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ABSTRACT. While the traditional economic wisdom believes that an
individual will become better off by being given a larger opportunity set to
choose from, in this paper we question this belief and build a formal the-
oretical model that introduces decision costs into the rational decision
process. We show, under some reasonable conditions, that a larger feasible
set may actually lower an individual’s level of satisfaction. This provides a
solid economic underpinning for the Simon prediction.
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1. INTRODUCTION

The traditional economic wisdom believes that an individual
will become better off (or, at least not worse off) by being given
a larger opportunity set to choose from. This notion implies
that the agent can give up those incremental alternatives that
are unwanted without incurring any cost. As pointed out by
Conlisk (1988), agents are typically assumed to reason cost-
lessly in regard to a decision about how much information to
collect and, given that information, to reason costlessly in
relation to an optimal final action. However, it is well recog-
nized pragmatically (see, for instance, Baumol and Quandt,
1964; Williams and Findlay, 1981) that an agent will incur some
decision costs when he makes a choice. The experimental
economists, such as Smith (1989), Pingle (1992), and Wilcox
(1993), use psychological experiments to prove that the decision
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cost (measured in terms of decision-making time) is often a key
factor affecting an agent’s choice among alternatives.

Simon (1955) has argued that people may not always
follow the rational decision-making rule as described by
economists, one of the main reasons for this being the exis-
tence of decision costs. Accordingly, he proposes the concept
of bounded rationality to challenge the traditional economics
of the unbounded rational decision. In a survey paper,
Conlisk (1996) also concludes that the deliberation cost is
one of the major reasons why an individual does not act
‘‘rationally.’’ However, the decision costs are suppressed in
most economic analyses.

The aim of this paper is to shed light on the importance
of the decision cost in rational decision theory. While we do
not set out to provide yet another proof of the existence of
bounded rationality and decision costs, our intention is to set
up a formal theoretical model and demonstrate how we
should view things differently when having a larger feasible
set to choose from, given the existence of decision costs. To
be more specific, we will show that, under certain reasonable
conditions, the net expected benefit of choosing from a
larger feasible set might be smaller. Consequently, the
decision-maker might not be better off by being given a
larger number of choices. This will provide a solid economic
underpinning for the Simon prediction.

This issue has become more important than ever during the
present era of information overload. By using an Internet
search engine, it is easy for an individual to obtain an enormous
feasible set to choose from. People often embrace this increase
in the size of the feasible set, which seems to be beneficial at first
glance, while failing to realize the implicit costs involved in the
decision-making process. When faced with such decision costs,
we can observe that in reality some people would actually
prefer to choose from a smaller, but more manageable, feasible
set. In Sections 2 and 3, we will build a new model that runs
counter to the usual model in rational decision theory and use it
to express our viewpoint. Section 4 discusses the robustness of
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our main results and provides numerical calibrations for these
results. Section 5 concludes.

2. THE DECISION PROCEDURE AND OPTIMIZATION PROBLEM

Our model shares some concepts with the bounded rationality
theory, such as in Simon (1955) and Lipman (1991), and
introduces decision costs into the decision-making process.
Naturally, there are N bundles in the feasible set that
can be ranked according to the order of preferences
x1 � x2 � � � � � xN. The same can be done for the corre-
sponding benefits bðxÞ, that is, bðx1Þ > bðx2Þ > � � � > bðxNÞ.
Following Simon (1955), we consider

ASSUMPTION 1. A decision-maker (henceforth DM), facing
non-trivial decision costs, follows a two-stage decision process
as follows:

• Stage 1. (screening process): The DM pre-selects those
alternative bundles x that fit into the profile of having the
potential to become the ‘‘best bundle’’. Specifically, the DM
will pick up n bundles from the feasible set that has N
alternative bundles. The n selected bundles constitute the
considered subset.1

• Stage 2. (evaluation process): The DM evaluates all of the
selected bundles x, calculates their corresponding benefits
bðxÞ, and chooses the best bundle xk (and hence derives
benefit bðxkÞ) from the n considered bundles.2 In addition,
the evaluation process entails some evaluation (or decision)
costs C,3 which could be thought of as either a pecuniary cost
of evaluating or a psychological disutility stemming from
deliberating over a decision, such as hesitation and uneasi-
ness. For simplicity, the evaluation cost is specified as a
linear increasing function with respect to n, i.e. CðnÞ ¼ c � n.

To be more specific, given N alternatives, fxigNi¼1, the DM
knows there are N possible values of benefits, fbigNi¼1.

4

Although the DMmay know the possible values of b, he cannot
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match the correct value b with an alternative x without further
evaluation. In other words, the DM does not have exact
knowledge regarding the true ranking for N bundles during the
screening process; the evaluation process, however, can match
the bundles x with their correct benefits b.

By means of both the screening process and the evaluation
process, the DM maximizes his net expected benefit, V, as
follows:

ASSUMPTION 2. V � EBðx; n;NÞ � c � n.
Because the agent does not have exact knowledge regarding

the ranking of x and bðxÞ for N bundles during the screening
process, he can only ex-ante consider the following factor,
namely, the expected benefit EBðx; n;NÞ. The expected benefit
is related to the size of the considered subset n, the benefit
arising from the best bundle bðxkÞ among the n considered
bundles after the evaluation is performed, and the number of
alternative bundles in the feasible set N. Notice that, even after
evaluation, the DM still cannot be sure that xk is the best
bundle out of all of the alternatives, i.e. x1, unless he chooses to
evaluate all alternative bundles, i.e. n ¼ N.

Backward induction is applied to solve this two-stage opti-
mization decision problem. During the second stage, given that
n is chosen during the first stage, the DM evaluates these n
considered bundles, finds the best optimal bundle xk (and hence
derives benefit bðxkÞ), and incurs the decision cost c � n. By
internalizing these possible results, the DM’s goal during the
first stage is to choose an optimal n so as to maximize V. If the
agent chooses a larger n, on the one hand, he has a higher
probability of obtaining a higher level of bðxkÞ (i.e. a smaller k),
but, on the other hand, he will also incur a higher decision cost.
If n ¼ N, then the agent can obtain the highest benefit bðx1Þ for
sure, but he will also incur the highest decision cost as measured
by c �N.

Given the evaluated result bðxkÞ and the decision costs c � n,
the optimal size is:
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n� ¼ argmax
n

V � EBðx; n;NÞ � C

¼
XN�nþ1

k¼1
Pkðn;NÞ � bðxkÞ � c � n; ð1Þ

where

Pkðn;NÞ ¼
N� k

n� 1

� ��
N

n

� �

¼ ðN� kÞ!=
�
ðn� 1Þ!ðN� n� kþ 1Þ!

�

� ðn! ðN� nÞ!=N!Þ; 1 � k � N� nþ 1:

To obtain the expected benefit EBðx; n;NÞ, we should first
calculate the probability of obtaining the bundle xk, namely
Pkðn;NÞ.5 Given that the sizes of the considered subset and the
feasible set are n and N, respectively, the total number of
possible combinations of choosing n from N is N

n

� �
. Further-

more, the number of possible combinations of picking the best

bundle xk out of n considered bundles is N� k
n� 1

� �
. Thus, the

probability of obtaining the bundle xk, Pkðn;NÞ, is the ratio of
N� k
n� 1

� �
to N

n

� �
as demonstrated in (1). In an extreme case

where n ¼ N, we then have P1ðN;NÞ ¼ 1.

A numerical example might be helpful in understanding the
inference of Pkðn;NÞ. We set N ¼ 10, n ¼ 3, and the considered
bundles as ðxi; xj; xkÞ, where i 6¼ j 6¼ k and 8i; j; k ¼ 1; . . . ; 10.
Accordingly, the total number of possible combinations for the

considered subset is 10
3

� �
¼ 10!

�
ð3! 7!Þ ¼ 120. If the considered

subset consists of x1, i.e. k ¼ 1 (of course, x1 is the best among
the three considered bundles), then the considered bundles are
ðx1; xi; xjÞ, where i 6¼ j and 8i; j ¼ 2; . . . ; 10. Given that the
position of x1 is certain, obtaining the possible combinations of
ðx1; xi; xjÞ involves choosing two bundles xi and xj from the
nine bundles x2–x10. In other words, the number of possible
combinations of picking up x1 from the three considered

bundles is 9
2

� �
¼ 9!

�
ð2! 7!Þ ¼ 36. Thus the probability of
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obtaining the bundle x1 is P1ðn ¼ 3; N ¼ 10Þ ¼ 36
�
120 ¼

3
�
10. If k ¼ 2 and x2 (the second best among all bundles) is the

best among three considered bundles, then the considered
subset must rule out x1. Hence the number of possible

combinations that would pick up x2 is 8
2

� �
¼ 8!

�
ð2! 6!Þ ¼ 28.

Accordingly, we have P2ðn ¼ 3;N ¼ 10Þ ¼ 28
�
120 ¼ 7

�
30. We

can infer the probability of obtaining xk as Pkðn ¼ 3;N ¼ 10Þ ¼
10� k

2

� �.
120 in the case where N ¼ 10 and n ¼ 3. By the same

logic, in the general case the probability of obtaining xk is

Pkðn;NÞ ¼ N� k
n� 1

� �,
N
n

� �
, as expressed in (1).

Define a cumulative probability function as

Ukðn;NÞ � PrðbðxÞPbðxkÞÞ ¼
Xk

i¼1
Piðn;NÞ;

and we have:

LEMMA 1. Ukðnþ 1;NÞPUkðn;NÞ 8k.
Proof. See Appendix A.

Furthermore, according to the concept of ‘‘stochastic domi-
nance’’ defined by Hardar and Russell (1969), the following
lemma is also obtained immediately:

LEMMA 2. Suppose that there are two probability density func-
tions fð�Þ and gð�Þ with respect to a random variable x. Let us denote
their corresponding cumulative probability density functions as FðxÞ
and GðxÞ, respectively. If FðxÞ � GðxÞ 8x and bð�Þ is a decreasing
function of x, then

P
bðxÞ � fðxÞP

P
bðxÞ � gðxÞ must hold.

From the relationship bðx1Þ > bðx2Þ > � � � > bðxNÞ and
Lemmas 1 and 2, we establish:

PROPOSITION 1. Under Assumptions 1 and 2, then
EBðx; nþ 1;NÞPEBðx; n;NÞ.

This indicates that the expected benefit EB increases with the
size of the considered subset n.

HUEI-CHUNG LU ET AL.288



According to Proposition 1, the marginal decision-making
approach indicates that the optimal size of the considered
subset n� satisfies the condition in which the marginal benefit of
changing n (MB) equals its marginal cost (MC). That is,

MBðn�;NÞ � EBðx; n�;NÞ � EBðx; n� � 1;NÞ ¼ c: ð2Þ
One point should be noted. Since n is a discrete variable, (2)
may not always be satisfied. If so, the optimal n� is an integer
such that

,MB MC

c MC

c MC

c MC

MB

c MC

0  1 *n N n

(a)

MBM ,B MC

0 *n N n

MC

A

B
c

(b)

Figure 1.
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EBðx; n�;NÞ � EBðx; n� � 1;NÞ > c and

EBðx; n� þ 1;NÞ � EBðx; n�;NÞ < c: ð20Þ
However, in order to make our analysis more treatable and
without significant loss of generality, we focus on the case
where (2) is held.

To be sure that the optimal n� is acceptable to the DM, the
following condition.

ASSUMPTION 3. V� ¼ EBðx; n�;NÞ � c � n�P0 is required,
implying that, based on the optimal size of the considered
subset, the net expected benefit is non-positive.

We now explore the role of evaluation costs in determining
the optimal size of the considered subset in Figure 1(a) and (b).
In Figure 1(a) and (b), the MC curve is horizontal due to the
assumption of a fixed marginal decision cost. Since MB can be
either negatively or positively related to n, we need to discuss
these two possible cases. We start the discussion with the case
where MB has negative relationship with n, as described in
Figure 1(a). In the case of the traditional theory of rational
choice, the decision cost is trivial and infinitesimal (hence, the
marginal decision cost is close to zero, say c0). Thus, we yield a
corner solution, which indicates that the optimal size of the
considered subset is that of the feasible set, i.e. n� ¼ N. How-
ever, in most cases, the cost of evaluation is non-trivial, namely,
the marginal decision cost is c. In such a case, there is an interior
solution and the intersection of the curves MB and MC deter-
mines the optimal size of the considered subset n�. If the mar-
ginal decision cost is increased from c to c00, as depicted in
Figure 1(a), the optimal number of the considered bundles is
unity, because MB intersects MC at 1. This potentially implies
that the DMmay randomly select his alternative and the ex post
benefit of his decision will be completely dependent upon luck.
An extreme case is that, if the marginal cost is extremely high,
say c000, the optimal set of the considered bundles will be empty.
In such a situation, the DMwill give up all possible alternatives.
These results show that the optimal size of the considered subset
n� may fall short of the total number of alternatives N.
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We turn to the case where MB is positively related to n. Let �c
be a critical level of marginal cost such that the net expected
benefit is zero, i.e. EB ¼ C, which implies that the area A is
equal to the area B, as illustrated in Figure 1(b). If MC � �c, the
optimal n� will entail a positive net expected benefit V (due to
the area A being larger than the area B). Because the net ex-
pected benefit increases with n, the DMwill increase the number
of considered bundles until n� ¼ N. On the contrary, ifMC > �c,
the DM will decrease the size of n as much as he possibly can
due to EB < C 8n. In this case, n� ¼ 0 may be a possible
solution. In other words, given that MB is upward sloping, the
optimal number of considered bundles is a corner solution, i.e.
either n� ¼ 0 or n� ¼ N. We summarize the above results as:

PROPOSITION 2. Under Assumptions 1–3, in the presence of
non-trivial decision costs, the DM will not necessarily consider all
alternatives in the feasible set.

3. ARE MORE ALTERNATIVES BETTER FOR THE DM?

To shed light on our main point, we will henceforth place our
focus on the case of interior solutions (hence the case whereMB
is decreasing with n). Now, we consider a larger feasible set,
say, where the size of the feasible set increases from N to Nþ 1.
Corresponding to this size of feasible set of Nþ 1, the prob-
ability of picking xk from n considered bundles is denoted by
Pkðn;Nþ 1Þ, which is expressed as:

Pkðn;Nþ 1Þ

¼ N� kþ 1

n� 1

� �,
Nþ 1

n

� �

¼ ðN� kþ 1Þ!
ðn� 1Þ! ðN� n� kþ 2Þ! �

n! ðN� nþ 1Þ!
ðNþ 1Þ!

¼

ðN�nþ1ÞðN�kþ1Þ
ðNþ1ÞðN�n�kþ2Þ � Pkðn;NÞ if 1O kON� nþ 1;

ðN�nþ1Þ!
ðNþ1Þ! if k ¼ N� nþ 2;

0 if k > N� nþ 2:

8
><

>:
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According to (3), we have

LEMMA 3. Ukðn;NÞPUkðn;Nþ 1Þ 8k.
Proof. See Appendix B.

After the size of the feasible set is increased by 1, the rank and
the corresponding benefits are specified as ~x1 � ~x2 � � � � �
~xN � ~xNþ1 and as bð~x1Þ > bð~x2Þ > � � � > bð~xNÞ > bð~xNþ1Þ,
respectively. Accordingly, from Lemmas 2 and 3, it is easy to
derive the difference between EBðx; n;Nþ 1Þ and EBðx; n;NÞ
as:

EBðx; n;Nþ 1Þ � EBðx; n;NÞ

¼
XN�nþ2

k¼1
Pkðn;Nþ 1Þ � Pkðn;NÞ½ � � bð~xkÞ

þ
XN�nþ2

k¼1
Pkðn;NÞ � ½bð~xkÞ � bðxkÞ�: ð4Þ

In order to make our point more striking, we further assume
that the DM does not care about the intrinsic benefit of the
chosen bundle, but simply about the rank of the chosen bundle
among the feasible set. Specifically, we propose:

ASSUMPTION 4. bðxkÞ ¼ /ðkÞ, where /0 < 0.

The DM does not know the actual benefit arising from any
alternative bundle before the evaluation process is undertaken,
and therefore his goal may be to maximize satisfaction brought
in by the optimal bundle according to its ‘‘rank’’. The benefit
function may be specified more explicitly as bðxkÞ ¼ z� kc,
where z and c are coefficients. To examine the validity of the
proposition, in Section 4, based on this specification, we will
perform numerical simulations.

If the DM is only concerned with whether the selected
bundle is the best one out of the considered subset based on
its ‘‘rank’’ within the feasible set, and is not concerned with
whether the best bundle is chosen from either N alternative
bundles or ðNþ 1Þ bundles, the satisfaction (the feeling) from
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obtaining the highest ranking bundle from a considered subset
out of the feasible set ðNþ 1Þ will be the same as getting it
out of the feasible set N.6 That is, bð~xkÞ ¼ bðxkÞ, k ¼ 1;
2; . . . ; N and bðxNÞ > bð~xNþ1Þ. Given this assumption, we
modify (4) as:

EBðx; n;Nþ 1Þ � EBðx; n;NÞ

¼
XN�nþ2

k¼1
Pkðn;Nþ 1Þ � Pkðn;NÞ½ � � bðxkÞ: ð5Þ

Proposition 3 is immediately derived from (5).

PROPOSITION 3. Under Assumptions 1, 2 and 4, EBðx; n;NÞP
EBðx; n;Nþ 1Þ 8n and N.

Proof. See Appendix C.

Proposition 3 indicates that, a larger size of feasible set may
result in a lower expected benefits EB given a particular size of
the considered subset. However, more alternatives may lead the
DM to change his decision concerning the size of the considered
subset’s optimal n, and, as a result, alter his expected benefits
EB and decision costs C. Therefore, in what follows, we will
further explore the net change in welfare of the DM.

It easily follows from (2) that an increase in the number of
alternatives from N to Nþ 1 has an ambiguous effect on the
optimal n�, depending on the relative curvature of EBðx; n;NÞ
and EBðx; n;Nþ 1Þ. Based on this and Proposition 3, we then
have:

PROPOSITION 4. Under Assumptions 1–4, a larger feasible set
may make the DM worse off.

Proof. See Appendix D.

A remark should be made here: To make our argument
more striking, Proposition 4 is established under Assumption
4. However, we do not intend to claim that more alternatives
should make the DM worse off, particularly when Assump-
tion 4 is relaxed. Now we turn to the discussion concerning
the robustness of Proposition 4.
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4. DISCUSSION AND NUMERICAL SIMULATIONS

Propositions 3 and 4 are established under Assumption 4 in
which the DM does not care about the intrinsic benefit of the
chosen bundle, but simply about the rank of the chosen bundle
among the feasible set. However, in some cases the DM does
care about the intrinsic benefit of the alternative bundle, for
instance, utility from consumption. One may thus inquire about
the robustness of these propositions.

In what follows, we will show that Propositions 3 and 4 may
still hold, even though the DM is concerned with not only the
‘‘rank’’ of the chosen bundle, but also the ‘‘level’’ of benefit
derived from a chosen bundle. Suppose that the additional
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alternative is x̂, when the size of the feasible set increases from
N to Nþ 1. By letting x1 � � � � � xm�1 � x̂ � xm � � � � � xN,
we have

bð~xkÞ ¼ bðxkÞ for k ¼ 1; . . . ;m� 1

and bð~xkÞ > bðxkÞ for k ¼ m; . . . ;N:

Accordingly, the second item in (4) is positive and decreasing
with m. For example, in extreme cases, if x̂ � x1, this will result
in the largest value for the second item in (4) and if xN � x̂, this
will result in the smallest value for the second item in (4). Given
that the sign of the first item in (4) must be negative (inferred by
Lemma 3), Proposition 3 is more likely to be true when m is
larger (or bðx̂Þ is smaller). Provided that the negative effect of
the first term in (4) is substantially strong, Propositions 3 and 4
may be valid.

We next perform two sets of numerical simulations in order
to explicitly show the possibility of Proposition 4.

(1) The DM is only concerned with the rank of a chosen bundle

Let bðxkÞ ¼ 1000� k2 and C ¼ c � n ¼ 5 n, where k ¼ 1; . . . ;N.
Consider three possible sizes of the feasible set, say 20, 25, and
30, respectively. Figure 2(a) shows that, given that N is 20, 25
and 30, the associated optimal sizes of considered subset n� are
5 (or 6), 7 and 8, respectively. Furthermore, we can evaluate
their corresponding net expected benefits V as 956.5, 948.75 and
941.4. Obviously, the largest net expected benefit (956.5) is
derived from the smallest feasible set, N ¼ 20, rather than the
larger feasible sets, N ¼ 25 or N ¼ 30.

(2) The DM cares not only about the rank of a chosen bundle but
also its intrinsic value

Consider a benefit set fbðxkÞg20k¼1, namely F1, consisting of {999,
996, 991, 984, 975, 964, 951, 936, 919, 900, 879, 856, 831, 804,
775, 744, 711, 676, 639, 600}. The setting of the decision cost is
the same as in (1). Obviously, the benefit pertaining to the best
bundle is 999 while the benefit from the worst bundle is 600.
Now, assume that there is an additional bundle x̂ and that its
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corresponding benefit is denoted by bðx̂Þ. The benefit set with a
larger number of alternatives, N ¼ 21 (including bðx̂Þ), is de-
fined as F2.

We consider three possible cases: (i) bðx̂Þ is greater than all
of elements of the set F1 and is specified as 1,002 (> 999); (ii)
bðx̂Þ is smaller than all of elements of the set F1 and is spec-
ified as 580 (<600); (iii) bðx̂Þ is a middle value among the
elements of the set F1 and is specified as 890. Given these
specifications, Figure 2(b) shows that, under the feasible set
F1, the optimal size of the considered subset is n� ¼ 5 or 6,
(and hence the maximum net expected benefit is V� ¼ 956:5);
however, in response to an increase in the feasible set (i.e.
under the larger set F2), the optimal size of the considered
subset may either increase (n� ¼ 6 in case (ii) and (iii)) or
decrease (n� ¼ 5 in case (i)). The result is as predicted by our
deductions in Section 3.

Of great importance, when we consider a larger feasible set
F2, as indicated by Figure 2(b), is that the maximum net ex-
pected benefits become 961.38 in case (i), 955.22 in case (ii), and
955.07 in case (iii), respectively. Given that the maximum net
expected benefit is V� ¼ 956:5 under F1 with N ¼ 20, except in
case (i), the net expected benefit V does not increase with the
larger size N ¼ 21 of the feasible set F2. In other words, more
alternatives do not necessarily make the DM better off unless
they can provide better choices for the DM.

5. CONCLUDING REMARKS

Conlisk (1996, p. 671) stressed that, for an individual with
bounded rationality, heuristics often provide adequate solu-
tions that are cheap, whereas more elaborate approaches would
be unduly expensive. By taking decision costs into account, we
set up a formal model and show that having more alternatives
may not make a DM better off. The numerical simulations that
we perform also support this argument. This result, that runs
contrary to the traditional rational choice theory, has impor-
tant implications for DM.

HUEI-CHUNG LU ET AL.296



APPENDIX A

The Proof of Lemma 1. Given the n considered bundles, the
definition of Uk immediately yields:

Ukðn;NÞ

¼
Xk

i¼1
Piðn;NÞ

¼
Pk

i¼1

ðN�iÞ!
ðn�1Þ! ðN�n�iþ1Þ! �

n! ðN�nÞ!
N! if k � N� nþ 1;

1 if k > N� nþ 1:

8
<

: ðA1Þ

In the case of a larger considered subset with ðnþ 1Þ bun-
dles, the cumulative probability function will be changed into

Ukðnþ 1;NÞ

¼
Pk

i¼1

ðN�iÞ!
n! ðN�n�iÞ! �

ðnþ1Þ! ðN�n�1Þ!
N! if k � N� n;

1 if k > N� n:

8
<

: ðA2Þ

By rearrangement, Ukðnþ 1;NÞ can be written as

Ukðnþ 1;NÞ ¼ nþ 1

n

� �
�
Xk

i¼1
Piðn;NÞ � N� n� iþ 1

N� n

� �

¼ nþ 1

n

� �
�
Xk

i¼1
Piðn;NÞ � 1� i� 1

N� n

� �
:

ðA3Þ
According to (A3), we further derive

Ukþ1ðnþ 1;NÞ ¼ nþ 1

n

� �
�
Xkþ1

i¼1
Piðn;NÞ � 1� i� 1

N� n

� �

¼
Xkþ1

i¼1
Piðn;NÞ þ 1

n
�
Xkþ1

i¼1
Piðn;NÞ

� nþ 1

n

� �
�
Xkþ1

i¼1
Piðn;NÞ � i� 1

N� n

� �
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¼ Ukþ1ðn;NÞ þ 1

n
�
Xk

i¼1
Piðn;NÞ

� nþ 1

n

� �
�
Xk

i¼1
Piðn;NÞ � i� 1

N� n

� �

þ 1

n
� Pkþ1ðn;NÞ � 1� ðnþ 1Þk

N� n

� �
:

Let DnUk � Ukðnþ 1;NÞ � Ukðn;NÞ and Piðn;NÞ ¼ Pi, then
the above equation can be rewritten as

Ukþ1ðnþ 1;NÞ ¼ Ukþ1ðn;NÞ þ DnUk

þ 1

n
� Pkþ1 � 1� ðnþ 1Þk

N� n

� �

) DnUkþ1 ¼ DnUk þHkþ1; ðA4Þ

where

Hkþ1 �
1

n
� Pkþ1 � 1� ðnþ 1Þk

N� n

� �
:

Suppose that there exists a critical k� such that
k� ¼ ðN� nÞ=ðnþ 1Þ. When k < k�, then ½1� ðnþ 1Þk=
ðN� nÞ� > 0; otherwise, when k > k�, then ½1� ðnþ 1Þk=
ðN� nÞ� < 0. Since Pkþ1 and ½1� ðnþ 1Þk=ðN� nÞ� both de-
crease with k, Hkþ1 is also a decreasing function of k.
Accordingly, Figure A.1 follows equation (A4) and depicts the

1n k

1(1 )n P

0 k * 1 N n
k

Figure A.1.
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relationship between k and DnUkþ1, which indicates that
Hkþ1 > 0 (i.e. DnUkþ1 > DnUk) if k < k� and Hkþ1 < 0 (i.e.
DnUkþ1 < DnUk ) if k > k�. In Figure A.1, in order to sketch the
relationship between k and DnUkþ1, we have utilized the
following relationships U1ðnþ 1;NÞ ¼ ðnþ 1Þ=n � P1 > P1 ¼
U1ðn;NÞ, DnU1 ¼ ð1=nÞ � P1, and UN�nþ1ðnþ 1;NÞ ¼ UN�nþ1
ðn;NÞ, i.e. DnUN�nþ1 ¼ 0. Obviously, Figure A.1 indicates that
DnUkP0 8k, implying that Ukðnþ 1;NÞP Ukðn;NÞ 8k. h

APPENDIX B

The Proof of Lemma 3. According to (3), we have

Ukðn;Nþ 1Þ ¼
Xk

i¼1
Piðn;Nþ 1Þ

¼
Xk

i¼1
Piðn;NÞ� N� nþ 1

Nþ 1

� �
� N� iþ 1

N� n� iþ 2

� �

¼ Ukðn;NÞ þ
Xk

i¼1
Piðn;NÞ

	 N� nþ 1

Nþ 1

� �
� N� iþ 1

N� n� iþ 2

� �
� 1

� �
:

Letting DNUk ¼ Ukðn;Nþ 1Þ � Ukðn;NÞ, then

0 ** 1k 1N n
k

11 ( 1)N P

1N k

Figure A.2.
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DNUk ¼
Xk

i¼1
Piðn;NÞ�

	 N� nþ 1

Nþ 1

� �
� N� iþ 1

N� n� iþ 2

� �
� 1

� �

and

DNUkþ1 ¼ DNUk þ Pkþ1ðn;NÞ

	 N� nþ 1

Nþ 1

� �
� N� k

N� n� kþ 1

� �
� 1

� �
:

ðA5Þ
In Equation (A5) there exists a critical k�� ¼ ðN� nþ 1Þ=n

such that DNUkþ1 ¼ DNUk, and DNUkþ1 < DNUk if k < k��,
while DNUkþ1 > DNUk if k > k��. It follows from equation
(3) that DNU1 ¼ P1ðn;Nþ 1Þ � P1ðn;NÞ < 0 if k ¼ 1, and
DNUk ¼ 0 if kPN� nþ 2. Based on these inferences, we sketch
the relationship between k and DnUkþ1 in Figure A.2.
Figure A.2 indicates that DNUk � 0 8k, i.e. Ukðn;NÞP
Ukðn;Nþ 1Þ 8k. h

APPENDIX C

The Proof of Proposition 3. From Lemmas 2 and 3, it is clear
that EBðx; n;Nþ 1Þ will be less than EBðx; n;NÞ for all n if the
DM is only concerned with the rank of a chosen bundle. h

APPENDIX D

The Proof of Proposition 4. Assume that the optimal size of the
considered subset is n� when the size of a feasible set is N, and
that the optimal size of the considered subset is n�� when the
size of a feasible set is Nþ 1. Their corresponding optimal net
expected benefits are V� and V��. Accordingly, by defining
Dn � n� � n��, we have
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V� � V�� ¼ EBðx; n�;NÞ � c � n�½ �
� EBðx; n��;Nþ 1Þ � c � n��½ �
¼ EBðx; n��;NÞ � EBðx; n��;Nþ 1Þ½ �
þ ½EBðx; n�;NÞ � EBðx; n� � Dn;NÞ � c � Dn�
� X1 þ X2: ðA6Þ

In (A6) the term X1 is positive due to EBðx; n��;NÞ >
EBðx; n��;Nþ 1Þ based on Proposition 3. Moreover, if
n�� ¼ n�, the term X2 will be reduced to zero. Thus, V�� < V� is
true and Proposition 4 holds.

If n�� 6¼ n�, more discussions are needed. If Dn ¼ 1, X2 is zero
since the optimal condition (2) indicates that
MBðn�;NÞ � EBðx; n�;NÞ � EBðx; n� � 1;NÞ ¼ c. Given Prop-
osition 3, the result V�� < V� is still valid in such a case.

If Dn 6¼ 1, for example, Dnj j ¼ 2, then

X2 ¼ EBðn�;NÞ � EBðn� � 2;NÞ � c � 2
¼ EBðn�;NÞ � EBðn� � 1;NÞ½ �
þ EBðn� � 1;NÞ � EBðn� � 2;NÞ½ � � 2c

�MBðn�;NÞ þMBðn� � 1;NÞ � 2c; ðA7Þ
when Dn ¼ 2, and

X2 ¼ EBðn�;NÞ � EBðn� þ 2;NÞ � c � ð�2Þ
¼ EBðn�;NÞ � EBðn� þ 1;NÞ½ �
þ EBðn� þ 1;NÞ � EBðn� þ 2;NÞ½ � þ 2c

� �MBðn� þ 1;NÞ þMBðn� þ 2;NÞ½ � þ 2c; ðA70Þ
when Dn ¼ �2. With an interior solution, the optimal condi-
tions (2) or (2¢) are satisfied, implying that

MBðn;NÞ � EBðn;NÞ � EBðn� 1;NÞ>
<
c if n

<
>
n�: ðA8Þ

Therefore, we can conclude

X2 ¼MBðn�;NÞ þMBðn� � 1;NÞ � 2c > cþ c� 2c

¼ 0 if Dn ¼ 2;
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X2 ¼ �MBðn� þ 1;NÞ þMBðn� þ 2;NÞ½ �
þ 2c > �c� cþ 2c ¼ 0 if Dn ¼ �2:

That is to say, the term X2 of (A6) is always positive whenever
Dn ¼ 2 or �2. Based on the similar inference, the result can be
applied to Dn being any integer number. Moreover, in the ex-
treme case where n� ¼ N and n�� ¼ Nþ 1, V�� < V� is also true
since bðx1Þ � c �N > bðx1Þ � c � ðNþ 1Þ. Thus, Proposition 4 is
proved. h
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NOTES

1. The term ‘‘considered subset’’ is taken from Simon (1955).
2. For example, if k ¼ 3, this means that x3 (the third best among all) is the

best among the n considered bundles that are picked up during the
screening process.

3. Takahashi and Takayanagi (1985) propose two other approaches to
search for the optimal bundle. One is the ‘‘fixed-size procedure’’ and the
other is the ‘‘sequential procedure.’’ Under the fixed-size procedure, the
decision-maker comprehensively surveys all possible alternatives before
the evaluation process begins. On the other hand, when the ‘‘sequential
procedure’’ is adopted, the DM considers one alternative at a time and
accepts such an alternative when it reaches the acceptable level; otherwise,
he rejects it and returns to the screening process. Obviously, these two
different procedures give rise to different decision costs.

4. In this paper x can be regarded as either a consumption bundle for a
consumer, or an investment project for an entrepreneur. Thus, b(Æ) is
regarded as the utility function or return function, respectively. When
making an investment decision, the entrepreneur’s return must involve
some uncertainty. Therefore, the DM may only have a priori information
that each alternative x has a benefit b drawn from some distribution, or,
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more specifically, a priori benefit of x is i.i.d. such that b(x) ~ F(b). In
such a case, a Bayesian decision procedure will be applied. To keep
matters simple and focus on our main point, we do not explicitly deal
with this problem. Nevertheless, we can think of b(Æ) as the expected
benefit of alternative x in order to simplify our model. We are grateful to
an anonymous referee for bringing this point to our attention.

5. Notice that since the DM picks up the n considered bundles randomly
from the feasible set, he cannot therefore know the exact value of xk.

6. For example, the DM has the same satisfaction level if he can obtain the
first-best bundle (i.e. x1 or ~x1) regardless of whether it is chosen from the
N or ðNþ 1Þ bundles.
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