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Abstract
Based on the photoelastic effect, the strain distribution within a corrugated
long period fibre grating (LPFG) subjected to tensile stress and twisting will
cause a periodic index variation, which may result in resonant couplings
between fibre core and cladding modes. The resonance wavelength
corresponding to the peak loss is directly sensitive to the torsional angle per
unit length; thus a novel torsion sensor can be made from the corrugated
long period fibre grating. We also present a phenomenological theory based
on the scattering matrix formalism to qualitatively explain the mode
coupling behaviour in the corrugated grating.

Keywords: strain, torsion, fibre grating, mode coupling, corrugated structure,
fibre sensor

1. Introduction

Numerous solutions for measuring the applied torque
necessary for twisting a shaft have been proposed. In most
of these methods one must first obtain the torsion angle by
measuring the difference of arc shifts from two position sensors
mounted on the shaft; the measured angle is then related
to the applied torque. Such sensors, which have generally
been developed with optical rotary encoders or magnetic ones,
require high precision in the detection of displacement for the
torque measurement [1]. Therefore, a sensor that can directly
detect the torsion angle instead of making use of two position
sensors is attractive.

Grating-based fibre sensors are simple, intrinsic and have
all the advantages normally attributed to fibre sensors, such
as electrically passive operation, immunity to electromagnetic
radiation, high sensitivity and multiplexing capability [2]. For
example, a fibre Bragg grating (FBG) has recently been used as
a sensor to measure torsion [3]. However, this type of torsion
sensor has to be bonded onto the surface of a shaft. When
the shaft is twisted, the strain components are induced within
the FBG along the fibre axis and the Bragg wavelength will
shift accordingly. The amount of torsion can be measured
indirectly by detecting the Bragg wavelength shift. Other
fibre grating sensors are based on the long-period fibre grating
(LPFG), which couples light from the core mode to cladding
modes [4], and are more sensitive to the environment. Various

applications for sensing temperature, strain, refractive index
and bending curvature based on the use of LPFGs have been
reported [5–7]. However, when conventional LPFGs are
twisted, little index perturbation is induced because the fibre
structure is uniform. Thus, no torsion sensor based on a LPFG,
which is directly sensitive to the applied torsion, has been
reported so far. In this paper, we describe a new type of LPFG
made of a corrugated structure over which a periodic strain
distribution is created under external mechanical forces such
as tensile stress and torsion. Owing to the photoelastic effect,
the strain distribution will cause a periodic variation in index
and result in mode couplings between the fundamental core
mode and the forward-propagating cladding modes. The strain
distribution established under mechanical equilibrium will
influence the peak transmission loss and the phase-matching
condition; thus the corrugated LPFG is sensitive to the external
stresses and can act as a novel tensile strain and torsion sensor.
We experimentally demonstrate the unique characteristics of a
corrugated LPFG suitable as a torsion sensor. We also present
a phenomenological theory which is based on the scattering
matrix formalism. Since the index perturbations caused by
the stress or twist are small, we may expand the scattering
coefficients in power series of these small parameters. The
physical meaning of these expansion coefficients and their
relation to the experimental results are discussed. Under the
approximation that the backward reflections are negligible,
as is also observed in experiments, a set of forward transfer
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Λ = 400 µm
 

Figure 1. A photomicrograph of a partial section of the corrugated
LPFG.
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Figure 2. A schematic diagram of a corrugated LPFG and its
measurement set-up.

matrices can be used to describe the mode couplings. We
also derive a formula for the transmission loss at the phase-
matched wavelength. The rest of the paper is arranged as
follows. In section 2, the experimental results of such sensors
for measuring tensile strain and the twist rate are reported. A
phenomenological theory is presented in section 3 to explain
the principle of coupling between the core and cladding modes
through the corrugated structure. Finally, we present our
conclusions.

2. Experiments

A dispersion-shifted fibre (DSF) with an original cladding
radius ru of 62.5 µm is used. The corrugated structure is
built by etching a pre-patterned fibre using hydrofluoric acid
solution [8]. The photomicrograph shown in figure 1 is a partial
section of the corrugated LPFG, which has a period of � �
400 µm, a total length of lg ∼ 16 mm and an etched diameter
2re of about 60 µm controlled by the etching time. The
experimental set-up for characterizing the corrugated LPFG
in sensing tensile strain and torsion is depicted in figure 2.
A tensile force and an external torsion torque are applied to
induce an average tensile strain s = dL/L and an average
twisting rate τ = 2πN/L (rad m−1), respectively. Here dL
andN are the total elongation and the number of torsional turns
over the distanceL between the fixed and the stretching points.
Since under mechanical equilibrium the induced tensile strain
is inversely proportional to the cross-sectional area, we have
the following expressions for strains between the unetched and
etched regions

se = (ru/re)2su (1)

where we use the subscripts u and e to denote quantities
corresponding to the unetched and etched regions. The total
elongation dlg over the length of the corrugated fibre lg is

dlg = lg

2
(su + se) = lg

2

[
1 +

(
ru

re

)2
]
su.

The measured mean strain, s, over the total length of fibre is

s ≡ dL

L
= 1

L

[(
L− lg

2

)
su +

lg

2
se

]

=
{

1 +
lg

2L

[(
ru

re

)2

− 1

]}
su.

The mean strain over the length of corrugated fibre sg ≡ dlg/ lg
is thus related to the measured value s as follows:

sg = (ru/re)
2 + 1

2 + (lg/L)[(ru/re)2 − 1]

dL

L

≡ Qss (2)

where we introduced a geometry enhancement factor for strain
Qs . Similarly, for a uniform fibre under fixed torsion, the
twisting rate is inversely proportional to the fourth power of
the cladding radius; thus we have

τe = f (ru/re)4τu. (3)

In the above expression, a factor f is introduced to account for
the enhancement due to the effect of the concentration of stress
around the discontinuities. Similarly the mean twisting rate τg
over the length of corrugated fibre is related to the measured
value as follows:

τg = f (ru/re)
4 + 1

2 + (lg/L)[f (ru/re)4 − 1]
τ

≡ Qττ. (4)

A geometry enhancement factor for torsion Qτ is introduced
in the above expression. To have precise control over the
adjustment of τ and dL/L, L is set as long as 1 m owing to
the limited precision of our mechanical stages. Since the total
lengthL is much larger than the length of corrugated grating lg
in this set-up, the strain and twisting rate within the unetched
region are almost identical to the measured values,

su ∼= s = dL/L

τu ∼= τ = 2πN/L (L� lg).

The geometry enhancement factorsQs andQτ for the current
structure are 2.67 and 9.9, respectively (f is assumed to be 1
for Qτ ). A broadband light source and an optical spectrum
analyser are used for the measurement of spectral behaviours
and power variations.

A typical spectral response of the corrugated LPFG under
increasing applied strain dL/L without twisting is shown
in figure 3. One resonant coupling mode resulting from
the corrugated LPFG is observed in the wavelength range
and its transmission loss at the resonance peak increases
with the applied strain. Note that, from figure 3, the peak
resonance wavelengths are always obtained at a nearly fixed
wavelength regardless of the strain. This characteristic is very
distinct from that of the conventional LPFGs which exhibit a
considerable amount of wavelength shift during the growth
of index modulation [9]. To measure the dependence of
the transmission loss on tensile strain, we increase the strain
by a small step (�45 µstrain) and measure the ratio of the
transmitted power Pt to the initial power P0 at the peak
resonance wavelength (�1279 nm). The measured result is
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Figure 3. The evolution of transmission spectra of a corrugated
LPFG when purely tensile strains are applied.
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Figure 4. (a) The measured peak transmission loss versus applied
tensile strain of the corrugated LPFGs. (b) The calculated
dependence of the transmission loss on the applied tensile strain
obtained by using equation (13) in section 3.

shown in figure 4. A strain gauge factor, an indicator of the
sensitivity of the sensor, is defined as (1 − Pt/P0)/(dL/L).
The measured strain gauge factor of the corrugated LPFG
sensor is found to be about 1300 in the linear region. Since the
strain gauge factor is dependent on the geometry parameters
which are determined by the fabrication and experimental set-
up (cf equation (2)), it should be normalized by the geometry
enhancement factor Qs . A value of about 440 is obtained for
the corrugated LPFG, which is even more sensitive than those
reported before [5, 9].
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Figure 5. (a) The evolution of transmission spectra of the torsion
sensor. (b) The measured peak resonant wavelength versus applied
twisting rates

From figure 3, it can be seen that there is very weak
resonant mode coupling for a corrugated LPFG when neither
tensile strain nor torsion is applied. This implies that, to
characterize the shift in resonance wavelength owing to the
effect of torsion, the corrugated LPFG needs to be loaded with
a pre-tensile strain for an initial resonant mode coupling. In
measurements, therefore, the fibre is applied with a fixed pre-
tensile strain (�600 µstrain) and twisted by rotating one end
with the other end fixed. A typical spectral evolution for the
corrugated LPFG with increasing twisting rate is shown in
figure 5(a). Apart from the change in the resonant loss, the
resonance wavelength shifts toward the shorter wavelength
side. For comparison, we also do a similar torsion experiment
on a conventional LPFG and observe no obvious change in
transmission spectrum even when the twisting rate is doubled.
Therefore, such a unique characteristic making this system
applicable as a torsion sensor can mainly be attributed to the
corrugated structure.

As shown in figure 5(b), by measuring the peak resonance
wavelength in figure 5(a), the intrinsic sensitivity of the torsion
sensor is found to be about 0.036 nm rad−1 m after being
normalized with respect to the geometry enhancement factor
Qτ (cf equation (4)). In figure 3, it has been shown that
the peak resonance wavelengths are always obtained at a
nearly fixed wavelength under purely tensile strain. Now,
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Figure 6. The evolution of transmission spectra of the corrugated
LPFG when three different twisting rates combined with increasing
tensile strains are applied.

the evolutions of transmission spectra of the LPFG at three
different fixed twisting rates with increasing tensile force are
shown in figure 6. It is seen that the shift in resonance
wavelength is almost entirely determined by the twisting rate
regardless of the amount of tensile strain.

The measured temperature dependence of the fibre sensor
is less than +0.05 nm ◦C−1, which is similar to that of a
conventional LPFG [5], implying that the thermal stresses
induced by a change in temperature have little dependence
on the diameter of the fibre [10]. Note that, for practical
applications, it is necessary to compensate for the effect of
the ambient temperature. Since a conventional uniform fibre
grating is insensitive to torsional stress, it can function as a
temperature sensor when it is combined with our corrugated
LPFG to make one fibre device. Thus, the wavelength shift
resulting from a pure twist can be separated from the thermal
one.

In principle, the torsion fibre sensor in line form may be
implemented in the following ways. The torsion shaft to be
measured is implanted with the corrugated fibre sensor which
is free of contact with the shaft in order to avoid unnecessary
stresses. Then the fibre is fixed with pre-tensile strain on both
ends of the shaft. In this way, the twisting rate of the shaft is the
same as that of the fibre sensor. Another way is to fix the pre-
stressed fibre device with the centres of two stiff discs at both
ends. Both discs are coaxial with the shaft. One disc is fixed,
but the other is connected to the rotating shaft. When the shaft
is twisted, the fibre device is also subjected to the same torsion
angle at the connection and acts as a torsion angle sensor. So,
the twisting rate of the shaft can be detected as the measured
one of the fibre device multiplied by the ratio of the length of
the shaft to that of the fibre device. Since the sensing length of
the fibre device may be just a few centimetres, which is much
less than that of the shaft in most cases, the sensitivity of our
torsion sensor constructed in the latter way should be great
enough for engineering purposes.

It should be mentioned that the measurement results on
the sensitivities to strain and the twisting rate are reproducible,
Also, no measurable degradation is detected within the
measuring ranges.

3. A phenomenological theory

Conventionally, the coupled-mode theory (CMT) [4, 11] is
used to describe the interactions between waveguide modes
when there is a longitudinal perturbation within the guide.
However, in the case of a corrugated LPFG, the etching depth
is so large that the corrugated structure cannot be regarded
as a perturbation. Owing to the discontinuities of the guiding
structure between the etched and unetched regions, a wavefield
incident on the hetero-interface would excite many other
guiding as well as radiation modes. We shall use the scattering
matrix method [12, 13] to describe mode couplings at these
discontinuities. Let the scattering coefficients rij and tij be
the amplitude ratios of the backward- and forward-propagating
mode j excited by a wavefield of mode i incident on the hetero-
interface from the unetched to the etched region. The periods of
the grating are designed to allow resonant couplings between
the fundamental core mode and cladding modes of the first
few radial orders; for the fibre used in our experiment these
modes are relatively centrally confined. For the application
of the corrugated LPFGs as tensile and torsion sensors, we
mainly consider resonant two-mode couplings between the
fundamental core mode and a chosen phase-matched cladding
mode. From our experimental measurement, the reflection
coefficients are much smaller than the transmission ones for
the modes under consideration, thus we may neglect them
in the following discussion. Similarly, we let t ′ij be the
corresponding transmission coefficients for incidence from the
etched region to the unetched region. The exact calculation
of the transmission coefficients is sophisticated and usually
requires solving large linear equations or other methods of
simplification. However, in the following, we shall develop
a phenomenological theory to describe the resonant coupling
behaviour of such a corrugated LPFG.

Because the corrugated LPFG is under torsion, we use the
following dimensionless parameter to characterize the twisting
rate τ .

� = τ�(0) = 2πN�(0)/L (5)

where �(0) is the period of the unstrained grating. From
equations (1) and (3), the strains and twisting rates within the
unetched and etched regions are different due to the difference
in radius of cladding. Through the photoelastic effect, different
index perturbations are induced within these two regions.
The modal properties of these two regions are thus perturbed
according to the corresponding index changes and the resultant
mode mismatch will also contribute to mode couplings apart
from that due to the discontinuous interface. The transmission
coefficients are thus dependent on the applied stress, either
tensile force or torsion, and we may expand the transmission
coefficients perturbatively in Taylor series of the corresponding
parameters as follows (i, j = co, cl):

tij (s,�) = t (0)ij + a(1)ij s + a(2)ij s
2 + · · ·

+b(1)ij � + b(2)ij �
2 + · · ·

+c(2)ij �s + · · · (6)

where aij and bij are the corresponding expansion parameters
for the tensile strain and twisting rate, whereas cij accounts for
the combined effect of twisting and strain on the transmission
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coefficient. The importance of this cross term is evident from
the results in figure 6, which shows the dependence of the
transmission loss on the applied strain for three twisting rates.
It is expected that all these expansion coefficients except the
zeroth term decrease as the cladding ratio ru/re tends to unity,
corresponding to a uniform fibre structure. The zeroth order
terms t (0)ij represent the intrinsic transmission coefficients of the
corrugated structure, while the higher order terms are due to the
index perturbations caused by the induced difference in strain.
As described in section 2, the measured transmission loss of
the corrugated LPFG without any external stress is fairly small;
therefore, we have the following properties for the zeroth-order
terms:

t
(0)
co−co ∼= t (0)cl−cl ∼= 1 t

(0)
co−cl, t

(0)
cl−co 
 t

(0)
co−co, t

(0)
cl−cl . (7)

This can be attributed to the similarities of the coupled modes
under consideration, i.e. the mode fields belonging to the
two regions have similar profiles, nodal points, etc. In
addition, from the perturbation theory, the first-order terms
of self-transmission coefficients are also very small; this is
because they are related to the zeroth-order terms of the cross-
transmission coefficients t (0)co−cl and t (0)cl−co from the perturbation
theory [15]. We shall first discuss the dependence of the
transmission loss on the external stress. As described in
section 2, the main contribution to the loss is from the
difference in tensile strain between the two regions. Thus,
for the sake of clarity, we shall consider the effects of tensile
strain on the transmission loss. Under such an approximation,
we have for the transmission coefficients

tco−co ∼= t (0)co−co + a(2)co−cos
2 ≡ tco(1 − αcos2)

tcl−cl ∼= t (0)cl−cl + a(2)cl−cls
2 ≡ tcl(1 − αcls2)

tcl−co ∼= a(1)cl−cos ≡ γ s
tco−cl ∼= a(1)co−cls ≡ −γ ′s. (8)

Here we keep terms up to the first order in strain s; the inclusion
of the second-order terms αs2 is due to field renormalization
of perturbation and is required for the conservation of power
consistently with the second-order expansion [15]. By
neglecting reflections, the transmission coefficients t ′ij are the
transpose of tij [14], i.e.

t ′ij = tj i (i, j = co, cl). (9)

On the basis of these results, a set of forward transfer matrices
[14, 15] can be used to describe the coupling behaviour of the
corrugated LPFG as detailed in the appendix. We now consider
the phase-matching condition. Let the propagation constants
of mode j in the unetched and etched regions be βu,j and βe,j ,
respectively. The optical phase differences (OPDs) between
the core and cladding modes through the unetched and etched
regions are denoted  u and  e, respectively, and are given as
follows:

 u = (βu,co − βu,cl)�u  e = (βe,co − βe,cl)�e (10)

The phase-matching condition, which corresponds to the in-
phase couplings through each period, is given by [15]

 =  u + e = 2π (11)

where is the total OPD through a period, which is obviously
also a function of the applied tensile strain s and the twisting
rate � . Assuming that �u = �e = �/2, as used in our
experiment, the phase-matching condition can be written as

β̄co − β̄cl − 2π/� = 0 (12)

where β̄j = (βu,j + βe,j )/2 (j = co, cl) is the averaged
propagation constant of mode j . As derived in the
appendix, we have the following formula for the phase-
matched transmission loss:

T (s) =
∣∣∣∣A(s) sin[Nφ(s)] − sin[(N − 1)φ(s)]

sin[φ(s)]

∣∣∣∣
2

(13)

where the functions A(s) and φ(s) are given in the appendix.
In figure 4(b), we show the calculated dependence of the
transmission loss on the applied tensile strain by using
the above expression for comparison with the experiment;
qualitative agreement between them can be seen.

As shown in section 2, the resonance wavelength is
strongly influenced by the applied twisting rate. In order to
investigate the dependence of the phase-matching condition
on the applied stresses, we may also expand the OPD,  , into
a Taylor series by using the small parameters s and� :

 ∼=  (0) + (a)s + (b)� (14)

where  (a) and  (b) are the first-order expansion coefficients
of the tensile strain and torsion, respectively. There are
two contributions to the strain coefficient  (a). One is the
difference between corrections of propagation constants due
to the strain-induced changes in index for the two modes,
which are also termed self-couplings in the formulation of
coupled-mode theory. In the case of a corrugated LPFG, the
self-coupling constant of the cladding mode due to the strain-
induced index perturbation is comparable to that of the core
mode. This is because the index perturbation is not confined
exclusively to the core of the fibre as in conventional photo-
induced LPFGs [8]. The other contribution to  (a) is the
geometrical elongation of the period. As can be seen from the
transmission spectra in section 2, the resonance wavelength
hardly shifts as the strain is increased. This indicates that the
first-order term  (a) is very small, which can be attributed to
the fact that these two contributions cancel out.

We are now considering the influence of torque on the
phase-matching condition. For twist operation, the period
remains almost fixed, while the twisting-induced change in
index will modify the corresponding transmission coefficients
and propagation constants. From the experiments, it is shown
that twisting will contribute equally to the cross-transmission
coefficients tco−cl and tcl−co, which also increases the resonance
loss as shown in figure 5(a). This contribution to the
transmission loss is included in the coefficients bij and cij cross
term in the expansion of the transmission coefficients tij and
can be treated similarly to the case of tensile stress. In addition,
the twisting will significantly modify the phase-matching
condition. Since the period can be regarded as unchanged for
a given tensile strain, the corresponding expansion coefficient
corresponding to twisting is given as

� (b) = ( βu,co − βu,cl)�u + ( βe,co − βe,cl)�e. (15)
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Here �u and �e are the lengths of the two regions under a
fixed tensile strain. The correction to the propagation constant
is related to the corresponding self-coupling constant by

 βr,j = �κr,j (r = u, e; j = co, cl) (16)

where we have defined κr,co and κr,cl as the twisting-induced
self-coupling constants of the core and cladding modes in
region r , respectively. As a result, the expansion coefficient
 (b) can be expressed as

 (b) = (κu,co − κu,cl)�u + (κe,co − κe,cl)�e
≡ (κ̄co − κ̄cl)� (17)

where we have defined the averaged self-coupling constants
over the period. Owing to the discontinuities between the
etched and unetched regions, the twisting-induced strains are
mainly distributed in the cladding region, so we have κ̄cl > κ̄co.
By substituting (14) and (15) into (11), we have for the
resonance wavelength

λres = (n̄co − n̄cl)�
1 +�(κ̄cl − κ̄co)�/(2π) (18)

where n̄co and n̄cl are the average effective indices of core
and cladding modes in the two regions, respectively. As can
be seen from the above expression, the resonance wavelength
will shift towards the shorter side when the corrugated LPFG
is subjected to twisting. From the above discussions of  (a)

and  (b), it can be concluded that the coefficient | (b)| is
much larger than  (a). Thus, from equation (14), the shift
in resonance wavelength resulting from the change of OPD,
 , is dominated by the twisting rate even when twisting is
combined with increasing tensile strain, as shown in figure 6.

4. Conclusion

By using the corrugated fibre structure and the photoelastic
effect, besides having a tensile strain fibre sensor, we have
developed a new technique for making a torsion fibre sensor
whose peak resonance wavelength decreases with the applied
torsional angle. To the best of our knowledge, this is the first
torsion sensor based on the direct detection of the wavelength
shift uniquely possessed by the corrugated LPFGs in line form
with the advantages of micro-element, electrically passive
operation and immunity to electromagnetic radiation. We
also present a phenomenological theory, which is based on the
scattering matrix formalism, to explain the coupling behaviour
between the core and cladding modes in the corrugated fibre
with discontinuities of the guiding structure.
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Appendix

We will use a transfer-matrix approach to describe the mode
couplings through the corrugated LPFG using the transmission
coefficients outlined in section 3. Here we consider resonant
two-mode coupling and neglect the contributions of backward-
propagating modes. We use a column vector to represent
the amplitudes of the core and cladding modes as Ar =
[Ar,coAr,cl]T (r = u, e). Then the couplings of the amplitudes
when the wavefield crosses the interface from the unetched to
the etched region can be expressed as Ae = F1(s)Au where
the interface matrix is given by

F1(s) =
[
tco(1 − αcos2) γ s

−γ ′s tcl(1 − αcls2)

]
(A1)

and similarly for crossing from the etched to the unetched
region, we have with Au = F2(s)Ae

F2(s) =
[
tco(1 − αcos2) −γ ′s

γ s tcl(1 − αcls2)

]
. (A2)

For free propagation through the separate regions, the
amplitudes only have a phase shift and can be described by
two phase-shift matrices as

Pu(s) =
[

exp(i u/2) 0
0 exp(−i u/2)

]
(A3)

for the unetched region and

Pe(s) =
[

exp(i e/2) 0
0 exp(−i e/2)

]
(A4)

for the etched region;  u and  e are given in equation (10).
The transfer matrix of a unit period is given by the following
product:

F = F1PuF2Pe. (A5)

Under the phase-matching condition (11), the phase
differences of the two regions can be expressed as

 u = π + ε  e = π − ε. (A6)

where ε 
 π representing the difference between the two
OPDs under the phase-matching condition. Then the phase
matrices take the following forms:

Pu =
[

eiε/2 0
0 −e−iε/2

]
(A7)

and

Pe =
[

e−iε/2 0
0 −eiε/2

]
. (A8)

By substituting these expressions into (A5), we obtain the
transfer matrix of a unit period

F(s) =
[
A(s) B(s)

C(s) D(s)

]
(A9)

with the following matrix elements

A(s) = t2co − s2(2αcot
2
co + γ 2eiε)

B(s) = +s(tcoγ
′ eiε + tclγ )
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C(s) = −s(tcoγ ′ + tclγ e−iε)

D(s) = t2cl − s2(2αclt
2
cl + γ ′2 eiε). (A10)

For a corrugated LPFG with periods, the total transfer matrix
is given by the well known Chebyshev identity [15, 16]

FN =
[ A sin(Nφ)−sin[(N−1)φ]

sin(φ) B
sin(Nφ)
sin(φ)

C
sin(Nφ)
sin(φ)

D sin(Nφ)−sin[(N−1)φ]
sin(φ)

]
(A11)

where the parameter φ(s) is given by

φ(s) = cos−1

(
A(s) +D(s)

2

)
. (A12)

The core transmission amplitude is given from (A10) by the
matrix element [FN ]11 which is related to the transmission loss
of the corrugated LPFG.
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