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Abstract

This paper derives the pricing bounds of a currency cross-rate option using the option prices of two related dollar rates via a copula
theory and presents the analytical properties of the bounds under the Gaussian framework. Our option pricing bounds are useful,
because (1) they are general in the sense that they do not rely on the distribution assumptions of the state variables or on the selection
of the copula function; (2) they are portfolios of the dollar-rate options and hence are potential hedging instruments for cross-rate
options; and (3) they can be applied to generate bounds on deltas. The empirical tests suggest that there are persistent and stable rela-
tionships between the market prices and the estimated bounds of the cross-rate options and that our option pricing bounds (obtained
from the market prices of options on two dollar rates) and the historical correlation of two dollar rates are highly informative for explain-
ing the prices of the cross-rate options. Moreover, the empirical results are consistent with the predictions of the analytical properties
under the Gaussian framework and are robust in various aspects.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the option pricing literature, researchers are not only
interested in pricing, but also in bounding the option val-
ues. There are many useful techniques that can be
employed to derive option pricing bounds. For example,
Merton (1973), Garman (1976), Levy (1985), and Grundy
(1991) use the arbitrage-free approach to derive option
pricing bounds. Ritchken (1985), Ritchken and Kuo
(1989), Basso and Pianco (1997), Mathur and Ritchken
(2000), and Ryan (2003) use linear programming methods
to derive option pricing bounds. In addition to the above
two types of techniques, some other approaches, such as
optimization methods and restrictions on the volatility of
the pricing kernel, have also been used in the literature.
0378-4266/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Most, if not all, of the previous studies derive option
pricing bounds by directly using the price information
(such as the price distribution or price process) of the
underlying asset. In contrast to the previous literature, this
study uses the option prices of the related dollar rates to
derive the pricing bounds for the cross-rate option. In other
words, we bound cross-rate option values using the market
prices of the dollar-rate options.1 In this sense, the idea of
this paper is close to that in the static hedge literature (see
Carr et al., 1998), whereby the exotic options are priced
(and hedged) in terms of the prices of standard options.

Since there is a triangular relationship between the for-
eign exchange rates among three currencies, Taylor and
1 The motivation for doing this is as follows. It is generally observed that
options on dollar-denominated exchange rates are traded under satisfac-
tory liquidity, while cross-rate option markets are much less liquid. Thus,
the pricing bounds obtained from the liquid market prices of dollar-rate
options are useful for pricing, hedging, and arbitraging.
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Wang (2005) show that it is plausible to estimate risk-neu-
tral densities (RNDs) and option prices of a cross-rate
under the US dollar measure2 using the market prices of
two related dollar-rate options. Instead of directly explor-
ing the option pricing formula, this study (also using the
dollar risk-neutral measure) derives the pricing bounds
for cross-rate options by utilizing the exchange option pric-
ing bounds implied in the copula theory.3 Some analytical
properties of the bounds under the Gaussian framework
are also presented in this paper. Compared with the previ-
ous studies, our objective is not to derive tight bounds, but
rather to generate informative bounds from useful market
price information (dollar-rate option prices).

Our option pricing bounds contribute to the literature in
at least three aspects. First of all, although our pricing
bounds are not tight, they are general in the sense that they
do not rely on the distribution assumptions of the state
variables or on the selection of a copula function. Sec-
ondly, our pricing bounds have economic meanings,
because they are portfolios composed of the dollar-rate
options (and sometimes also composed of spot dollar rates)
and hence provide potential hedging instruments for cross-
rate options. Finally, our pricing bounds are also useful for
generating bounds on deltas.

The empirical tests of our pricing bounds are conducted
using the prices of options on foreign exchange rates
among the US dollar, euro, and pound sterling. We first
show that there are strong and stable relationships between
the market prices of cross-rate options and the pricing
bounds obtained from the market prices of options on
the two dollar rates. Both of the above finding and the ana-
lytical analysis in Section 2 motivate us to run the regres-
sion models to measure the extent where the cross-rate
option prices can be explained by our pricing bounds and
the correlation between the two dollar rates.

Our empirical results indicate that the pricing bounds
estimated from option prices of two dollar rates and the
correlation of two dollar rates can provide highly signifi-
cant information (about 85%) for explaining the cross-rate
option prices across deltas. Our results are immune to the
assumption of the RND distribution for the dollar rates,
the market volatility level, and the change in the curvature
of the implied volatility function. Finally, we demonstrate
how to calculate bounds on deltas using our pricing
bounds.
2 Both Taylor and Wang (2005) and this paper commence the analyses
under the foreign (dollar) risk-neutral measure to price the cross-rate
options. As suggested by Bakshi et al. (forthcoming), it may be better to
specify the generic pricing kernels in each country to derive the prices of
derivatives. Nonetheless, Taylor and Wang (2005) analytically show that
the prices of derivatives under different measures are equivalent when the
law of one price holds. In order to utilize the concept of the exchange
option, this article formulates the pricing problem under the dollar
measure.

3 The details of the copula theory can be found in Joe (1997) and Nelsen
(1999). Cherubini et al. (2004) first apply the copula theory to derive the
pricing bounds for the exchange options.
The remainder of this paper is organized as follows. Sec-
tion 2 derives option pricing bounds for the cross-rate
option, presents their analytical properties under the
Gaussian framework, and shows how to bound the delta
of the cross-rate option using the derived pricing bounds.
Data and the empirical methodologies for generating the
risk-neutral densities and option pricing bounds are pre-
sented in Section 3. Section 4 discusses the empirical
results, while Section 5 concludes the paper.
2. Bounds of the price and delta of the cross-rate option

2.1. Bounds of the price of the cross-rate option

By applying the Fréchet bounds in the copula theory,
Cherubini et al. (2004) show that the super-replication
bounds of the option to exchange one asset for the other
asset are composed of the prices of the univariate options
on the two individual exchanged assets.4 We first show that
the payoff of a cross-rate option under the dollar measure
is equivalent to that of an exchange option where the two
underlying risky assets are the corresponding dollar rates.
Following the same logic as in Cherubini et al. (2004), we
use the risk-neutral pricing approach to derive the pricing
bounds for the cross-rate option.

Consider options whose payoffs depend on the exchange
rates among the following three currencies: US dollars ($,
USD), British pounds (£, GBP), and euros (€, EUR). We
denote the dollar price of one pound at time t by S$=£

t

and likewise the dollar price of one euro at the same time
is denoted by S$=€

t . The cross-rate price of one pound in
euros is then given by S€=£

t ¼ S$=£
t =S$=€

t under the no-arbi-
trage argument.

Now consider a European call option where the holder
has the right to buy £1 for €K at time T. Under the dollar
measure (or from the viewpoint of US residents), the above
option is identical to an option to exchange KS$=€

T dollars
for S$=£

T dollars at time T. Hence, a cross-rate call option
under the dollar measure is equivalent to an option to
exchange one asset for the other asset and its dollar payoff
equals max S$=£

T � KS$=€
T ; 0

� �
. This payoff can be rear-

ranged as follows:

S$=£
T �max min S$=£

T ;KS$=€
T

� �
; 0

h i
: ð1Þ

Hence, the current dollar price of an exchange option is
determined by the risk-neutral pricing approach as follows:

Call€=£

$ ¼ S$=£
t e�r£ðT�tÞ � CallminðS$=£;KS$=€; 0; t; T Þ; ð2Þ

where Callmin(S1,S2,0, t,T) represents the price at time t of
a call option on the minimum of S1 and S2 with strike price
0 and maturity time T. Applying the Fréchet bounds in the
4 However, Cherubini et al. (2004) only derive the lower bound for one
particular probability condition. There should be an alternative formula
applied to the other probability condition. See our Eq. (4) for these two
probability conditions.
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copula theory, we are able to derive the upper (lower)
bound of the minimum call option price and thus the lower
(upper) bound of the cross-rate option price as follows.

Proposition 1. The upper bound of the cross-rate option

price in dollars is

Call€=£þ

$ ¼ CallðS$=£;K��; t; T Þ þ KPutðS$=€;K 00; t; T Þ; ð3Þ

where K** is a constant satisfying that F S$=£ðK��Þþ
F KS$=€ðK��Þ ¼ 1; F iðxÞ ¼ 1� F iðxÞ; F iðxÞ is the cumulative

distribution function, and K00 = K**/K. Let K* be a constant

which solves F S$=£ðK�Þ ¼ F KS$=€ðK�Þ. The lower bound of

the cross-rate option price in dollars is thus

Call€=£�

$ ¼

CallðS$=£;K�; t; T Þ � KCallðS$=€;K 0; t; T Þ
if F S$=£ðuÞ < F KS$=€ðuÞ for u < K�;

S$=£
t e�r£ðT�tÞ � KS$=€

t e�r€ðT�tÞ

þKCallðS$=€;K 0; t; T Þ � CallðS$=£;K�; t; T Þ
otherwise;

8>>>>>><
>>>>>>:

ð4Þ

where K 0 = K*/K.

Proof. Please see Appendix A. h

From Eqs. (3) and (4), we observe that our pricing
bounds for cross-rate options are portfolios of the corre-
sponding dollar-rate options (and may also be of the spot
assets). Therefore, different from most option pricing
bounds in the literature, the derived pricing bounds have
economic meanings. Moreover, the derivation of our
cross-rate option pricing bounds does not rely on the distri-
bution assumption of two dollar rates and the selection of
an appropriate copula function. Therefore, one can apply
the technique utilized here to derive the price bounds for
any European-style derivatives whose payoffs can be rear-
ranged as the same type as that of an exchange option.

Since the cross-rate is completely determined by the
other two dollar rates under the triangular arbitrage rela-
tion, a natural question to ask is how the payoff of the
cross-rate option is related to the payoffs of the other
two dollar-rate options. If this relationship can be speci-
fied, one is able to apply the spanning approach of Bakshi
and Madan (2000) to price (or to provide pricing bounds
for) the cross-rate options using the prices of two dollar-
rate options. In Corollary 1 we show that the correlation
options considered in Bakshi and Madan (2000) provide
a lower bound for the cross-rate option price. The proof
of Corollary 1 is available from the authors upon request.

Corollary 1. The price of a cross-rate call option with strike

price K is bounded below by the price of a correlation option

with the following payoff:

max S$=£
T � Kx; 0

� �
�max 1=S$=€

T � 1=Ky ; 0
� �

;

where K = Kx/Ky.
Note that Corollary 1 relates the lower pricing bound of
a cross-rate call option to the price of a dollar-rate call
(with a payoff of maxðS$=£

T � Kx; 0Þ) and the price of a dol-
lar-rate put (with a payoff of maxðKy � S$=€

T ; 0Þ). Therefore,
Corollary 1 suggests that the dollar-rate option prices (and
hence our pricing bounds) may be informative for explain-
ing the cross-rate option prices. Later in Section 3 we will
run a regression model to investigate the explanatory
power of our pricing bounds.

2.2. Analytical properties of the pricing bounds under the

Gaussian framework

When the two dollar rates follow a bivariate lognormal
distribution, then under the triangular arbitrage relation
the cross-rate also follows a lognormal distribution. Thus,
there exist closed-form solutions for the option prices of
two dollar rates and our pricing bounds. To have some
insights on our pricing bounds, we investigate the analyti-
cal properties of these bounds when the two dollar rates
follow a bivariate lognormal distribution.

Denote the closed-form solutions of two dollar-rate
option prices at time t, denominated in US dollars, as
CBS S$=£

t ;K; r$; r£; r$=£; s
� �

and CBS S$=€
t ;K; r$; r€; r$=€; s

� �
,

respectively. Proposition 2 shows that the upper and lower
bounds have closed-form solutions under the bivariate log-
normal distribution assumption.

Proposition 2. Assume that two dollar rates S$/£ and S$/€

follow a bivariate lognormal distribution with a correlation

coefficient of q and volatilities per year of r$/£ and r$/€,

respectively. The upper and lower bounds, denominated in

euros, of the cross-rate call option with a strike price of K

thus have closed-form solutions of CBSðS€=£
t ;K; r€; r£; r$=£þ

r$=€; sÞ and CBSðS€=£
t ;K; r€; r£; jr$=£ � r$=€j; sÞ, respectively.

Proof. Please see Appendix B. h

Under the bivariate lognormal distribution assumption,
the triangular arbitrage relation implies that the cross-rate
option price, denominated in euros, is CBS S€=£

t ;K; r€; r£;
�

r€=£; sÞ, where r2
€=£ ¼ r2

$=£ þ r2
$=€ � 2qr$=£r$=€. Therefore,

Proposition 2 is intuitively true, because jr$/£ � r$/€j 6
r€/£ 6 r$/£ + r$/€. When the correlation between two dollar
rates is higher (lower), the cross-rate option price is closer
to the lower (upper) bound. Moreover, Proposition 2
implies that when the implied volatility curves of two
dollar-rate option prices are flat, then the implied volatility
curves of our upper and lower bounds for cross-rate
options are also flat.

2.3. Bounds on the delta of the cross-rate option

Given the estimated pricing bounds in terms of implied
volatilities, it is plausible to derive bounds on the cross-rate
option’s delta using Proposition 5 of Bergman et al. (1996).
Assume that the volatility function, r(s, t), is a function of
the underlying asset price s and time T only. Let r and r,



6 Many types of univariate RNDs have been proposed, including
lognormal mixtures (Ritchey, 1990; Melick and Thomas, 1997), general-

634 S.-L. Chung, Y.-H. Wang / Journal of Banking & Finance 32 (2008) 631–642
respectively, denote the lower and upper bounds on volatil-
ity, c(s, t) and c1(s, t), respectively, represent the market (or
accurate) call price and its delta, and cbs(r) and cbsðrÞ

1 ,
respectively, stand for the Black–Scholes call price and its
delta. Bergman et al. (1996) derive bounds on the option’s
delta as follows.

Proposition 5 of Bergman et al. (1996). If for all s and

t; rðtÞ6 rðs; tÞ6 �rðtÞ, then cbsðrÞ
1 ðs00; tÞ6 c1ðs; tÞ6 cbsð�rÞ

1 ðs0; tÞ,
where s00 solves cbsðrÞðs; tÞ ¼ cbsð�rÞðs00; tÞþ cbsð�rÞ

1 ðs00; tÞðs� s00Þ
and s 0 solves cbsðrÞðs; tÞ ¼ cbsð�rÞðs0; tÞ� cbsð�rÞ

1 ðs0; tÞðs0 � sÞ.

The delta bounds of Bergman et al. (1996) are true for
general Markovian diffusion processes. When the cross-
rate option’s value today is known, Bergman et al. (1996)
show that the bounds on its delta can be strengthened as
follows.

Proposition 6 of Bergman et al. (1996). If for all s and
t; rðs; tÞ 6 �rðtÞ, then for any s and t such that one knows

cðs; tÞ; cbsð�rÞ
1 ðs00; tÞ 6 c1ðs; tÞ 6 cbsð�rÞ

1 ðs0; tÞ, where s00 solves

cðs; tÞ ¼ cbsð�rÞðs00; tÞ þ cbsð�rÞ
1 ðs00; tÞðs� s00Þ and s 0 solves

cðs; tÞ ¼ cbsð�rÞðs0; tÞ � cbsð�rÞ
1 ðs0; tÞðs0 � sÞ.

Our pricing bounds are directly applicable to Proposi-
tion 5 of Bergman et al. (1996), and thus the bounds on
the deltas can be obtained straightforward. For instance,
the implied volatility of our lower (upper) bound provides
an estimate of r(t) ð�rðtÞÞ for applying Proposition 5 of
Bergman et al. (1996). When the market price of the
cross-rate option is known, our upper bound can be used
in conjunction with Proposition 6 of Bergman et al.
(1996) to obtain tighter bounds for deltas. Later, we will
calculate bounds on the deltas when our pricing bounds
are applied to Propositions 5 and 6 of Bergman et al.
(1996).

3. Data and empirical methodologies

3.1. Data

The primary data used in this article are daily option
prices that are quoted as Black–Scholes implied volatilities
for three currency options ($/£, $/€, and €/£). We make use
of a confidential file of OTC option price mid-quotes, sup-
plied by the trading desk of an investment bank in Lon-
don.5 Our currency option data cover the period from 15
March 1999 to 11 January 2001. The OTC quotes are for
all three foreign exchange options, recorded at the end of
the day in London. The data include option prices for seven
exercise prices, based upon ‘‘deltas’’ equal to 0.1, 0.25, 0.37,
0.5, 0.63, 0.75, and 0.9. The time to maturity of the options
5 Some settlement prices are available for cross-rate options traded in
the Chicago Mercantile Exchange, but they correspond to almost no
trading volume. Consequently, we rely on over-the-counter (OTC) option
prices, with which we have the same time-to-maturity option data every
day. To the best of our knowledge, such prices are not available in the
public domain.
is one month, with which options in the OTC market are
most frequently traded. We also use the spot exchange rates
of $/£, $/€, and €/£ and the euro-currency interest rates
(proxies of risk-free rates) of $, £, and € recorded by Data-
Stream as the inputs for all relevant calculations.

The summary statistics of the quoted implied volatilities
show that all implied volatility functions exhibit a smile
shape with the level for the $/€ options being the highest,
while the level for the $/£ options are the lowest. The low
standard deviations of the quotes imply that the levels of
implied volatilities for these three exchange rate options
do not change much as time goes. The skewness is positive
and the kurtosis is close to 3, which does not depend on the
moneyness of the options.

3.2. Empirical methodologies for generating the bounds

Because K* and K** are determined by the risk-neutral
densities of two dollar rates, we use the observed market
prices of European call options on $/£ and $/€ and a
parametric distribution specification to estimate their risk-
neutral densities. Once the risk-neutral densities are
obtained, K* and K** can be calculated with a numerical
method (such as the Newton–Raphson method) to solve
F S$=£ðK�Þ ¼ F KS$=€ðk�Þ and F S$=£ðK��Þ þ F KS$=€ðK��Þ ¼ 1,
respectively. We are then able to price dollar-rate options
with all strikes and get pricing bounds of the cross-rate
options using Eqs. (3) and (4).

In this paper we use the generalized beta density of the
second kind (GB2) to estimate the RNDs of two dollar
rates.6 The GB2 density has few parameters, but it pre-
serves many desirable properties: general levels of skewness
and kurtosis are allowed, the shapes of the tails are fat rel-
ative to the lognormal density, and there are analytic for-
mulae for the density, its moments, and the prices of
options. Furthermore, the parameter estimation of the
GB2 density is easy and the estimated densities are never
negative. The details about the estimation of the GB2 den-
sity can be found in Bookstaber and McDonald (1987).

4. Empirical results

The empirical studies in this article contain four parts.
We first analyze the properties of our pricing bounds and
their relationships with the market prices of the cross-rate
options. Second, we investigate the explanatory powers of
the pricing bounds and the correlation between two dollar
ized beta densities (Bookstaber and McDonald, 1987), multi-parameter
discrete distributions (Jackwerth and Rubinstein, 1996), and densities
derived from fitting spline functions to implied volatilities (Bliss and
Panigirtzoglou, 2002). Providing that options are traded for a range of
exercise prices that encompass most areas of the risk-neutral distribution,
it is documented that several flexible density families provide similar
empirical estimates. The bounds estimated with the lognormal mixtures
RNDs are compared with for the robustness check.
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Table 1
Summary statistics of the implied volatilities from the market prices and the estimated bounds

Delta 0.9 0.75 0.63 0.5 0.37 0.25 0.1

Panel 1: Upper bounds

Mean 0.2087 0.2061 0.2056 0.2058 0.2064 0.2077 0.2118
Standard deviation 0.0325 0.0329 0.0330 0.0331 0.0332 0.0333 0.0334

Panel 2: Market implieds

Mean 0.1054 0.0996 0.0980 0.0972 0.0979 0.0995 0.1050
Standard deviation 0.0169 0.0173 0.0176 0.0176 0.0180 0.0180 0.0183

Panel 3: Lower bounds

Mean 0.0405 0.0319 0.0302 0.0315 0.0352 0.0396 0.0478
Standard deviation 0.0095 0.0117 0.0124 0.0122 0.0113 0.0108 0.0110

This table consists of the summary statistics of the implied volatilities from the market prices and estimated upper and lower bounds of the cross-rate €/£
options across deltas. The option bounds are estimated by calibrating Eqs. (3) and (4) with the option prices of two dollar rates, $/£ and $/€.
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rates for the market prices of the cross-rate options. Third,
some robust analyses for the accuracy of our results are pro-
vided. Finally, given the estimated price bounds of the
cross-rate options, we demonstrate how to bound their del-
tas using the approach proposed by Bergman et al. (1996).
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Fig. 1. The implied volatilities from market prices and the estimated
bounds for cross-rate options. This figure shows the evolution of the
Black–Scholes implied volatilities from the market prices and the
estimated bounds of the cross-rate (€/£) options with the delta of 0.5.
The cross-rate option pricing bounds are estimated by calibrating Eqs. (3)
and (4) using the option prices of two dollar rates, $/£ and $/€.

8 The correlation coefficients are estimated using the dynamic condi-
tional correlation (DCC) multivariate GARCH model proposed by Engle
(2002) with the historical time series data of two dollar spot rates. The fact
that correlations between financial assets are usually time-varying has
important implications in many ways such as portfolio hedging and
4.1. Empirical pricing bounds of the cross-rate options

In order to have a standardized comparison, all the mar-
ket prices and pricing bounds are converted into the Black–
Scholes implied volatilities. The pricing bounds of the one-
month cross-rate options with seven different strike prices
(deltas) are estimated every day. All lower bounds are
determined by the second alternative of Eq. (4), because
the implied volatilities of $/€ are always larger than those
of $/£ during our sample period.7 The descriptive statistics
of the estimated pricing bounds and the market implied
volatilities across deltas are shown in Table 1. We also
show the evolution of the estimated pricing bounds and
the market implied volatilities in Fig. 1. As the patterns
across deltas are very similar, Fig. 1 presents the result with
a delta of 0.5 only.

As shown in Fig. 1, the market implied volatility always
lies within the estimated bounds, and the evolution of the
market implied volatility of the cross-rate (€/£) option
exhibits a similar pattern to those of the estimated bounds.
As the foreign exchange market became more volatile from
1999 to 2000, the bound range, defined as the difference
between the upper bound and the lower bound, turned
wider as time went by during the period.

Table 1 suggests that the level, the mean, and the vola-
tility of the upper bounds are almost the same across deltas
with an extremely shallow smile. In contrast, the lower
bound and the market implied volatilities exhibit clearer
smile shapes across deltas with the lower bound smile being
deeper than the market implied smile.

To explore the relationships between the option market
prices and the estimated bounds, we further look at the
7 The analytical properties of our lower bound under the Gaussian
framework suggest that if the volatility of $/€ is greater than that of $/£,
then F S$=£ ðuÞ > F KS$=€ ðuÞ for u < K* and vice versa.
behavior of the difference between the upper bound and
the market implied (upper range) and the difference
between the lower bound and the market implied (lower
range). Their descriptive statistics across deltas are illus-
trated in Table 2. Both the level and variation of the upper
ranges are larger than those of the lower ranges across del-
tas. We also investigate the relationships between the
ranges and the correlation of two dollar rates as Proposi-
tion 2 suggests that the higher the correlation is, the closer
the market implied volatility will be to the lower bound.
We regress the upper range and the lower range, respec-
tively, on the correlation and report the slope coefficient
estimates in Table 2.8 The results clearly indicate that the
multivariate asset pricing. This model overcomes the complexity of
conventional multivariate GARCH models in computation by directly
modeling the time-varying correlation as a conditional process. The
procedure of using the DCC GARCH model to generate the time-varying
correlation series is detailed in Engle (2002).



Table 2
Summary statistics of the estimated upper ranges and lower ranges

Delta 0.9 0.75 0.63 0.5 0.37 0.25 0.1

Panel 1: Upper ranges

Mean 0.1033 0.1065 0.1076 0.1086 0.1085 0.1082 0.1069
Standard deviation 0.0208 0.0208 0.0206 0.0207 0.0205 0.0206 0.0206
b 0.1431 0.1478 0.1468 0.1454 0.1435 0.1405 0.1320

(8.02) (8.35) (8.37) (8.24) (8.18) (7.96) (7.44)

Panel 2: Lower ranges

Mean 0.0648 0.0678 0.0678 0.0656 0.0627 0.0599 0.0571
Standard deviation 0.0125 0.0149 0.0144 0.0131 0.0124 0.0120 0.0116
b �0.0855 �0.1121 �0.1049 �0.0958 �0.0905 �0.0869 �0.0818

(�7.98) (�8.93) (�8.59) (�8.65) (�8.62) (�8.50) (�8.24)

This table consists of the summary statistics of the estimated upper ranges and lower ranges of the cross-rate (€/£) options across deltas. The upper ranges
and lower ranges are the distances between the upper bounds and market implieds and between the lower bounds and market implieds, respectively. In
addition, the parameter estimates of the following regression model are provided.

Rt ¼ aþ bCorrt þ et;

where Rt is the upper or lower range, Corrt denotes the correlation between the two dollar rates, and et is the residual term at time t. The correlations are
generated by the DCC model of Engle (2002). The numbers in the parentheses are t-statistics.
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upper (lower) range is significantly positively (negatively)
associated with the correlation of two dollar rates across
deltas; i.e. the higher the correlation is, the closer the mar-
ket implied will be to the lower bound. This finding is con-
sistent with the analytical properties of our pricing bounds.

In summary, the lower bounds exhibit a smile shape
while the upper bounds and the market implied volatilities
are relatively flat across deltas. Both the upper and lower
bounds exhibit tractable and persistent relationships with
the market prices of cross-rate options.
4.2. Pricing bounds, correlation, and the cross-rate option

prices

Since it has been found both analytically and empirically
that there are persistent relationships between the market
prices of the cross-rate options and our pricing bounds,
we further use a regression model to measure the extent
where the cross-rate option prices can be explained by
our pricing bounds. We regress the market implied volatil-
ities on the upper and lower bounds.9 The regression model
is specified as
9 The information content of our pricing bounds for cross-rate options is
similar to that of the prices of options on the corresponding two dollar
rates. Therefore, the implied volatilities of the two dollar rates have the
potential to provide similar explanatory power for the cross-rate implied
volatility as our bounds do. However, according to our analysis, the
implied volatilities of $/£ and $/€ are highly correlated (about 0.8). Thus, a
serious multicollinearity problem occurs when directly regressing the
implied volatility of €/£ on those of $/£ and $/€ although its adjusted R2 is
just slightly lower than Model 1. As our pricing bounds for cross-rate
options are linear combinations of the prices of two dollar-rate options
with particular strike prices, our bounds provide a solution to the
multicollinearity problem by transforming two highly correlated implied
volatilities to two less associated bounds. As a result, using the bounds
instead of the dollar-rate implied volatilities enables our analysis to be
more valid and reliable.
Model 1 : MIVt ¼ cþ b1UBt þ b2LBt þ et; ð5Þ
where MIVt, UBt, and LBt, respectively, denote the market
implied volatility of the one-month cross-rate option on
€/£, the upper bound, and the lower bound at day t, and
et is the residual term.10 The estimates for this model are
shown in Panel 1 of Table 3.

From Panel 1 of Table 3, we find highly significant
regression coefficients of b1 and b2. The adjusted R2s are
very high and range from 0.72 to 0.77 across deltas. It is
noticeable that b1 adheres to a small range (between 0.33
and 0.39) while b2 ranges from 0.26 to 0.59. In other words,
the upper bound contains almost the same level of informa-
tion content for the cross-rate options across delta, while
the lower bound contains different levels of information
content across deltas. In short, we confirm that there are
strong and stable relationships between the market prices
of cross-rate options and the pricing bounds estimated
from the market prices of the options on two dollar rates.

From the analytical properties in Proposition 2, we find
that no correlation information is used in the calculation of
the pricing bounds of the cross-rate options, for which we
only utilize the price information of the options on two
dollar rates individually. However, Driessen et al. (2006)
analyze the relationship between the prices of stock index
options and the prices of individual stock options included
in the index, and they find the relevance of correlation risk
and the associated premium for stock index options pric-
ing. Inspired by their results, this paper includes an extra
explanatory variable, the historical correlation of two dol-
lar rates, into Model 1 to see whether the correlation is able
to provide additional explanatory power. Thus, the regres-
sion model is modified as
10 As the bounds are estimated every day from the one-month options,
the data used for the regression model are daily data.



Table 3
Explanatory power of estimated bounds and correlation to market implied volatility

Delta 0.9 0.75 0.63 0.5 0.37 0.25 0.1

Panel 1: Model 1

b1 0.3388 0.3948 0.3871 0.3594 0.3409 0.3245 0.3088
(22.79) (27.01) (26.93) (24.60) (22.17) (19.22) (15.64)

b2 0.5279 0.2611 0.3229 0.4180 0.5248 0.5730 0.5886
(10.40) (6.34) (8.41) (10.50) (11.61) (11.06) (9.82)

Adjusted R2 0.7421 0.7162 0.7400 0.7576 0.7706 0.7636 0.7543

Panel 2: Model 2

b1 0.3720 0.4079 0.4033 0.3815 0.3700 0.3618 0.3598
(32.43) (38.10) (38.30) (35.19) (31.53) (26.93) (21.72)

b2 0.3872 0.2506 0.2967 0.3629 0.4354 0.64470 0.4133
(9.82) (8.32) (10.57) (12.30) (12.62) (10.81) (8.17)

b3 �0.1127 �0.1256 �0.1225 �0.1174 �0.1131 �0.1100 �0.1055
(�18.56) (�20.38) (�20.43) (�19.97) (�18.88) (�17.23) (�15.17)

Adjusted R2 0.8502 0.8483 0.8613 0.8680 0.8687 0.8542 0.8341

This table consists of the regression results of the following two models:
Model 1: MIVt = c + b1UBt + b2LBt + et.
Model 2: MIVt = c + b1UBt + b2LBt + b3Corrt + et.
Here, MIVt, UBt, LBt, and Corrt denote, respectively, the market implied volatility of an option on €/£, the upper bound, the lower bound, and the
historical DCC correlation between S/€ and $/£ at day t, and et is the residual term. The numbers in the parentheses are t-statistics.
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Model 2 : MIVt ¼ cþ b1UBt þ b2LBt þ b3Corrt þ et;

ð6Þ
11 As expected, the result has an almost perfect goodness-of-fit
(R2 ’ 0.96) owing to correcting the considerable first-order serial corre-
lation in the residuals of Model 2.
where Corrt is the DCC correlation coefficients of two dol-
lar rates at day t. When the correlation of two dollar rates
increases, the variance of the cross-rate decreases and thus
the cross-rate option price also decreases. Therefore, the
regression coefficient of the historical correlation (b3) is ex-
pected to be negative.

The regression results for Model 2 are shown in Panel 2
of Table 3. It is clearly seen that the correlations of two
dollar rates provide incremental information in explaining
cross-rate option prices as all adjusted R2s increase by
about 10% in comparison to Model 1. The regression coef-
ficients for the correlation across deltas are significantly
negative and consistent with our expectation. Furthermore,
our results are in line with the analyses and findings of Dri-
essen et al. (2006).

As volatility is usually highly persistent, it is expected
that including the one-period lagged volatility as an inde-
pendent variable will increase the goodness-of-fit. How-
ever, in this study what we intend to investigate is how
well the cross-rate option price can be explained by the dol-
lar-rate price information only (i.e. without previous cross-
rate option price information), rather than how well the
model can be specified. Therefore, we only use the esti-
mated upper and lower bounds as the explanatory vari-
ables in this study. For comparison, we also include the
one-period lagged cross-rate implied volatility as an addi-
tional explanatory variable in Model 2. The unreported
results show that even with the additional explanatory var-
iable which is highly correlated with the dependent vari-
able, the coefficients of the upper and lower bounds and
the correlation are still significant at the 1% level and their
signs are still consistent with the theoretical expectations.11

Due to the significant in-sample explanatory power of
the estimated bounds and correlation to the market prices
of cross-rate options, we are interested in the performance
of our empirical models in the out-of-sample prediction.
Given the estimated parameters of the previous model
(Model 2), we predict the current implied volatility for
the cross-rate (€/£) options from the current market prices
of the dollar-rate options and the historical correlation.
The actual and predicted implied volatilities of the cross-
rate options for the delta of 0.5 are shown in Fig. 2. The
results for other moneyness are very similar and thus
omitted.

The prediction errors, defined as the absolute values of
the actual values minus the predicted values of implied vol-
atilities, from Model 2 are generally small. The average
errors across deltas are about 0.3%, which is smaller than
the bid-ask spread in the OTC market. In addition, the vol-
atilities of the prediction errors are very small as well
(about 0.3%), implying that the model performs consis-
tently well across time.

In summary, the pricing bounds estimated from option
prices of two dollar rates and the correlation of two dollar
rates can provide highly significant information for
explaining the cross-rate option prices across deltas. Our
results are valuable since our pricing bounds (which are
portfolios of dollar rate options) are applicable to practical
usage not only for price explanation, but also for hedging,



Delta: 0.5

0.00

0.05

0.10

0.15

0.20

04
/1

4/
99

06
/1

4/
99

08
/1

4/
99

10
/1

4/
99

12
/1

4/
99

02
/1

4/
00

04
/1

4/
00

06
/1

4/
00

/1
4/

00
08

10
/1

4/
00

12
/1

4/
00

Actual Predicted

Fig. 2. Actual and predicted implied volatilities for cross-rate options.
This figure consists of the evolution of the actual and predicted Black–
Scholes implied volatilities of the cross-rate (€/£) options with the delta of
0.5. The actual implied volatilities are backed out from the market prices
of options. The predicted implied volatilities are obtained from Model 2 in
Section 4 using the market prices of options on two dollar rates, $/£ and $/
€, and the historical DCC correlation of two dollar rates.
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particularly when the real-time cross-rate option prices are
unobservable.
4.3. Robustness analysis

To investigate whether our results are robust, we first
check whether the estimated bounds rely on the assump-
tion of the RND for the dollar rates, and then we analyze
whether the out-of-sample prediction errors from Model 2
are sensitive to sample selection, the implied volatility level,
and changes in the curvature of the implied volatility
function.

To check whether the estimated bounds depend on the
distribution assumption of the dollar rate, we assume that
the RNDs of two dollar rates follow the lognormal mix-
tures distribution and then compare the bounds estimated
under this assumption with those under the GB2 distribu-
tion assumption. As shown in Table 4, the differences
between the bounds estimated using these two different
RND assumptions are statistically insignificant across del-
tas at the 10% significance level although the differences of
Table 4
Robustness analysis for option bounds

Delta 0.9 0.75 0.63

Panel 1: Upper bounds

GB2 0.2087 0.2061 0.2056
Mixtures 0.2086 0.2060 0.2056
p-Value 0.9741 0.9811 0.9925

Panel 2: Lower bounds

GB2 0.0405 0.0319 0.0302
Mixtures 0.0412 0.0325 0.0309
p-Value 0.3566 0.4237 0.3274

This table consists of the means of the upper and lower bounds of the cross-rat
assumptions, GB2 and lognormal mixtures, for the dollar rates. In addition, th
provided.
the lower bounds are larger than those of the upper
bounds.

To check whether sample selection affects our findings,
we re-do the out-of-sample prediction of Model 2 for two
evenly divided sub-samples. Although the prediction errors
are slightly higher in the second sub-periods (0.31% vs.
0.35% on average), the patterns across deltas are basically
the same. In other words, our finding does not depend on
the sample selection.

As the volatility of exchange rates increases over our
sample period, it is natural to check whether the increasing
volatility affects the accuracy of information provided by
our pricing bounds. Moreover, although the average
implied volatilities of all exchange rates exhibit a smile
shape, the slopes of the implied volatility curves vary from
being negatively sloped to positively sloped during our
sample period. This implies that risk-neutral skewness
and kurtosis change substantially every day. Therefore,
to further check whether the out-of-sample prediction error
of Model 2 depends on the volatility level or the change in
the curvature of the implied volatility function, we first cal-
culate the implied volatility, skewness, and kurtosis using
Theorem 1 of Bakshi et al. (2003) and then run the follow-
ing regression model:

Et ¼ cþ aEt�1 þ bX t; ð7Þ
where Et denotes the percentage prediction error and Xt

represents the implied volatility, skewness, or kurtosis level
estimated using the approach of Bakshi et al. (2003) at time
t. The AR(1) specification is motivated by the high first-or-
der autocorrelation of prediction errors. The estimates are
reported in Table 5. All b coefficients are insignificant un-
der the 10% significance level.

Fig. 3 indicates that the RNDs of the cross-rates are fat-
tailed (average kurtosis equals 3.31) and slightly negatively
skewed (average skewness equals �0.13). Fig. 3 also shows
that the implied skewness changes noticeably over time.
Nevertheless, Panel 2 of Table 5 suggests that there is no
clear evidence supporting that the prediction errors across
deltas are affected even though implied skewness changes
much. Similarly, Panel 3 of Table 5 shows that the implied
0.5 0.37 0.25 0.1

0.2058 0.2064 0.2077 0.2118
0.2058 0.2065 0.2078 0.2119
0.9996 0.9936 0.9883 0.9763

0.0315 0.0352 0.0396 0.0478
0.0316 0.0353 0.0399 0.0476
0.9205 0.8876 0.5895 0.7957

e (€/£) options across deltas, which are estimated using two different RND
e p-values of the mean equality tests for the two assumed distributions are



Table 5
Robustness analysis for out-of-sample prediction errors

Delta 0.9 0.75 0.63 0.5 0.37 0.25 0.1

Panel 1: Regression of errors on implied volatility

b 0.0133 �0.0651 �0.1138 �0.1174 �0.0495 �0.0128 0.0990
(0.10) (�0.55) (�1.00) (�1.02) (�0.46) (�0.12) (0.91)

Panel 2: Regression of errors on implied skewness

b 0.0099 0.0027 0.0104 0.0119 0.0242 0.0399 0.0612
(0.40) (0.12) (0.48) (0.54) (1.18) (1.96) (3.07)

Panel 3: Regression of errors on implied kurtosis

b �0.0027 0.0121 0.0153 0.0149 �0.0018 �0.0136 �0.0264
(0.12) (0.58) (0.75) (0.73) (�0.09) (�0.71) (�1.39)

This table consists of the parameter estimates of the following regression model used to analyze whether the out-of-sample prediction errors for Model 2
depend on volatility, skewness or kurtosis.

Et ¼ cþ aEt�1 þ bX t þ et;

where Et denotes the prediction error in percentage and Xt is the implied volatility, implied skewness, or implied kurtosis at time t estimated using
Theorem 1 of Bakshi et al. (2003). The numbers in the parentheses are t-statistics.
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Fig. 3. Implied skewness and kurtosis for cross-rate options. This figure
consists of the evolutions of the implied skewness and kurtosis of the
cross-rate (€/£) options. The implied skewness and kurtosis are calculated
using Theorem 1 of Bakshi et al. (2003). The results indicate that the risk-
neutral distributions of the cross-rates are fat-tailed (average kurtosis
equals 3.31) and slightly negatively skewed (average skewness equals
�0.13).

Fig. 4. Delta bounds of a cross-rate option. This figure consists of the
upper and lower bounds on the delta of the ATM cross-rate (€/£) call
option traded on June 29, 1999 when the cross-rate option price is
unknown (dashed lines) or known (dotted lines). The delta bounds are
calculated using the Propositions 5 and 6 of Bergman et al. (1996).
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kurtosis has little impact on the prediction errors across
deltas.

In summary, the accuracy of information provided by
our pricing bounds is immune to the market volatility level
and the change in the curvature of the implied volatility
function. Other proxies of the market volatility level, such
as the implied volatilities for different moneyness levels, are
also used and the results (not reported here) are almost
unchanged.
4.4. Bounds on delta of cross-rate options

Given the estimated pricing bounds in terms of implied
volatility, it is plausible to bound the cross-rate option’s
delta using our pricing bounds with Propositions 5 (or
Proposition 6) of Bergman et al. (1996) when the call price
of the cross-rate is unknown (or known).

We take the at-the-money (ATM) cross-rate call option
traded on June 29, 1999 as an example and depict its delta
bounds in Fig. 4. The solid lines in the descending order are
the Black–Scholes prices computed as a function of the
underlying asset price using volatilities of the upper bound,
the market implied volatility, and the lower bound, respec-
tively. When the cross-rate call price is unknown, its delta
is bounded between 0.0261 and 0.9704 (dashed lines).
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When the call price is known, the delta bounds become
tighter and ranges from 0.1248 to 0.8775 (dotted lines).12
5. Concluding remarks

Instead of pricing cross-rate options directly, this study
relates the option pricing bounds to the prices of the corre-
sponding dollar-rate options. Our pricing bounds are
derived from a general result of the copula theory and thus
do not rely on the distribution assumptions of state vari-
ables. Different from most option pricing bounds in the lit-
erature, our cross-rate option bounds are functions of the
option prices (and sometimes also the spot prices) of two
dollar rates.

Using the prices of options on foreign exchange rates
among US dollar, euro, and pound sterling for the empir-
ical tests, we show the persistent relationships between the
market prices of the cross-rate (€/£) options and our pric-
ing bounds. Our pricing bounds and the correlation
between two dollar rates provide 85% of the information
in explaining the prices of the cross-rate options. There-
fore, our results are useful for risk management and deriv-
ative pricing, particularly for those having cross-rate risk
exposures and when only the current option prices of two
dollar rates are available.

The technique utilized to derive our cross-rate option
pricing bounds can be applied to any European derivative
security whose payoff can be rearranged as the same type as
that of an exchange option. For example, one can derive
the pricing bounds for quanto options using the copula
approach applied in this paper.13 Further analyses related
to the pricing bounds of the other type of exchange options
are left to interested readers for future research.
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Appendix A

Derivation of the price bounds for the cross-rate option

Let Pr, Fi(x), and r be the probability, the cumulative dis-
tribution function, and the dollar risk-free interest rate,
respectively. Due to Breeden and Litzenberger (1978), the
price of an option on the minimum of two risky assets
can be expressed as

CallminðS$=£;KS$=€; 0; t; T Þ

¼ e�rðT�tÞ
Z 1

0

PrðminðS$=£;KS$=€Þ > xÞdx

¼ e�rðT�tÞ
Z 1

0

PrðS$=£ > x;KS$=€ > xÞdx

¼ e�rðT�tÞ
Z 1

0

CðF S$=£ðxÞ; F KS$=€ðxÞÞdx; ðA:1Þ

where C is a survival copula14 and F iðxÞ ¼ 1� F iðxÞ.
According to the Fréchet bounds in the copula theory, it is
true that maxðuþ v� 1; 0Þ 6 Cðu; vÞ 6 minðu; vÞ since
Cðu; vÞ is a copula. Consequently, the upper and lower
bounds of the minimum option are given as the following,
respectively:

CallþminðS$=£;KS$=€; 0; t; T Þ

¼ e�rðT�tÞ
Z 1

0

minðF S$=£ðxÞ; F KS$=€ðxÞÞdx;

Call�minðS$=£;KS$=€; 0; t; T Þ

¼ e�rðT�tÞ
Z 1

0

maxðF S$=£ðxÞ þ F KS$=€ðxÞ � 1; 0Þdx:

ðA:2Þ

Since F iðuÞ is a decreasing function of u and K** is a con-
stant which solves F S$=£ðK��Þ þ F KS$=€ðK��Þ ¼ 1, it is true
that F S$=£ðuÞ þ F KS$=€ðuÞP 1 for u 6 K**. Therefore, the
lower bound of the minimum option is

Call�minðS$=£;KS$=€; 0; t; T Þ

¼ e�rðT�tÞ
Z 1

0

maxðF S$=£ðuÞ þ F KS$=€ðuÞ � 1; 0Þdu

¼ e�rðT�tÞ
Z K��

0

F S$=£ðuÞduþ e�rðT�tÞ

�
Z K��

0

F KS$=€ðuÞdu� e�rðT�tÞ
Z K��

0

du

¼ e�rðT�tÞ
Z 1

0

F S$=£ðuÞdu� e�rðT�tÞ
Z 1

K��
F S$=£ðuÞdu

þ e�rðT�tÞ
Z 1

0

F KS$=€ðuÞdu� e�rðT�tÞ

�
Z 1

K��
F KS$=€ðuÞdu� e�rðT�tÞ

Z K��

0

du
14 If two uniform variables U and V are jointed with a copula function C,
then the joint probability that U and V are greater than u and v,
respectively, is given by a survival function:

PrðU > u; V > vÞ ¼ 1� u� vþ Cðu; vÞ ¼ Cð1� u; 1� vÞ:
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¼ S$=£
t e�r£ðT�tÞ � CallðS$=£;K��; t; T Þ þ KS$=€

t e�r€ðT�tÞ

� CallðKS$=€;K��; t; T Þ � e�rðT�tÞK��: ðA:3Þ

Substituting Eq. (A.3) into Eq. (2) and applying the put–
call parity, we obtain the upper bound of the cross-rate op-
tion price as

Call€=£þ

$ ¼ S$=£
t e�r£ðT�tÞ � Call�minðS$=£;KS$=€; 0; t; T Þ

¼ CallðS$=£;K��; t; T Þ þ PutðKS$=€;K��; t; T Þ
¼ CallðS$=£;K��; t; T Þ þ KPutðS$=€;K 00; t; T Þ; ðA:4Þ

where K00 = K**/K.
Assume that there exists a constant K* such that

F S$=£ðK�Þ ¼ F KS$=€ðK�Þ. If F S$ =£ðuÞ < F KS$=€ðuÞ for u < K*,
then it is straightforward to show that the upper bound
of the minimum option is

CallþminðS$=£;KS$=€; 0; t; T Þ

¼ e�rðT�tÞ
Z 1

0

minðF S$=£ðuÞ; F KS$=€ðuÞÞdu

¼ e�rðT�tÞ
Z K�

0

F S$=£ðuÞduþ e�rðT�tÞ
Z 1

K�
F KS$=€ðuÞdu

¼ e�rðT�tÞ
Z 1

0

F S$=£ðuÞdu� e�rðT�tÞ
Z 1

K�
F S$=£ðuÞdu

þ e�rðT�tÞK
Z 1

K�=K
F S$=€ðuÞdu

¼ S$=£
t e�r£ðT�tÞ � CallðS$=£;K�; t; T Þ þ KCallðS$=€;K 0; t; T Þ;

ðA:5Þ

where K 0 = K*/K. Substituting Eq. (A.5) into Eq. (2) yields
the lower price bound of the cross-rate option as

Call€=£�

$ ¼ S$=£
t e�r£ðT�tÞ � CallþminðS$=£;KS$=€; 0; t; T Þ

¼ CallðS$=£;K�; t; T Þ � KCallðS$=€;K 0; t; T Þ: ðA:6Þ

Similarly, if F S$=£ðuÞ > F KS$=€ðuÞ for u < K*, then one can
derive that

CallþminðS$=£;KS$=€; 0; t; T Þ ¼ KS$=€
t e�r€ðT�tÞ

� KCallðS$=€;K 0; t; T Þ þ CallðS$=£;K�; t; T Þ;
Call€=£�

$ ¼ S$=£
t e�r£ðT�tÞ � KS$=€

t e�r€ðT�tÞ

þ KCallðS$=€;K 0; t; T Þ � CallðS$=£;K�; t; T Þ:

ðA:7Þ
Appendix B

Proof of Proposition 2

When the two dollar rates follow a bivariate lognormal
distribution, F S$=£ðKÞ is actually the risk-neutral probability
that the European call option on $/£ with a strike price of
K will be exercised, because

F S$=£ðKÞ ¼ 1� F S$=£ðKÞ ¼ 1� Pr S$=£
T < K

� �

¼ N d2 S$=£
t ;K; r$; r£; r$=£; s

� �� �
;

where s = T � t and d2ð�Þ ¼
ln S$=£

t =Kð Þþ r$�r£�1
2r

2
$=£

� �
s

r$=£

ffiffi
s
p . There-

fore, K** in Proposition 1 is a constant satisfying that

N d2 S$=£
t ;K��; r$; r£; r$=£; s

� �� �
þ N d2 KS$=€

t ;K��; r$; r€; r$=€; s
� �� �

¼ 1:

Since NðxÞ þ Nð�xÞ ¼ 1 is true, one can show that

d2 S$=£
t ;K��; r$; r£; r$=£; s

� �
¼ �d2 KS$=€

t ;K��; r$; r€; r$=€; s
� �

:

ðA:8Þ

Thus, the solution of for K** is

K�� ¼ KS$=€
t

� � r$=£
r$=£þr$=€ S$=£

t

� � r$=€
r$=£þr$=€ exp r$ �

r$=€

r$=£ þ r$=€

� �
r£

	

� r$=£

r$=£ þ r$=€

� �
r€ �

r$=£r$=€s

2



: ðA:9Þ

From Eqs. (3) and (A.8), the upper bound is given by

S$=£
t e�r£sN d1 S$=£

t ;K��; r$; r£; r$=£; s
� �� �

� K��e�r$sN d2 S$=£
t ;K��; r$; r£; r$=£; s

� �� �
þ K��e�r$sN �d2 KS$=€

t ;K��; r$; r€; r$=€; s
� �� �

� KS$=€
t e�r€sN �d1 KS$=€

t ;K��; r$; r€; r$=€; s
� �� �

¼ S$=£
t e�r£sN d1 S$=£

t ;K��; r$; r£; r$=£; s
� �� �

� KS$=€
t e�r€sN �d1 KS$=€

t ;K��; r$; r€; r$=€; s
� �� �

:

Note that the above upper bound is denominated in US
dollars and its value in euros is

S€=£
t e�r£sN d1 S$=£

t ;K��; r$; r£; r$=£; s
� �� �

� Ke�r€sN �d1 KS$=€
t ;K��; r$; r€; r$=€; s

� �� �
: ðA:10Þ

Substituting Eq. (A.9) into Eq. (A.10) yields the upper
bound, i.e.

S€=£
t e�r£sN d1 S€=£

t ;K; r€; r£; r$=£ þ r$=€; s
� �� �

� Ke�r€sN d2 S€=£
t ;K; r€; r£; r$=£ þ r$=€; s

� �� �
¼ CBS S€=£

t ;K; r€; r£; r$=£ þ r$=€; s
� �

:

For brevity, we derive the lower bound only for the case
where r$/£ > r$/€. Since K* satisfies that N d2 S$=£

t ;
��

K�; r$; r£; r$=£; sÞÞ ¼ N d2 KS$=€
t ;K�; r$; r€; r$=€; s

� �� �
, one can

show that its solution is

K� ¼ KS$=€
t

� � r$=£
r$=£�r$=€ S$=£

t

� � �r$=€
r$=£�r$=€ exp r$ þ

r$=€

r$=£ � r$=€

� �
r£

	

� r$=£

r$=£ � r$=€

� �
r€ þ

r$=£r$=€s

2



: ðA:11Þ

Since r$/£ > r$/€, it is straightforward to show that when
u < K*,
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N d2 S$=£
t ; u; r$; r£; r$=£; s

� �� �

¼ N d2 S$=£
t ;K�; r$; r£; r$=£; s

� �
þ lnðK�=uÞ

r$=£

ffiffiffi
s
p

� �

< N d2ðKS$=€
t ;K�; r$; r€; r$=€; sÞ þ

lnðK�=uÞ
r$=€

ffiffiffi
s
p

� �

¼ N d2 KS$=€
t ; u; r$; r€; r$=€; s

� �� �
:

Therefore, the lower bound is determined by the first alter-
native of Eq. (4),15 i.e.

S$=£
t e�r£sN d1 S$=£

t ;K�; r$; r£; r$=£; s
� �� �

� K�e�r$sN d2 S$=£
t ;K�; r$; r£; r$=£; s

� �� �
� KS$=€

t e�r€sN d1 KS$=€
t ;K�; r$; r€; r$=€; s

� �� �
þ K�e�r$sN d2 KS$=€

t ;K�; r$; r€; r$=€; s
� �� �

¼ S$=£
t e�r£sN d1 S$=£

t ;K�; r$; r£; r$=£; s
� �� �

� KS$=€
t e�r€sN d1 KS$=€

t ;K�; r$; r€; r$=€; s
� �� �

:

The above lower bound is denominated in US dollars and
its value in euros is

S€=£
t e�r£sN d1 S$=£

t ;K�; r$; r£; r$=£; s
� �� �

� Ke�r€sN d1 KS$=€
t ;K�; r$; r€; r$=€; s

� �� �
: ðA:12Þ

Substituting Eq. (A.11) into Eq. (A.12) yields the lower
bound, i.e.

S€=£
t e�r£sN d1 S€=£

t ;K; r€; r£; r$=£ � r$=€; s
� �� �

� Ke�r€sN d2 S€=£
t ;K; r€; r£; r$=£ � r$=€; s

� �� �
¼ CBS S€=£

t ;K; r€; r£; r$=£ � r$=€; s
� �

:
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