. Note that H is different from H in (3) which
is a vector. We will convert (23) into the form of a resolvable
matrix eigenvalue equation in the following subsection.

B. Formulation of the PSFD-MS

We shall describe how to relocate the matrix elements (while
retaining the same values) in (23) to convert it into a resolv-

able form (3), i.e., AH = 3%2H. We discuss the single subdo-
main setting first and then generalize to the multidomain envi-
ronment. —

We rearrange the (M + 1) x (N + 1) matrix H; (¢ = z, y)
in (23) into the (M + 1)(N + 1) vector column H; as in (3) as

Hioo  Hio1 Hion
= Hﬂo H7‘,11 Hq’,lN
H; = _ _ .
Hinio Hinn Himn d (arg1)yx(v41)
[ Higo T
H;qo
= H, = | Himo 24
H;o,
_HiMN- [(M4+1)(N+1)]x1
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and then combine H, and H, into H in (3)

[ Heoo 7
H,o1
_ ] H,
- [Hx} _ HMN
¥ 1 [2(M+1)(N+1)]x1 y00
Hyo1

L Hynrn 2(M+1)(N+1)]x1.
(25

The operator matrix Ain (3) can be expressed in terms of the
operator matrices in (23) with some modification, shown in (26)
at the bottom of the page, where I is the identity matrix, k =
(M+1)(N+1)’ Dzoo = l_)fx +Dnz7 DyOO = l_)gy‘i‘l_)m,,z\/ith
the equation shown at the bottom of the next page, where D¢,
Déy, Dn:v(i,j) :’ nfE]DLJ (Z = 0,1./...,N, ] = 0717...7N)
and D, jy = n{;Dij 1 =0,1,...,N,j=0,1,...,N) have
been given in (21), and tr[a] is a diagonal matrix of order M + 1
with all diagonal elements being the constant a.

In the generalization to the multidomain situation, we assume
that the computational domain is divided unto p subdomains and
the 3-formulation matrix eigenvalue equation without imposing
boundary conditions across the subdomain boundaries can be
written as

(4, 0 0 0
0 A, 0 O
0 0 . 0
L 0 0 0 A | ppar1)(V41) X 2p(M+1)(N+1)]
_I:Il }7[1
H2 2 H2
. =0 . 27
LA, [2p(M+1)(N+1)]x1 a, [2p(M+1)(N+1)]x1
where the subscript of Zi (# =1,2,...,p) represents the num-

bering of each subdomain. The adjacent subdomains are then
connected by imposing the boundary conditions on those ma-
trix elements in (27) that correspond to the boundary nodes of
the subdomains. As in [14], we have carefully applied different
types of boundary conditions (DBCs or NBCs) to the adjacent
subdomains to guarantee numerical stability in our numerical

A= D.00D200 + DyooDyoo + k&n2I 0
0 D.00D00 + DyooDyoo + k3n?1 | oy on
=2 —_2 _
Dz + Dr, + k27’L2I 0
U B 7 (26)
0 Do+ Dyoo + kgn?T | op s on
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Fig. 3. Cross section of a circular optical fiber with radius « along with the
mesh and domain division profile of the computational domain.

scheme. How (27) will be modified when DBCs and NBCs are
imposed at the interface between adjacent subdomains can be
referred to [14, Appendix]. Finally, the mode propagation con-
stants (eigenvalues) and the corresponding magnetic field dis-
tributions (eigenvectors) can be obtained by using the SIPM.

V. NUMERICAL EXAMPLES AND DISCUSSION

A. Optical Fiber: Assessment of the PSFD-MS

We first examine the performance of the proposed PSFD-MS
by analyzing a step-index circular optical fiber with core ra-
dius ¢ = 0.6 pm and a large refractive-index difference with
core-index n; = /8 and cladding index no = 1.0 at A =
1.5 pm, for which the exact effective index up to 14 digits after
the decimal point is found to be n.g = 2.68401932160108,
where the effective index is defined as n.g = 3/ko. Fig. 3 shows
the typical domain and mesh division profile for the Legendre
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method, where five subdomains are adopted and the mesh pat-
tern of each subdomain shown is for M = N = 8. Note that
due to the geometrical symmetry, only a quarter of the wave-
guide cross section needs to be considered. The mesh division
profile in each subdomain for the Chebyshev method would be
slightly different from that for Legendre method. For each sub-
domain to be a homogeneous region, the dielectric interfaces
should fall on the boundaries of subdomains. Therefore, not
all subdomains are of rectangular shape and proper curvilinear
mapping technique as discussed in Section IV has been utilized
for transformation between the rectangular coordinate and the
curved one of a general subdomain. The radius of the compu-
tational-domain boundary where we force the total field to be
zero (zero boundary condition) is taken to be Ry, = 2.5 pm. We
have found that replacing this zero boundary condition with ei-
ther the perfect electric conductor (PEC) or the perfect magnetic
conductor (PMC) would have no difference in the following re-
sults. The other two horizontal and vertical linear boundaries of
the computational domain are taken to be either PEC or PMC
depending on the symmetry properties of the mode to be solved.

Table I lists the calculated effective indexes of the funda-
mental HE;; mode from both the Legendre and Chebyshev
methods for different degrees (M = N) and corresponding
numbers of unknowns, or 2p(M + 1)(N + 1) in (27) with
M = N assumed. We see the agreement with the exact effective
index up to 11 digits after the decimal point when the degree is
up to 22 in both methods. Fig. 4(a) shows the relative errors in
the calculated effective indexes of Table I relative to the exact
Value7 i.e., |(neﬁ', calculated — Tleff, exact)/neﬂ, exact |’ with reSPeCt
to the number of unknowns for both methods. The same relative
errors are plotted in Fig. 4(b) versus the degree (M = N) of the
method up to M = N = 30. Fig. 4 clearly demonstrates the
spectral convergence behavior with the relative error dropping
to on the order of 1072, For degrees greater than 22, the nu-
merical accuracy can no longer be improved due to the limiting

[De, 0 0
o . 0
L0 0 Deldyys
[De, 0 0
o . 0
L 0 0 Dy kxk

[ tr[Dna(0,0)](N41) x (N +1)
tr[Dne(1,0)] (N4 1) x (N +1)

L[ Dy (v,0) (V4 1) x (V1)
[ Doy 0,0) (N4+1) x (N +1)
Dy (1,0) (N1 x (N 41)

L tr[Dny(]W,O)](N-I—l) x(N+1)

tr[ Do) (N4 1) x (N41)
tr[Dye1,1) (v 1) (N+1)

tr[Dpe(v )l (V1) x (V11)

tr[Dny(ﬂ,l)](NH)x (N+1)
tr[Dny(l,l)](NH)x (N+1)

tr[Dyy )l (v1)x (V+1)

[ Dy (0,0) (N +1)x (N 41)
tr[Dye1 vl (N+1)x (V1)

tr[Dye (v, M (v 1) x (V1) | o
tr[Dyy 0,00 ](N4+1) < (N+1)
tr[Dyy 1,00l (V+1) < (N41)

[ Doy (0,00 (N4 1)x (V1) J ek
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TABLE I
CONVERGENCE CHARACTERISTICS OF THE EFFECTIVE INDEX OF THE FIBER
HE;; MODE CALCULATED BY THE PSFD-MS WITH THE DEGREE (M = N)
AND THE CORRESPONDING NUMBER OF UNKNOWNS

Nt (PSFD)

N  Unknowns Legendre Chebyshev

8 640 2.68425785982235  2.68448752730184
10 1000 2.68404624218251 2.68408412792738
12 1440 2.68402183077681 2.68402627781399
14 1960 2.68401951702626  2.68401992339789
16 2560 2.68401933446231 2.68401936474090
18 3240 2.68401932230318 2.68401932412803
20 4000 2.68401932163321 2.68401932170647
22 4840 2.68401932160825 2.68401932160645
24 5760 2.68401932160872 2.68401932160792
26 6760 2.68401932160928 2.68401932160907
28 7840 2.68401932160924 2.68401932160890
30 9000 2.68401932160906 2.68401932160913

=3
(S

%

=)
&

Legendre method
——— Chebyshev method

)

Relative error in effective index
S,

2 10‘3 4
Number of unknowns

(@)

................ Legendre method
——— Chebyshev method

Relative error in effective index

5 10 15 0 % 3
Degree (M=N)
(b)

Fig. 4. Relative error in the effective index of the HE;; mode of the optical
fiber as a function of (a) the number of unknowns and (b) the degree M = N
of the method.

factors such as truncation errors, possible numerical errors in
the transfinite blending function schemes, etc. Since the result
based on the Chebyshev method has better accuracy than that

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 44, NO. 1, JANUARY 2008

Fig. 5. Cross section of the classical rib waveguide along with the mesh and
domain division profile of the computational domain.

TABLE 11
CONVERGENCE CHARACTERISTICS OF THE EFFECTIVE INDEX OF THE
HY, MODE OF THE RIB WAVEGUIDE OF FIG. 5 WITH D = 0.5 pm
CALCULATED BY THE PSFD-MS

N Unknowns  n.g(PSFD)

6 1470 3.4133790030
9 3000 3.4131489900
11 4320 3.4131357766
13 5880 3.4131337513
15 7680 3.4131332450
17 9720 3.4131329949
18 10830  3.4131329350

based on the Legendre method, we will adopt the Chebyshev
method in the following cases.

Some information of the computer execution time is provided
here. Using a personal computer with the Intel Dual Core 4300
1.8-GHz CPU, the calculation with degree 14 takes 7 s and the
effective index agrees with the exact value up to the sixth digit
after the decimal point, referring to Table 1. With degree 20, it
takes 52 s and the agreement with the exact value becomes up
to the tenth digit. It is seen that for the PSFD calculation, the
accuracy up to the sixth digit is easily achieved with seconds in
personal computers. Such accuracy might not even be obtain-
able using a simple finite-difference algorithm due to saturation
in numerical convergence.

B. Rib Waveguide: A Classical Benchmark Problem

We then use the Chebyshev PSFD-MS to analyze the rib
waveguide with the cross section as shown in Fig. 5 along with
the domain and mesh division profile. We only need to con-
sider half of the cross section due to the symmetry of the mode
field. The computational domain is arranged to have 15 sub-
domains and the mesh pattern of each subdomain shown is for
M = N = 7. This waveguide structure has long been a bench-
mark problem [2], [15]. We assume the same parameters as in
[2] and [15]: the rib width W = 3.0 um, H + D = 1.0 ym
with D varying from O to 0.7 pum, the refractive indexes of

Authorized licensed use limited to: National Taiwan University. Downloaded on February 4, 2009 at 02:27 from IEEE Xplore. Restrictions apply.



CHIANG et al.: FULL-VECTORIAL OPTICAL WAVEGUIDE MODE SOLVERS

63

TABLE III
CALCULATED EFFECTIVE INDEXES AND NORMALIZED PROPAGATION CONSTANTS OF THE H}, MODE OF THE RIB WAVEGUIDE OF FIG. 5 FROM [2], [15]
AND THE DEGREE-17 PSFD-MS

D (pm) net 2] na(PSFD) B [2] B (PSED) [ (1
0.0 3.412022 £2 x 1075  3.41202174 0.2993206 0.2993141 -
0.1 3.412126 £2 x 1076 3.41212624 0.3019146 0.3019208 0.3019
0.2 3.412279 £2 x 1076 3.41227932 0.3057308 0.3057390 -
0.3 3.412492 £2 x 1076 341249272 0.3110440 0.3110621 0.3110
0.4 3.412774 £2 x 1076 3.41277513 0.3180788 0.3181072 -
0.5 3.413132 £3 x 1075 341313299 0.3270104 0.3270352 0.3270
0.6 3.413571 £3 x 1075 3.41357166 0.3379640 0.3379807 -
0.7 3.414100 £3 x 1076 3.41409997 0.3511652 0.3511645 0.3512
y TABLE IV
A CALCULATED NORMALIZED PROPAGATION CONSTANTS OF THE Hf, MODE
— OF THE RIB WAVEGUIDE OF FIG. 5 FROM [15] AND THE PSFD-MS USING
DEGREES 9 AND 17
D(um) J[15] B(PSFD, N =9) B(PSFD, N = 17)
0.0 - 0.2653237 0.2652745
0.1 0.2674 0.2674715 0.2674483
0.2 - 0.2706553 0.2706354
0.3 0.2751 0.2751511 0.2751333
0.4 - 0.2812039 0.2811860
0.5 0.2890 0.2890110 0.2889903
LT 0.6 - 0.2987571 0.2987316
L+ 0.7 0.3107 0.3107102 0.3106792
N X Tt is seen that the agreement between [2] and this work is up
' Nejag to the fourth digit after the decimal point in 3 except for the

= 2d g

Fig. 6. Cross section of the fused fiber coupler along with the mesh and domain
division profile of the computational domain.

the cover n., the guiding layer n,, and the substrate n, being
1.0, 3.44, and 3.4, respectively, and the operating wavelength
A = 1.15 pm. We take the parameters for the computational
domain to be R = 3.0 pm, C = 1.0 pm, and S = 5.0 pm and
assume zero boundary condition at the three outer boundaries.
First, by taking D = 0.5 pm, we compute the effective index
of the HY; mode for different degrees (M = N) and the re-
sults are listed in Table II along with the corresponding num-
bers of unknowns. It is observed that we have converged seventh
digit after the decimal point when M = N = 17 is employed.
Then, we compare our degree-17 results for different values of
D with those obtained in [2] using a full-vector waveguide so-
lution algorithm based on high-accuracy finite-difference equa-
tions derived for fields satisfying correct boundary conditions
at the dielectric corner, as shown in Table III. It is seen that our
results confirm the 1076 accuracy in the effective index claimed
in [2]. Please note that the calculation in [2] involved 152 x 140
uniform grids and our degree-17 calculation is with 4860 grids
(half the number of unknowns). Also listed in Table III are the
corresponding values of the normalized propagation constant
defined as 3 = (n2g — n2)/(n2 — n2) for comparison with
those given in [15] obtained using the modal transverse reso-
nance method (MTRM) [15], [16]. The four-digit values for 3
from the MTRM were believed to be exact as stated in [15].

D = 0.4 um case for which, however, the difference is only
smaller than 3 x 1072, The results of [15] appear to have 10~*
difference for D = 0.7 pum. Finally, we present in Table IV our
(3 results for the H%; mode for degree-9 and degree-17 calcu-
lations and those from [15]. Such results were not given in [2].
It is seen that the four-digit values of [15] agree with our de-
gree-9 results. However, the fourth digit may vary a little in the
degree-17 calculation.

C. Fused Fiber Coupler: Robust Form Birefringence
Calculation

The fused coupler made of two optical fibers [17] is an im-
portant device in optical systems, and through elaborate de-
sign, it can be manufactured as a power splitter, a polarization
beamsplitter, and other devices [18]. The polarization-depen-
dent functions of the coupler can involve beating among the first
four vector modes: the lowest order even and odd modes of two
orthogonal polarizations. The full-vector modal characteristics,
including the propagation constants, the coupling coefficients,
and the form birefringence, of the fused coupler have been care-
fully studied by employing the surface integral equation method
(SIEM) [19] and more recently by the improved finite-differ-
ence mode solver [3]. Here we demonstrate the efficiency of
the PSFD-MS in the analysis of such coupler device. The cross
section of the fused coupler is as shown in Fig. 6, again along
with the domain and mesh division profile. The computational
domain requires only one quarter of the dumbbell-shaped cross
section, which is arranged to have five subdomains. The material
and geometrical parameters considered, as those used in [3] and
[19], are as follows: the core index n., = 1.45, the cladding
index nca.qa = 1, and the aspect ratio 2d/2r = 1.8, where r
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TABLE V
CONVERGENCE CHARACTERISTICS OF THE PROPAGATION CONSTANTS OF THE FIRST FOUR MODES OF THE FUSED FIBER COUPLER OF FIG. 6 CALCULATED BY
THE PSFD-MS

N Unknowns (2,, (um™)

'Bgr;en (:“‘In_l)

Bgaa (pm™") oy (pm~")

8 810 5.979488240  5.979444786  5.978373503 5.978354333
10 1210 5.979416388  5.979386567 5.978302901 5.978288058
12 1690 5.979382184  5.979359121 5.978266694 5.978254251
14 2250 5.979365723  5.979346036 5.978247616 5.978236431
16 2890 5.979358018  5.979339978  5.978237588 5.978227034
18 3610 5.979354588  5.979337310  5.978232419 5.978222169
20 4000 5.979353156  5.979336204 5.978229827 5.978219720
22 5290 5.979352610  5.979335782  5.978228566 5.978218526
24 6250 5.979352431  5.979335641 5.978227973 5.978217963
26 7290 5.979352394  5.979335610 5.978227702 5.978217706
28 8410 5.979352405  5.979335617  5.978227583 5.978217592
30 9610 5.979352428  5.979335634 5.978227531 5.978217544
TABLE VI

CONVERGENCE CHARACTERISTICS OF THE NORMALIZED COUPLING
COEFFICIENTS AND FORM BIREFRINGENCE OF THE FUSED FIBER COUPLER OF
FIG. 6 CALCULATED BY THE PSFD-MS

N Unknowns rC, rC, B

8 810 0.006433437 0.006293286 2.6098738
10 1210 0.006426221 0.006339782 1.6096498
12 1690 0.006437782 0.006376493 1.1413135
14 2250 0.006452891 0.006403821 0.9137603
16 2890 0.006466293 0.006423089 0.8045461
18 3610 0.006476329 0.006435767 0.7553206
20 4000 0.006483029 0.006443523 0.7356757
22 5290 0.006487148 0.006447974 0.7294754
24 6250 0.006489541 0.006450413 0.7286321
26 7290 0.006490890 0.006451716 0.7294895
28 8410 0.006491645 0.006452411 0.7306091
30 9610 0.006492074  0.006452790 0.7315389

is the radius of the individual core. The operating wavelength
is A = 1.523 um, corresponding to the normalized frequency
V = (2n/A)-r-/n2, — n?,, = 50. This is a strongly guiding
structure and zero boundary condition is used at the two outer
boundaries of the computational domain, which have widths
2.08d and 1.64d, respectively.

The lowest order even and odd modes of = and y polarizations
have the propagation constants denoted as 3%...., B%en> Boaas
and ﬂg 4q» Where the even (odd) mode has its main magnetic field
component symmetrical (antisymmetrical) about the y axis, and
the polarization direction is as usual defined as the main direc-
tion of the electric field. The coupling coefficient of ¢ polariza-
tion modes, C; (i = z ory), is definedas C; = (Bi,.,— B 44)/2
and the form birefringence is defined as B = (rV?/A3%/?)(C, —
C,) with A = (nZ, — n?,,)/2n2,. The coupling coefficient
determines the coupling strength of the coupler and the form
birefringence plays an important role in the polarization split-
ting behavior [19]. Since the form birefringence is proportional
to (C, — Cy) which is a very small quantity, its accurate cac-
ulation has been quite challenging. In [3], which improved the
finite-difference mode solution algorithm by carefully treating
dielectric interface conditions, nonuniform division scheme was
utilized with denser grids near the sharp dielectric corner of
the dumbbell-shaped cross section. Similar nonuniform divi-
sion of the core-cladding boundary near the corner was also em-
ployed in the SIEM [19] for improving the efficiency of compu-

tation. With a 437 x 297 grid mesh, the converged normalized
propagation constants of the first four modes obtained in [3]
are (3%, = 5.97935269 pm~', BY.. = 5.97933570 pm~*,

T4 = 5.97822762 pm~!, and 3%, = 5.97821760 pm~*.
(Please note that what listed in [3, Table I] should be normal-
ized propagation conatant values.) The corresponding normal-
ized coupling coefficients and the form birefringence are rC,, =
0.0064930, rCy = 0.0064528, and B = 0.7491.

Our PSFD-MS results for different degrees (M = N) and
the corresponding numbers of unknowns are shown in Tables V
and VI. For degree 30, the number of unknowns is 9610, and
the calculated propagation constants agree with those from [3]
given above up to the seventh significant digit. The agreement in
rC, and rC, with [3] is up to the third significant digit. As for
the form birefringence, we obtain B = 0.7315, compared with
B = 0.7491 in [3] (and B = 0.7276 in [19]). Please note that
the number of unknowns in [3] has been up to 2 x 437 x 297
but, as mentioned in [3], the form birefringence still does not
reach a stable value (which is still decreasing) as the number
of divisons increase although the propagation constants con-
verge. However, from Table VI, we are quite confident that the
B value is around 0.73 and such close-to-convergence value can
be reached with about 5000 unknowns, showing the robustness
of the PSFD calculation.

VI. CONCLUSION

We have proposed and formulated a new full-vectorial op-
tical waveguide mode solution method for waveguides with
arbitrary step-index profile based on multidomain pseudospec-
tral methods and name it the PSFD-MS. The method has
been described under the H,.-H, formulation, in which the
Helmholtz equations for the two transverse magnetic field com-
ponents are solved. The spatial derivatives of the Helmholtz
equations are approximated at collocation points by utilizing
Legendre-Lagrange (as the Legendre collocation method) or
Chebyshev-Lagrange (as the Chebyshev collocation method)
interpolating polynomials, and a matrix eigenvalue equation
is established with ﬂ2 as the eigenvalue, which is solved for
the eigenmodes by the shift inverse power method. Through
the multidomain approach and a curvilinear coordinate map-
ping technique for transforming each curvilinear quadrilateral
subdomain into a square one, the computational domain can
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be flexibly divided into suitable number of subdomains to fit
general curved interfaces of the refractive-index profile and
to facilitate imposing the alternative Dirichlet and Neumann
types of boundary conditions across the dielectric interfaces
and between adjacent subdomains. Three numerical examples
have been presented. The analysis of the fundamental mode
of the optical fiber demonstrated the spectral accuracy of the
PSFD-MS with the relative error in the effective index as
small as on the order of 10712, The analysis results for the
classical rib waveguide benchmark problem were found to
agree excellently with existing high-accuracy ones. And the
analysis of the fused fiber coupler showed the robustness of
the PSFD-MS in calculating the form birefingence value. The
achieved high numerical accuracy is attributed to the inherent
high-order scheme of the pseudospectral method with superior
convergence behavior due to the specially located collocation
points and the rigorous fulfillment of the continuity conditions
across the curved dielectric interfaces. Therefore, for a numer-
ical accuracy wanted (the number of accurate digits required),
the PSFD-MS will require much less number of unknowns as
compared with conventional finite-difference methods, as has
been evidenced in the fused coupler example. The PSFD-MS
can be easily generalized for treating the leaky waveguide
problems by incorporating perfectly matched layer (PML) ab-
sorbing boundary conditions [20] into the formulation, as was
done in [21] for the finite-difference solver. The preliminary
results have recently been reported in [22].
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