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An approach is presented to the design of binary long-period fiber grating (LPFG) filters based on the
Gel’fand–Levitan–Marchenko (GLM) inverse-scattering method and genetic algorithm optimization. The
nonuniform coupling strength of the binary grating can be realized by varying the local duty ratio. A coupled-
mode theory combined with the Poisson sum formula for treating the binary index perturbation is developed
for the application of the GLM synthesis method. Since the coupled-mode theory, which smears out the dis-
crete coupling nature, can be regarded only as an approximation to the modeling of a binary LPFG, we use
instead the transfer-matrix model to analyze the coupling behavior of a nonuniform binary LPFG. Based on
the synthesized grating patterns from the GLM method, a real-coded genetic algorithm with the transfer-
matrix model is used to compensate for the discrepancies resulting from use of the coupled-mode theory and to
optimize the design. We exemplify the above procedure by designing a flatband LPFG filter and a high-
visibility all-fiber Mach–Zehnder filter. © 2002 Optical Society of America

OCIS codes: 050.2770, 060.2310, 060.2340.
1. INTRODUCTION
A long-period fiber grating (LPFG) provides transmission-
type loss filters by coupling optical power from the funda-
mental core mode to the phase-matched cladding
modes.1,2 The transmission spectrum of an LPFG con-
sists of many dips that can be attributed to light cou-
plings from the core mode to various cladding modes.
Such all-fiber optical filters play an important role in op-
tical communication systems. One important application
of an LPFG is as a gain equalizer for an erbium-doped fi-
ber amplifier (EDFA).3 The transmission dip of a uni-
form LPFG corresponding to a specific cladding mode
resonance has a sinclike profile with appreciable side-
lobes. To construct a loss filter with an inverted excess
gain spectrum of the EDFA, two uniform LPFGs with dif-
ferent loss depths and center wavelengths are concat-
enated to realize the desired filter response in Ref. 3.
When a phase shift is placed in the middle point of a uni-
form LPFG and the length of the phase shift is properly
adjusted, the original loss dip corresponding to coupling
from the core mode to a specific cladding mode splits into
two dips, with relative peak losses controlled by the
amount of the inserted phase shift. Such an LPFG can
also be used as a gain-flattening filter for an EDFA.4 Re-
cently, Bae et al. proposed a multiport lattice filter model
for synthesizing piecewise-uniform LPFGs and applied it
to the gain equalization of an EDFA.5 In addition to gain
equalization, other optical communication applications
may require special filters with arbitrary amplitude and
phase responses. It is the goal of this paper to propose a
general solution to the synthesis problem of a nonuniform
binary LPFG.

Many methods have been proposed to fabricate a
0740-3232/2002/040772-09$15.00 ©
complex-patterned fiber Bragg grating (FBG) whose pe-
riod is submicrometer; e.g., by the moving fiber-scanning
beam technique.6 Conversely, since the grating period of
an LPFG is tens to hundreds of micrometers, the line-
width of the mask for fabricating a complex nonuniform
LPFG will be larger. Since most LPFGs are fabricated by
using amplitude masks, the resultant LPFG assumes a
binarylike index variation. Those regions exposed to ul-
traviolet irradiation will thus be termed as regions 1, in
which the core index is slightly increased as a result of
photosensitivity of the germanosilicate core. The other
regions are of a conventional fiber structure and will be
referred to as regions 0. The transfer-matrix method for
modeling the photoinduced binary LPFG based on a
mode-matching technique and perturbation expansions
have recently been developed by the authors in Ref. 7.
Nonuniformity of the coupling strength of a binarylike
waveguide grating, e.g., a grating-assisted codirectional
coupler (GACC), can be realized by varying the local duty
ratios.8,9 We shall use this principle to propose a design
procedure for a nonuniform binary LPFG with the desired
spectral response in the following and use the transfer-
matrix model to analyze the grating response. Unlike
the fabrication of an FBG, this method has the advantage
that no scanning steps or positioning facilities are needed
for the fabrication of the complex-patterned LPFG. Once
the variation of the duty ratio and the local period is de-
termined for the binary LPFG with the desired spectrum,
one has only to fabricate the amplitude mask with the de-
signed pattern of 0s and 1s. By direct exposure through
the amplitude mask, the designed pattern can easily be
transferred to a fiber. Our procedure for the design of a
binary LPFG is as follows. A coupled-mode theory based
2002 Optical Society of America
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on the Poisson sum formula for treating the nonuniform
binary index perturbation is developed for the analysis of
a nonuniform binary grating.10 Then, by applying the
well-developed Gel’fand–Levitan–Marchenko (GLM)
inverse-scattering method,11 one can determine the de-
sired variation of duty ratio and local period. The GLM
inverse-scattering method has been successfully applied
to the filter design of an FBG (e.g., Poladian12 and Feced
et al.13). However, a discrepancy from the desired filter
response arises when the transmission spectrum of the
LPFG is calculated by employing the transfer-matrix
model with grating parameters derived from the GLM
method. This is because the GLM method is based on
the coupled-mode theory, which smears out the discrete
coupling characteristic of a binary grating, in which mode
couplings are assumed to take place only at the heteroint-
erfaces of regions 0 and 1. In addition, we define a di-
mensionless parameter that can be used to characterize
the self-coupling effect for any GACC. And it is found
that the larger the parameter, the greater the correspond-
ing discrepancy from the desired spectrum. A genetic al-
gorithm is then used to compensate for the effect of self-
couplings and to optimize the designed grating pattern.

The remainder of this paper is organized as follows. In
Section 2, we first develop a coupled-mode theory based
on the Poisson sum formula for analysis and synthesis of
nonuniform binary grating filters. The index perturba-
tion of a binary grating is transformed into a quasi-
Fourier series whose expansion coefficients act as the ta-
pered coupling constants. Coupled-mode equations are
then used to analyze the grating responses. The discus-
sion follows closely our previous work on the design of
GACC filters.10 Section 3 is devoted to the transfer-
matrix model for binary LPFGs. We reformulate the
method for connection with the result of coupled-mode
theory. An effective local coupling coefficient is derived
by using the matrix method and shows discrepancies from
the coupling coefficient derived from the quasi-Fourier se-
ries in Section 2. It is shown that the discrepancy is
mainly due to the nonzero difference between the self-
coupling constants of the two resonantly coupled modes.
In Section 4, we apply the method to design a flatband
grating filter. A genetic algorithm is used to compensate
for the discrepancies and to optimize the derived grating
pattern from the GLM method. By symmetrically cas-
cading a pair of the above designed flatband LPFG filters,
we obtain an all-fiber Mach–Zehnder (MZ) filter. We cal-
culate the filter response by taking into account the wave-
guide dispersion, and the spectrum of the MZ filter shows
a high fringe visibility. Finally, we make our conclusion
in Section 5.

2. COUPLED-MODE THEORY FOR
NONUNIFORM BINARY WAVEGUIDE
GRATINGS
In this section, we will develop the coupled-mode theory
for nonuniform binary waveguide gratings. The index
perturbations of a binary grating take only two values for
a specific transverse part, corresponding to regions 1 and
0. Nonuniformity of the grating is due to the varying lo-
cal duty ratios and grating periods. We first use the Pois-
son sum formula to derive the quasi-Fourier-series expan-
sion of the index perturbation for such nonuniform binary
gratings. The expansion coefficients in the case of non-
uniformity are also functions of the longitudinal distance.
Then conventional coupled-mode theory is used to de-
scribe mode couplings of the grating. The zeroth-order
expansion coefficient function contributes to self-
couplings of the interacting guided modes, which will
modify the corresponding propagation constants, while
the phase-matched mth-order term is responsible for the
energy transfer between the resonantly coupled modes.
The following discussion parallels closely the analysis of a
nonuniform GACC in Ref. 10. A schematic diagram of
the index perturbation of a nonuniform binary LPFG is
shown in Fig. 1. Here we have chosen the z axis as the
longitudinal direction of the grating. We take the trans-
verse guiding structure of region 0 as the unperturbed
one and let Dng

2(x, y) be the index perturbation of region
1. The index perturbation of the photoinduced binary
LPFG is Dng

2 > 2ncoDnUV in the fiber core and zero else-
where, where DnUV is the photoinduced index change.
The center position of the nth region 1 is designated as
zn , and the corresponding width as wn . Then we can ex-
press the index perturbation as follows:

Dn2~x, y, z ! 5 (
n51

N

Dng
2~x, y !uS z 2 zn

wn
D , (1)

where u(z) is the unit square function, which is unity
when uzu < 0.5 and zero elsewhere. The summation can
be formally extended from 2` to ` if one assumes that
wn 5 0 for n , 1 or n . N. The center positions and
widths of region 1 are regarded as sampled values of two
continuous functions; i.e., zn 5 z(n) and wn 5 w(n).
We next transform the above summation into a quasi-
Fourier-series expansion by invoking the Poisson sum for-
mula. This formula was originally adopted by Ishimaru
in analyzing the array factor of a nonuniformly spaced an-
tenna array.14 The Poisson formula is

(
n52`

`

f~n ! 5 (
m52`

` E
2`

`

f~n !exp~i2mpn !dn, (2)

Fig. 1. Schematic diagram of a binary LPFG. The shadowed
fiber core corresponds to region 1, while the dotted one is region
0. Also shown is the index perturbation along the longitudinal
distance.
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where f(n) is a continuous function of n. The trans-
formed index perturbation becomes

Dn2~x, y, z ! 5 Dng
2~x, y ! (

m52`

` E
2`

`

uF z 2 z~n !

w~n !
G

3 exp~i2mpn !dn. (3)

Note that the summation over m is basically a generali-
zation of the conventional Fourier-series expansion. The
expansion coefficients in Eq. (3) are also functions of the
longitudinal distance. Since zn always increases with n,
the position function z(n) is a monotonically increasing
function and is thus invertible. Let the inverse function
be n(z), which is called the source-number function.14

Since the grating is assumed to be almost periodic, this
function takes the following form:

n 5 n~z ! 5
z

L̄
1 n~z !, (4)

where L̄ is a reference period and n(z) is a slowly varying
function of z. Additionally, n(z) ! 1 for an almost-
periodic grating. The derivative of the source-number
function, dn/dz > Dn/Dzn11,n 5 1/Ln , has the physical
meaning of the inverse of the local period; thus we define
the local period function L(z) as

1

L~z !
[

dn

dz
5

1

L̄
1

dn

dz
. (5)

We also define the local duty ratio m(z) as

m~z ! [
w~z !

L~z !
. (6)

By changing integration variables from n to z in the
quasi-Fourier-series expansion (3) and using the slowly
varying properties of the local parameters, we obtain the
following result (the details of the derivation can be found
in Ref. 10):

Dn2~x, y, z ! 5 (
m52`

`

Dn̂m
2 ~x, y; z !

3 expF imE
0

z 2p

L~z8!
dz8G , (7)

with the expansion coefficient functions

Dn̂m
2 ~x, y; z ! 5 H Dng

2~x, y !m~z !, m 5 0

Dng
2~x, y !

sin@m~z !mp#

mp
, m Þ 0

.

(8)

Note that in Eq. (7), the quasi-Fourier series is expanded
by use of the local grating period L(z) in integral form but
not the constant reference period L̄. Now we apply the
above results to the codirectional couplings of guided
modes in binary gratings, e.g., GACCs or LPFGs. We
consider the case of resonant two-mode couplings and let
the two nearly phase-matched modes be modes 1 and 2.
For practicality, the two resonantly coupled modes of a bi-
nary LPFG are chosen to be the fundamental core mode
(LP01) and the cladding mode of order n (LP0n). By ne-
glecting the backward-propagating modes, we can write
the total electric field as

E~r! 5 (
j51,2

Aj~z !ej~x, y ! 5 (
j51,2

aj~z !exp~ib jz !ej~x, y !,

(9)

where (ej ,hj) are the mode fields, which are assumed to
be mutually orthogonal and normalized according to

1

2
E

Aco

@ej 3 hk# • z dA 5 d jk ~ j, k 5 1, 2 !. (10)

Here d jk is the Kronecker delta symbol. b j is the propa-
gation constant of mode j, and aj(z) is the corresponding
slowly varying mode amplitude. Without loss of general-
ity, we shall now take the resonance grating order to be
m 5 1. By substituting Eqs. (7) and (8) into the coupled-
mode equation,2,15 we obtain the evolution of the mode
amplitudes:

da1

dz
5 iDb1~z !a1 1 iK~z !a2

3 expH 2iE
0

zFb1 2 b2 2
2p

L~z !
GdzJ ,

da2

dz
5 iDb2~z !a2 1 iK* ~z !a1

3 expH iE
0

zFb1 2 b2 2
2p

L~z !
GdzJ , (11)

where Db j(z) is the local correction to the propagation
constant of mode j, given by

Db j~z ! [ k jjm~z ! ~ j 5 1, 2 !, (12)

and the cross-coupling coefficient is

K~z ! [ k12

sin@m~z !p#

p
. (13)

Here we introduce the following coupling constant:

k jk 5
v«0

4
E

A`

Dng
2S etj* • etk 1

n̄2

n2 ezj* ezkD dA, (14)

where n̄2(x, y) is the transverse index profile of region 0,
n2 5 n̄2 1 Dng

2 is that of region 1, and the subscripts t
and z indicate the transverse and longitudinal parts of
the electric fields, respectively. With the mode amplitude
transformations

â j~z ! 5 aj~z !expF2iE
0

z

Db j~z8!dz8G ~ j 5 1, 2 !, (15)

the coupled-mode equations (11) become

dâ1

dz
5 iK~z !â2 expF22iE

0

z

d ~z8!dz8G ,

dâ2

dz
5 iK* ~z !â1 expF2iE

0

z

d ~z8!dz8G , (16)
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where the local detuning parameter is defined as

d ~z ! 5
1

2 Fb1 2 b2 2
2p

L~z !
1 Db1~z ! 2 Db2~z !G

5 j 1
1

2 FDb1~z ! 2 Db2~z ! 2 2p
dn

dz G . (17)

In the above expression, we also introduce the
z-independent detuning parameter j, which is a function
of the wavelength:

j~l! 5
1

2 Fb1~l! 2 b2~l! 2
2p

L̄
G . (18)

The resonance condition implies that j > 0 for the wave-
length range under consideration. We now make the fol-
lowing variable transformations:

n1~z, j! 5 â1~z !exp~ijz !,

n2~z, j! 5 â2~z !exp~2ijz !. (19)

The transformed mode amplitudes satisfy the Zakharov–
Shabat (ZS) equation:

dn1~z, j!/dz 2 ijn1~z, j! 5 q~z !n2~z, j!,

dn2~z, j!/dz 1 ijn2~z, j! 5 2q* ~z !n1~z, j!, (20)

where q(z) is the complex coupling potential given by

q~z ! 5 i$k12 sin@m~z !p#/p%exp@iu~z !# (21)

with the phase function

u~z ! 5 2pn~z ! 2 ~k11 2 k22!E
0

z

m~z8!dz8. (22)

Given the scattering coefficient, which is related to the fil-
ter response, the GLM inverse-scattering method can be
used to derive the corresponding coupling potential
q(z).11 With the aid of Eqs. (21) and (22), the grating
pattern can thus be derived as shown in Section 4.

3. TRANSFER-MATRIX METHOD FOR
NONUNIFORM BINARY WAVEGUIDE
GRATINGS
We have previously developed a transfer-matrix method
based on a mode-matching technique for the modeling of a
photoinduced binary LPFG.7 In this approach, mode
fields of region 1 are derived from those of region 0 by per-
turbation expansion to first order along with the corre-
sponding propagation constants. The expansion coeffi-
cients to first order are successively expressed by the
parameters used in coupled-mode theory. By requiring
the continuities of the tangential electric and magnetic
fields on the heterointerfaces of regions 0 and 1, we can
use a set of fundamental transfer matrices to describe the
evolution of mode amplitudes as the wave field propa-
gates through the LPFG. The details of the transfer-
matrix method for a binary LPFG can be found in Ref. 7.
In the following, we shall briefly review the fundamental
transfer matrices and apply these matrices to the nonuni-
form binary LPFG shown in Fig. 1. Following the nota-
tion conventions in Ref. 7, we will henceforward use sym-
bols with a bar above to represent quantities in region 0,
while the unbarred ones are for region 1. Let the two
mutually coupled-mode amplitudes be represented as a
column vector A 5 (A1 , A2)T [cf. Eq. (9)], where the su-
perscript T indicate transpose. For the incidence from
region 0 to region 1, the changes in mode amplitudes can
be expressed as A 5 F(1u0)Ā with the following interface
matrix:

F~1u0 ! 5 F a1 g

2g* a2
G . (23)

And similarly, for incidence from region 1 to region 0, we
have Ā 5 F(0u1)A with

F~0u1 ! 5 F a1 2g

g* a2
G , (24)

where the off-diagonal element g represents the cross-
coupling through the heterointerface and is given by

g 5
k12

b1 2 b2
. (25)

a1 and a2 in Eqs. (23) and (24) are the self-transmission
coefficients and are expressed by

a j 5 1 2 Dj/2 ~ j 5 1, 2 !, (26)

where the explicit form of Dj can be found in Appendix A
of Ref. 7. This term, Dj , accounts for the renormaliza-
tion factor of the perturbed mode fields. In the ideal case
of two-mode couplings, we shall assume that

a1 5 a2 5 A1 2 ugu2 [ a. (27)

As for free propagation through region 1, the mode ampli-
tudes acquire a phase change and can be described by
A(z) 5 P(1)(z)A(0), where the phase matrix P(1) is

P~1 !~z ! 5 Fexp@i~b1 1 k11!z# 0

0 exp@i~b2 1 k22!z#
G .

(28)

And similarly, we have the following for region 0: Ā(z)
5 P(0)(z)Ā(0) with

P~0 !~z ! 5 Fexp~ib1z ! 0

0 exp~ib2z !
G . (29)

Now we consider a unit period centered at z 5 zn as
shown in Fig. 2. The local grating period corresponding
to the nth region 1 is defined in the average sense:

Ln 5 ~1/2!@~zn11 2 zn! 1 ~zn 2 zn21!#. (30)

The length of the right region 0 is

ln 5 ~1/2!@~zn11 2 zn! 2 wn#, (31)

while that of the left is

ln8 5 ~1/2!@~zn 2 zn21! 2 wn#. (32)

Note that, from the above definition, we have wn 1 ln
1 ln8 5 Ln . The transfer matrix of the nth period is
then given by
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Fn 5 P~0 !~ln!F~0u1 !P~1 !~wn!F~1u0 !P~0 !~ln8 !

5 exp~iun!F An Gn

2Gn* An*
G , (33)

where the matrix elements are

An 5 a2 expF i
~Dn 1 D̄n! 1 smn

2
G

1 ugu2 expF2i
~Dn 2 D̄n! 1 smn

2
G , (34)

Gn 5 exp@i~b1 2 b2!~ln 2 ln8 !#

3 ~2iag!sinS Dn 1 smn

2 D . (35)

The following parameters are introduced:

un 5 b̄Ln 1 ~k11 1 k22!wn/2 (36)

is the global phase shift through the nth period,
b̄ 5 (b1 1 b2)/2 is the averaged propagation constant of
the two modes, mn 5 wn /Ln is the local duty ratio for the
nth period, and

Dn 5 ~b1 2 b2!wn , D̄n 5 ~b1 2 b2!~ln 1 ln8 ! (37)

are the phase differences of the two mode amplitudes
within regions 1 and 0, respectively. We also define an
important parameter characterizing the self-couplings:

s 5 ~k11 2 k22!L̄. (38)

We now consider the connection between the transfer-
matrix method and the coupled-mode theory by introduc-
ing an effective coupling coefficient. Note that the

Fig. 2. Schematic diagram and corresponding parameters of a
unit period. Also shown are couplings of the core mode to the
phase-matched cladding mode through the two heterointerfaces.

Fig. 3. Equivalent coupling to that in Fig. 2 from the core mode
to the cladding mode; here Kn is the equivalent coupling coeffi-
cient of the period.
off-diagonal term of the transfer matrix Fn can be
approximated in the continuous coupling sense as
dA1 /dz ' @A1 ( n 1 1 ) 2 A1(n)# /Ln ' exp(iū)G*A2(n)/ L̄.
Assuming that the grating parameters vary slowly
enough that we may take ln > ln8 , we have

exp~iun!Gn* 5 expF ib1ln8 1 i~b1 1 k11!
wn

2 G ~iL̄Kn!

3 expF i~b2 1 k22!
wn

2
1 ib2lnG ; (39)

here we have introduced the following local effective cou-
pling coefficient corresponding to K(z) in Eq. (13) of the
coupled-mode theory:

Kn 5 a
k12

p 1 j̃
sin@mn~p 1 s 1 j̃ !#, (40)

where j̃ 5 jL̄ is the normalized detuning. Expression
(39) can be interpreted as follows. The combined cou-
plings of mode amplitudes from core to cladding through
the two heterointerfaces of the nth period (see Fig. 2) can
be represented as a single coupling taking place at
z 5 zn with effective coupling KnL̄. This is also illus-
trated in Fig. 3. Note that when s ! 1 (small difference
between self-coupling constants) and j̃ ! 1 (narrow spec-
tral range), expression (40) reduces to the result of
coupled-mode theory [Eq. (13)]. However, the grating pe-
riod of the LPFG is rather large; thus both s and j̃ cannot
be neglected completely. This is a special feature of the
long periodicity. For a typical LPFG, the value of the
self-coupling parameter is approximately s > k01–01

co–co L̄

> 0.1 to 1, and jmaxL̄ > 0.01 to 0.1; thus the deviation
from the coupled-mode theory is appreciable, and com-
pensation should be made to optimize the design.

4. FILTER DESIGN BASED ON THE
INVERSE-SCATTERING METHOD WITH
GENETIC ALGORITHM OPTIMIZATION
We will design a binary LPFG with flatband spectral re-
sponse in this section. The design is based on the GLM
inverse-scattering method combined with a genetic algo-
rithm to optimize the grating pattern. The details of the
GLM method can be found in Ref. 11. To apply the GLM
inverse-scattering method, we must specify the scattering
coefficient of the ZS equation (20), and in the forward-
coupling case, one has to specify the following scattering
coefficient10,11:

r~j! 5 n2~L, j!/n1~L, j!, (41)

where L is the interaction length of the grating. Basi-
cally, the GLM equations are a set of coupled integral
equations used to solve the unknown coupling potential
q(z) given the scattering coefficient r(j). Song and
Shin11 showed that the GLM integral equations can be
transformed into a set of linear equations for q(z) and
thus can be exactly solved if r(j) is a rational function of
j. We will use this method in the following flatband
LPFG filter design. The flatband filter is well approxi-
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mated by a 13th-order Butterworth filter with maximum
cross transmission being 0.5. The details of the design
can be found in Refs. 10 and 16. The reason for choosing
a cross transmission of 0.5 is as follows. We want to con-
struct an all-fiber MZ filter by cascading two LPFGs.17,18

The first LPFG splits light into two paths: One is within
the core mode, while the other is through the propagation
of the cladding mode. The second LPFG then combines
light beams from these two paths. From the theory of
MZ interferometry, the best visibility will occur when the
power-splitting ratio is 0.5.17,18 Once the coupling poten-
tial is determined by the GLM method, the local duty ra-
tio and period are obtained from Eqs. (21) and (22) as

m~z ! 5
1

p
sin21Fp

uq~z !u

k12
G , (42)

1

L~z !
5

1

L̄
1

1

2p

du

dz
1

sm~z !

2pL̄
. (43)

From Eqs. (5) and (43), we can derive the source-number
function as

n~z ! 5 E
0

z dz8

L~z8!
, (44)

whose inverse gives the positions of region 1 in each pe-
riod. Then the corresponding parameters for the nth pe-
riod are Ln 5 L(zn) and wn 5 m(zn)Ln with zn 5 z(n).
Figures 4 and 5 show the variation of normalized local
width wn /L̄ and local period Ln /L̄ with respect to the
number of periods derived by the GLM inverse-scattering
method. Note that a sign change of the grating width wn
indicates the insertion of a p phase shift at the crossing
point. And this is implemented in the transfer-matrix
model by multiplying by a matrix P(0)(L̄/2) at the corre-
sponding point.

In Fig. 6, we calculate the corresponding cross-
transmission spectrum by using the transfer-matrix
method. The cross transmission is defined as the rela-
tive power transfer from mode 1 to mode 2 at the exit end
of the codirectional grating. It can be seen that the de-
viation from the desired result is appreciable. As dis-
cussed above, this is because the coupled-mode equation,
as well as the ZS equation, is a continuous approximation
to the discrete couplings of the binary LPFG. When we

Fig. 4. Variation of the normalized local width wn /L̄ obtained
from the GLM inverse-scattering method.
use the transfer-matrix model to calculate the filter spec-
trum of the grating pattern derived from the GLM
method, there are significant discrepancies. This might
be due to the smearing of the discrete couplings or to the
effect of the self-couplings. Thus, based on the result
from the GLM method, we use a genetic algorithm to com-
pensate for these discrepancies and to optimize the grat-
ing design. Genetic algorithms have been successfully
applied to the design of various optical filters, including
FBG,19 thin-film,20 and rugate21 filters. A real-coded ge-
netic algorithm20 is used in our optimization of the grat-
ing pattern. Let the grating parameters derived from
the GLM method be (wn

(GLM) , Ln
(GLM)) for n 5 1,2 ,..., N.

We add a small correction to these parameters,

wn 5 wn
~GLM! 1 Dwn , Ln 5 Ln

~GLM! 1 DLn , (45)

and then use the genetic algorithm to optimize these cor-
rections (Dwn , DLn). The genetic algorithm operates on
a population of potential correction candidates. Each in-
dividual of the population can be represented by the fol-
lowing sequence:

x 5 $Dw1 ,DL1 ;Dw2 ,DL2 ;..., Dwn ,DLN% . (46)

A suitable merit function used to return a single real
number reflecting the total fitness of a specific correction
is given by21

Fig. 5. Same as Fig. 4 but for the normalized local period Ln /L̄.

Fig. 6. Cross-transmission spectrum of the grating parameters
in Figs. 4 and 5 calculated by the transfer-matrix model. The
dotted lines represent the desired flatband spectrum.
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F~x! 5 H 1

M (
j51

M FT~l j ;x! 2 Ttarget~l j!

dTj
G2J 1/2

, (47)

where T(l j ;x) is the cross transmission calculated by us-
ing the transfer-matrix method with grating parameters
given by sequence x at wavelength l j , Ttarget(l j) is the
corresponding target cross transmission, and dTj is the
tolerance at l j . The genetic algorithm finds the opti-
mum corrections x according to this figure of merit based
on the rules of natural selections. Three primary opera-
tions are used to evolve the population of candidate cor-
rections: selection, crossover, and mutation. The de-
tailed definitions of these operations for real-coded
genetic algorithms can be found, for example, in Ref. 20.
The optimized grating parameters are shown in Figs. 7
and 8. For comparison, in these figures, we also plot the
results obtained by using only the GLM method. It can
be seen that although the corrections to the local width
are small, corrections to the local period are quite appre-
ciable. In Fig. 9, we calculate the corresponding cross-
transmission spectrum by the transfer-matrix model; it
can be seen that the filter response is improved by the ge-
netic algorithm.

The above results are applied to the design of a binary
LPFG with the following fiber parameters: core radius
aco 5 2.62 mm, cladding radius acl 5 62.5 mm, core index
nco 5 1.4557, and cladding index ncl 5 1.45. We choose

Fig. 7. Variation of the normalized local width wn /L̄ obtained
from the GLM inverse-scattering method with genetic algorithm
optimization. Also shown for comparison is the result obtained
by using only the GLM method.

Fig. 8. Same as Fig. 7 but for the normalized local period Ln /L̄.
the resonant cladding mode to be LP05 . The reference
period is determined by L̄ 5 l0 /(n01

co 2 n05
cl ) 5 787.4 mm

for center wavelength l0 5 1.55 mm. The calculated
cross-coupling constant is k12 5 k01–05

co–cl 5 0.266DnUV .
The self-coupling constant for the core mode is k01–05

co–cl

5 1.276DnUV , while that for the cladding mode is taken
to be zero.2 The index modulation DnUV 5 1.576
3 1024. Figure 10 shows the transmission spectrum of
the binary LPFG calculated by the transfer-method model
taking into account the waveguide dispersion; it can be
seen that a flatband transmission loss extends approxi-
mately from 1535 to 1565 nm. It should be noted that
the above analysis is basically applicable only to a given
resonant cladding mode. This is because the difference
between self-couplings k11 2 k22 is dependent on which
cladding mode is being considered and is also related to
the cross-coupling constant k12 , which determines the de-
sired transmission loss.

An all-fiber MZ filter with high fringe visibility can be
constructed by symmetrically cascading two such
LPFGs.17,18 The grating response is calculated as fol-
lows. Let FLPFG be the overall transfer matrix of a single
flatband LPFG; then the transfer matrix corresponding to
the MZ filter is

FMZ 5 ~FLPFG!TP~0 !~LMZ!FLPFG , (48)

where the superscript T indicates transpose of the trans-
fer matrix, which physically reverses the ordering of the

Fig. 9. Cross-transmission spectrum of the grating parameters
in Figs. 7 and 8 optimized by genetic algorithm. The dotted
lines represent the desired flatband spectrum.

Fig. 10. Transmission spectrum of the synthesized flatband bi-
nary LPFG.
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corresponding grating. The separation between the two
gratings is chosen to be LMZ 5 30L̄. Figure 11 shows the
calculated transmission spectrum in linear scale. A
fringe pattern with high visibility over a spectral range of
approximately 30 nm is obtained. Such a filter may have
potential applications in wavelength-division multiplex-
ing systems.

5. CONCLUSION
We have presented a procedure for the design of binary
LPFG filters based on the GLM inverse-scattering
method with genetic algorithm optimization. The cou-
pling strength of the binary LPFG is varied with the local
duty ratio. The index variation of the binary LPFG is ex-
panded into a quasi-Fourier series by the Poisson sum for-
mula. The zeroth-order expansion coefficient contributes
to the self-couplings of the interacting modes, while the
phase-matched first-order term determines the taper
function of the coupling coefficient. A coupled-mode
equation is presented for the application of the GLM
inverse-scattering method. The grating response is cal-
culated by using a transfer-matrix model developed pre-
viously by the authors. A connection between the
transfer-matrix model and the coupled-mode theory is es-
tablished for the nonuniform binary LPFG. It is found
that the coupled-mode theory can serve only as an ap-
proximate modeling to the binary grating, since the dis-
crete coupling nature of the binary LPFG is smeared out.
From the transfer-matrix model, we derive a generalized
local coupling coefficient, which under certain conditions
can be reduced to the result obtained from the coupled-
mode theory. The grating parameters derived from the
GLM inverse-scattering method are used as initial bases
for the application of the genetic algorithm to optimize
the grating design. We apply the above procedure to the
design of a binary LPFG with flatband transmission spec-
trum and show that by symmetric cascading of two such
gratings a high-visibility all-fiber MZ filter can be con-
structed.
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