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National de la Recherche Scientifique, Belgium

(Received 15 November 2003 and in revised form 7 December 2004)

Laboratory experiments are conducted to study the rheological behaviour of high-
concentration granular–liquid mixtures. Steady uniform free-surface flows are obtai-
ned using a recirculating flume. Cases in which a loose deposit forms underneath the
flow are contrasted with runs for which basal shear occurs along the flume bottom.
The granular motions are observed through the channel sidewall, and analysed with
recently developed Voronöı imaging methods. Depth profiles of mean velocity, solid
concentration, and granular temperature are obtained, and complemented by stress
estimates based on force balance considerations. These measurements are used to
probe variations in rheological behaviour over depth, and to clarify the role of the
granular temperature. The flows are found to evolve a stratified structure. Distinct sub-
layers are characterized by either frictional or collisional behaviour, and transitions
between one and the other occur at values of the Stokes number which suggest that
viscous effects intervene. The observed frictional behaviour is consistent with shear
cell tests conducted at very low shear rates. On the other hand, the collisional data
corroborate both the Bagnold description and the more recent kinetic theories of
granular flows, provided that one accounts for the inertia of the interstitial liquid.

1. Introduction
Gravity-driven flows of high-concentration granular–liquid mixtures are involved

in a wide variety of geomorphological and industrial processes. Within the scope of
civil engineering, natural flow examples include sediment-laden currents, debris surges
and soil flowslides, while technological applications include the handling of dredging
slurries and fresh concrete. A key feature of these flows is the highly inhomogeneous
rheological behaviour of the granular–liquid mixture.

A typical situation, examined in depth in the present paper, is illustrated on figure 1.
Here a moving layer of grains and liquid flows over a static layer of loose material.
The two layers are composed of identical solid and liquid constituents, yet respond
differently to shearing action due to contrasts in solid concentration and normal
stress conditions. In other situations, granular–liquid mixtures may undergo repeated
transitions between states of flow and no-flow. For instance, a debris flow slurry may
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Figure 1. Multiple exposure image of a granular–liquid flow over loose bed, showing the
rapidly flowing layer and underlying static deposit (run 85 from the present experiments).

freeze into place before being remobilized by further debris surges. Such rheological
transitions play a key role in many earth surface processes.

The present work seeks to address this issue by carrying out detailed measurements
of simplified laboratory experiments. The experiments involve steady uniform free-
surface flows of pellet–water mixtures in a recirculating flume apparatus. As in
the pioneering experiments of Bagnold (1954), attention is restricted to simply
sheared dispersions of identical solid grains in a Newtonian liquid. Whereas Bagnold
conducted his experiments with neutrally buoyant solid grains, our experiments
involve pellets which are denser than water. While Bagnold sought to avoid gravity
effects, our aim is precisely to examine the inhomogeneous structure induced when
dense grains are dispersed in a lighter liquid.

The restriction to identical particles in a Newtonian liquid represents a strong idea-
lization. Field cases commonly involve heterogeneous particles in a non-Newtonian
fluid. Naturally occurring debris flows, for instance, are often composed of poorly
sorted clasts embedded in a mud matrix. Likewise, flows of practical interest may
involve modes of deformation which are more complicated than simple shear. In
particular, volumetric deformations of the granular phase may play an important role
due to their effect on the liquid pore-pressure (Iverson 1997). Despite their practical
significance, these aspects will not be addressed here.

Granular–liquid flows remain challenging even without such complications. Res-
ponding to applied stresses, a granular phase composed of identical particles may
behave alternatively like a solid, a liquid or a gas (Jaeger, Nagel & Behringer 1996;
Goldhirsch 2003). The coupled motions of the interstitial liquid may further strongly
affect the properties of the deforming mixture (Koch & Hill 2001). Despite the
simplified character of the present experiments, their interpretation will thus raise a
number of fundamental questions. How do discrete grains interact with each other
and with the continuous embedding fluid? How do these interactions lead to distinct
rheological behaviours? How do these distinct behaviours co-exist within inhomo-
geneous flows?

In recent years, such questions have been addressed in some depth for two related
physical systems: dry granular flows, and bubbly flows. These share many of the
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features of granular–liquid flows, but take the density ratio of the disperse and
continuous phases to distinct limits: ρd/ρc � 1 for dry granular flows, and ρd/ρc � 1
for bubbly flows. In these cases, simplifications arise because either the inertia or
the vorticity of the continuous phase can be neglected (Koch & Hill 2001). For
both these systems, theoretical approaches based on the kinetic theory of dense gases
(Chapman & Cowling 1971) have been successfully applied to rapid flows dominated
by collisional interactions. For dry granular flows, milestones include the works of
Ogawa (1978), Savage & Jeffrey (1981) and Jenkins & Savage (1983). More recently,
the effects of an interstitial gas phase have also been addressed (e.g. Sangani et al.
1996). For bubbly flows, on the other hand, recent developments include the studies
of Russo & Smereka (1996), and Kang et al. (1997).

For both dry granular flows and bubbly flows, theoretical results have been corrob-
orated and extended by dynamical simulations (Campbell & Brennen 1985; Walton &
Braun 1986; Smereka 1993; Sangani & Didwania 1993). Computational experiments
have further highlighted possible transitions in behaviour and the development of
structure in inhomogeneous flows (Zhang & Campbell 1992; Savage & Dai 1993;
Smereka 1993; Sangani & Didwania 1993; Zhang & Rauenzahn 1997; Aharonov &
Sparks 1999). A number of laboratory studies have also provided additional informa-
tion regarding dry granular flows. Most measurements of individual particle motions
have been obtained for two-dimensional analogues such as monolayers of particles
held between parallel plates (Drake 1991; Elliott, Ahmadi & Kvasnak 1998; Azanza,
Chevoir & Moucheront 1999). But detailed experimental results have also been
gathered for three-dimensional flows. These include measurements of the local particle
motions in the vicinity of a sidewall (Ahn, Brennen & Sabersky 1991; Natarajan,
Hunt & Taylor 1995; Hsiau & Jang 1998), and observations of global flow behaviour
in wide channels (Louge & Keast 2001; Ancey 2002).

Studies of collisional flows owe much to the pioneering work of Bagnold (1954), who
showed that stresses in rapidly sheared granular dispersions exhibit a quadratic depen-
dence on the deformation rate. As mentioned earlier, the work of Bagnold (1954) was
based on experiments with neutrally buoyant particles in water, for which the ratio
ρd/ρc was precisely unity. Paradoxically, ensuing efforts have been less successful at
addressing liquid–granular flows (ρd/ρc ∼ 1) than at treating dry grains and bubbles.
Despite Bagnold’s early breakthrough, it has proven difficult to probe granular–
liquid mixtures at a level of detail comparable to the dry granular and bubbly flow
studies cited above. Direct computations of granular–liquid flows, for instance, remain
very difficult to conduct. Impressive recent efforts include the fluidization studies of
Kalthoff, Schwarzer & Herrmann (1997), and Pan et al. (2002), based on coupling the
granular dynamics with the Navier–Stokes equations for the interstitial fluid in the
evolving domain. For shear flows, such detailed computations have not yet appeared.
Discrete particle simulations have been conducted, but rely on simplified models of
interparticle and particle–fluid interactions (Yeganeh, Gotoh & Sakai 2000; Drake &
Calantoni 2001).

The present investigation therefore turns to laboratory experiments. Past empirical
studies of granular–liquid flows include those of Savage & McKeown (1983), Hanes &
Inman (1985), Davies (1988), Tubino & Lanzoni (1993), Aragon (1995), Asano (1995),
Sumer et al. (1996), Bakhtiary & Asano (1998), and Courrech du Pont et al. (2003).
In order to probe the inhomogeneous structure of liquid–granular flows, the present
work differs from past studies in two respects: the choice of flow configuration and
the level of detail sought. Previous experimental studies have examined solid–liquid
flows in annular shear cells (Bagnold 1954; Savage & McKeown 1983), closed ducts
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(Sumer et al. 1996; Bakhtiary & Asano 1998), non-recirculatory chutes (Aragon 1995),
or rotating drums (Courrech du Pont et al. 2003). Here a novel recirculatory flume
introduced by Armanini et al. (2000) is used to obtain rectilinear open-channel flows
in steady uniform conditions. The special flume permits flows with and without loose
deposit at the base. Most importantly, the parallel flow conditions allow local stresses
within the bulk mixture to be estimated based on simple force balance considerations.

Recently developed digital imaging methods are then used to obtain a detailed
characterization of the local flow kinematics, as seen through the flume sidewall.
In contrast with previous attempts at applying particle-tracking techniques to dense
granular flows (Natarajan et al. 1995; Hsiau & Jang 1998; Azanza et al. 1999), the
methods are able to automatically resolve individual grain motions without being
limited to sparse tracer particles or two-dimensional dispersions. This is achieved
through the use of a robust pattern-matching algorithm based on the Voronöı diagram
(Okabe, Boots & Sugihara 1992; Capart et al. 2002). In addition to mean velocity and
solid concentration profiles, the methods yield detailed granular temperature data (a
measure of the strength of velocity fluctuations) averaged from samples of up to 105

individual measurements per run.
Thanks to the flow configuration and imaging methods used, a comprehensive char-

acterization of the flow structure can be derived for different regimes. The data set
documented in the present paper includes 16 different runs. For each of these runs,
the measurements obtained include detailed depth profiles of mean velocity, solid con-
centration, and velocity fluctuations, complemented by estimates of shear and normal
stresses. These data will be interpreted in the light of available theories and compared
with corresponding information regarding dry and bubbly flows. The ultimate aim
of the data analysis will be to construct a global interpretation of the rheological
structure of the observed flows.

The paper is organized as follows. Section 2 documents in detail the apparatus,
materials and methods used for the experiments, as well the range of conditions
covered by the tests. Section 3 is then devoted to the presentation of the measurements
and § 4 to their rheological interpretation. The concluding section, finally, aims to
provide an overall synthesis.

2. Experimental conditions and methods
2.1. Laboratory flume and granular material properties

Figure 2 shows the special laboratory flume developed at the Hydraulics Laboratory
of the Università degli Studi di Trento (Armanini et al. 2000) for the study of steady
uniform granular–liquid flows. The apparatus is composed of two main components:
the first is a glass-walled open channel, in which downslope flows are observed; the
second is an external conveyor belt, connected to the channel by chute guides, which
recirculates upslope both water and sediment. The channel can be tilted at angles
ranging from 0◦ to 25◦. It has a length of 6 m and a width of 40 cm, narrowed down
to 20 cm for the present study by placement of a glass partition. The channel floor
is artificially roughened by glued coarse sand. Imaging measurements are made 2 m
upstream of the channel outlet, by filming the flow through the sidewalls and from
the top. To view the basal flow condition at the centre of the cross-section, a small
port-hole is pierced through the opaque channel floor. The external conveyor system
has a length of 8.40 m, and is equipped with a 50 cm wide V-shaped flexible belt that
can be operated at speeds of up to 5 m s−1. The belt is aligned with the flume and
tilted slightly more, in order for the material to be conveniently collected and refed.
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Figure 2. Trento recirculating flume developed for the study of steady uniform debris flows:
(a) side view; (b) downstream view; (c) plane view.

A hopper is placed at the flume outlet to collect water and grains. The system permits
steady flows at discharges of up to 20 l s−1, without limitations on the solids content.

During an experimental run, the set-up forms a closed loop in which a predeter-
mined volume of water and granular material circulates. Provided it is sufficiently
high, the speed of the conveyor belt does not noticeably influence the flow inside the
channel. For the present experiments, fast belt speeds of 5m s−1 and 2.5 m s−1 were
adopted for test runs 5–11 and 38–106, respectively (see table 2). The throughput is
then controlled solely by the volumes of water and sediment inside the system. When
these parameters are kept constant (and aside from certain regimes which exhibit a
pulsating behaviour, see below), the recirculating flow settles to a steady state within
a matter of minutes. Camera and lighting adjustments can then be made, and video
footage acquired. At the end of a run, the channel outflow is diverted to a trap during
a short timed interval (of 5 to 10 s) in order to independently measure the water and
granular discharges.

Cylinder-shaped extruded PVC pellets were selected as the granular material for
the present tests. The particle have an equivalent spherical diameter d = 3.7mm and
a specific gravity s = ρs/ρw = 1.54. The material is lighter than natural sediment
materials (s ≈ 2.65), hence more readily entrained by water, facilitating observation.
The white colour of the PVC pellets contrasts well with darker surrounding fluid,
and is ideal for the automated imaging measurements presented in the next section.
For quick characterization of the flow deformation, the white particles were seeded
with a small proportion of black particles (1 %). These black particles facilitate eye
observation, and can be manually tracked on video images to give a preliminary idea
of the mean velocity profile across the depth. The sparse black grains are ignored by
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Parameter Value Test method Comments

Density ρs [g cm−3] 1.54 Pycnometer Average of 3 tests

Particle height [mm] 2.8 Calypter

Particle base
diameter [mm]

3.2 Calypter

Equivalent
spherical
diameter d [mm]

3.7 Diameter of a
sphere of
identical volume

From the measured
volume of 500 pellets

Maximum
concentration
c(max)
s [-]

0.69 Compaction

Static friction
angle [deg.]

35 Tilting board At loose poured
concentration cs ≈ 0.6

Critical friction
angle θc [deg.]

31 Simple shear test Ratio of shear to
effective normal stress
at steady flow state
(see figure 3)

Coefficient of
permeability k
[m s−1]

k = 0.098 × e3/(1 + e) +
0.024 obtained by
fitting Kozeny–
Carmen equation
(Das 1990; Spence &
Guymer 1997)
through the data of
figure 4

Permeameter/
fluidization cell

Data measured using a
permeameter for static
assemblies at
concentration
cs = 0.58 and 0.65, and
using a fluidisation
cell for the range of
concentration
cs = 0.4–0.5

Specific retention
Sr [-]

0.08 Comparison of
wet and dry
weights of bulk
sample

Volume fraction of
water retained due to
surface tension upon
gravity drainage of a
saturated sample

Height of capillary
rise hc [mm]

in the interval between 5
and 15mm

Tulip test Difference in height
between the top of a
saturated sample and
the water level of a
connected reservoir at
which the sample
desaturates

Table 1. Properties of the cylindrical PVC pellets used as granular material
in the experiments

the automated algorithms, which instead capture the motions of the dense dispersion
of white grains.

Various characterization tests were performed to determine the properties of the in-
dividual particles and their bulk assembly. These tests and their results are summarized
in table 1 and figures 3 and 4. Properties of special interest for the ensuing analysis
include permeability, capillary rise, and critical angle of friction. Note that due to
their relatively large size and greater elasticity, the PVC pellets differ significantly
from the natural sediment grains handled in standard geotechnical tests, and the
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Figure 3. Results of the simple shear tests. Solid lines: measured stress paths for four different
tests, each characterized by distinct void ratios e at the beginning and end of the test; dashed
line: steady-state locus.
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Figure 4. Variation of permeability as a function of void ratio e. Crosses: data from the
permeameter and fluidization cell tests; solid line: Kozeny–Carmen fit.

corresponding procedures had to be adapted. For instance, typical methods of sample
preparation involving controlled material compaction with a hammer could not be
applied because of elastic rebound.

The simple shear tests illustrate both the usefulness of geotechnical characterization
and the need for caution. These tests were performed on our behalf by Dr J.-F.
Vanden Berghe, using a direct simple shear apparatus developed by the Norwegian
Geotechnical Institute. The apparatus allows the shearing of a soil under conditions
of constant volume and uniform shear strain throughout the sample. The specimen is
confined within a wire reinforced rubber membrane which prevents radial deforma-
tion. Horizontal deformation is forced by translating the base relative to the fixed
specimen top at the very slow speed of 0.03 mm min−1, and an actuator continuously
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adjusts the normal force to prevent vertical deformation. The material is saturated with
water, maintained at atmospheric pressure throughout the test. Shear and effective
normal stresses are measured during the deformation. Details of the procedure and
typical results for natural materials are documented in Dyvik et al. (1987), and Vanden
Berghe, Holeyman & Dyvik (2001).

Stress path results for the PVC material at different void ratios e = (1 − cs)/cs are
plotted on figure 3. For dense sand of a given void ratio, stress paths typically con-
verge onto a proportional path (a straight line passing through the origin) rising up
to the so-called steady-state point where stresses remain constant under continuing
deformation (Castro & Poulos 1977). Tests for different void ratios yield separate
steady-state points which fall onto a unique straight line, and the inclination of this
line defines the critical angle of friction (see e.g. Bauer 1996). For the PVC material,
curved stress paths are obtained rather than straight lines. Nonetheless, the void-ratio-
dependent steady-state points (reached after a shear strain of the order of 50 %) do
approximately collapse onto a straight line, from which a critical friction angle θc ≈ 31◦

can be deduced. This result is very useful because steady simple shear approximates
closely the local deformation conditions in the flume experiments. This will allow
comparison of the steady-state stress ratios of the very slow direct shear tests with
those of the channel flows. Some degree of caution will however be necessary when
invoking the shear cell tests to interpret the flume experiments. Due to the small
sample size, the smallest stresses that could be applied and resolved in the simple
shear apparatus are roughly 100 times larger than those experienced by the material
during the free-surface flow.

2.2. Voronoı̈ imaging measurements

Flows are imaged through the transparent flume sidewall using a Redlake high-speed
camera. At the chosen video rate of 250 frames per second, the digital images have a
resolution of 420 × 480 pixels × 256 levels of grey. To prevent motion-induced blur, the
camera shutter is set at 1/2500 s. For runs with a very thick moving layer, the top and
bottom halves of the flow (with 20 % overlap) are filmed separately one after the other
in quick succession. Finally a mirror can be placed above the channel to acquire top
view images of the flow free surface. The image analysis is performed entirely off-line.

The motions and arrangements of visible particles are captured using the imaging
methods of Capart, Young & Zech (2002), developed specifically for granular flows.
The digital frames are first convoluted with a Laplacian-of-Gaussian filter (Jähne
1995). To highlight particle images, the filter width is set equal to the pixel diameter
of the grains. Particles positions are then obtained by pinpointing local brightness
maxima to subpixel accuracy. Tracking of the particles on successive frames is
performed using a pattern-based matching principle based on the Voronöı tessellation
(Okabe et al. 1992; Capart et al. 2002). The method is illustrated on figure 5: Voronöı
diagrams are constructed on the sets of particle positions identified on separate frames;
particles on one frame and the next are then paired based on the shape similarity of
their Voronöı cells; velocities are finally derived from the corresponding displacements
using the straightforward approximation

v
(n)
i =

r (n+1)
i − r (n)

i

�t
, (1)

where r (n)
i =(x(n)

i , y
(n)
i ) is the two-dimensional position of the ith particle at time t (n),

v
(n)
i = (u(n)

i , v
(n)
i ) is the corresponding in-plane velocity, and the x- and y-axes are orien-

ted in directions parallel and perpendicular to the mean flow direction, respectively
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(a) (b) (c)

Figure 5. Pattern-based particle tracking algorithm (Capart et al. 2002): (a) image detail with
positioned particle centres; (b) Voronöı diagram constructed on the sets of particle centres
identified on one frame (thin lines) and the next (thick lines); (c) displacement vectors obtained
by pairing nearby particles having similar Voronöı cells.

(the two-dimensional images of the near-wall flow do not allow measurement of the
out-of-plane velocity component w

(n)
i ). Transformation from pixel to physical coordi-

nates is easily performed based on a calibrated scale factor and a rotation adjustment.
Estimate (1) is subject to three sources of error which may significantly affect the

velocity fluctuation statistics: (i) pair mismatches arising from incorrect tracking can
generate spurious outliers; (ii) the limited accuracy of particle positioning induces
some artificial noise; (iii) the finite time resolution �t damps high-frequency physical
fluctuations. To deal with the first source of error, post-processing steps are used to
eliminate mismatch outliers on the basis of trajectory and neighbourhood regularity
(see Capart et al. 2002). To avoid statistical bias due to excessive pruning, the rejec-
tion criteria are set to be no stricter than twice the interquartile interval of the
corresponding velocity distribution, and affect less than 5 % of the data. Errors of type
(ii) and (iii), by contrast, cannot be eliminated directly. Their effect on the flow statis-
tics, however, can be estimated and compensated for by exploiting the Lagrangian
velocity auto-correlation signals. The procedures developed for this purpose are
presented in the Appendix.

Sample velocity measurements obtained with the above techniques are shown on
figure 6. The results illustrate the various features which make particle tracking
difficult in rapid granular flows. First, large interframe displacements (shown true to
scale) relative to interparticle distances are observed in the upper part of the flow
(figure 6b). In such conditions, the simplest tracking algorithms based on minimum
displacement (e.g. Guler, Edil & Bosscher 1999) break down. The rather irregular
motions documented on figure 6(c, d) also thwart more sophisticated PTV methods
involving trajectory-based matching (e.g. Sethi & Jain 1987). Intense shear (up to
∼ 40 s−1 in this example) is further observed through most of the flow layer, a
condition known to pose problems to conventional PIV methods (Huang, Fiedler &
Wang 1993). An attempt to apply PIV to the present flows failed for shear rates higher
than 25 s−1. The Voronöı methods, by contrast, perform well throughout. Vector yields
are excellent. On average for the run shown, 367 particles per frame are identified,
92 % of which are successfully tracked to the next frame.

The two-dimensional images are also used to estimate the three-dimensional
volumetric granular concentration cs near the wall. As explained in Capart et al.
(2002), the point density of visible particles per unit image surface is a poor indicator
of three-dimensional concentration, due to the prevalence of occlusion effects. Instead,
characteriztics of the local particle arrangement can be exploited using the Voronöı
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Figure 6. Velocimetry results: (a) sample image frame (from sheet-flow run 85); (b) displace-
ment vectors obtained by tracking grains on two successive frames (grain positions for which
no matches were found are circled on the plot); (c) granular trajectories derived from 100
successive image frames; (d) convected trajectories obtained by subtracting the mean flow
component from particle tracks extracted from 50 successive frames.

diagram built on the particle centres. As the solid concentration rises, excluded volume
effects tend to organize a dispersion of identical particles into an increasingly ordered
assembly. A measure of this ordering is furnished by the roundness of the Voronöı
polygons (see figure 5b), defined as the ratio ξ = 4πA/P 2 where A is the polygon
area and P its perimeter. On average, the solid concentration was found by Capart
et al. (2002) to vary with roundness according to the following normalized power-law
relation:

cs

c
(rcp)
s

=

(
ξ − ξ (min)

ξ (rcp) − ξ (min)

)b

(2)

where cs = solid concentration, i.e. the volumetric fraction of solid material in the
mixture; superscripts (rcp) and (min) designate the state of random close packing
and the dilute state, respectively. As cs → 0, particle positions become uncorrelated
and the corresponding roundness value ξ (min) = 0.73 can be evaluated by Monte-Carlo
simulations of a Poisson point process (see Okabe et al. 1992). The other parameters
were calibrated by Capart et al. (2002) on the basis of fluidization cell tests, yielding
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Figure 7. Averaging of raw velocity data (from sheet-flow run 85): (a) cloud of circa 170 000
velocity data points obtained by tracking particles over 500 frames (black symbols: longitudinal
velocity; grey symbols: vertical velocity; lines: bin limits); (b) mean velocities averaged over
separate sub-intervals to check the steady uniform character of the flow; (c) velocity profiles
averaged from full sequence (solid lines: mean velocities; dashed lines: root-mean-squared
fluctuation velocity plotted on both sides of the corresponding means).

values ξ (rcp) = 0.84 at c(rcp)
s = 0.64 for the state of random close packing, and b = 3.5

for the power-law exponent. Derived from fluidization cell experiments, relation (2)
applies to well-agitated granular dispersions. It may thus be expected to hold for dilute
shear flows. When particles are densely packed, however, effects other than volume
exclusion can contribute to the ordering of nearby grains and bias the roundness
estimator. The particle shape may for instance play a role at high concentrations.
This can be seen in the lower part of figure 6(a), where the cylindrical particles are
seen to orient their axes preferentially in the direction perpendicular to the flow. As
such effects can lead to unreasonably high concentration values when the roundness
estimate is used, a cap must be enforced at the maximum concentration c(max)

s = 0.69
evaluated from compaction tests (see table 1).

In order to ascertain their range of validity, Larcher (2002) compared concentration
measurements obtained using the above monoscopic technique with stereoscopic ima-
ging measurements (Spinewine et al. 2003). For steady uniform granular–liquid flows
similar to those of the present paper, the results obtained using the two techniques
are in good agreement (difference less than 0.05 between the two estimates) for con-
centrations up to cs = 0.55. As expected, however, the results diverge beyond this
limit and only the stereo technique yields reasonable values for higher concentrations.
Developed more recently and more complicated to apply, the stereo technique was
not used for the present measurements, based exclusively on monoscopic images. As a
result, the validity of the concentration measurements presented below is restricted
to dilute and moderate concentrations (cs < 0.55). Measurements in the high concen-
tration range 0.55 <cs < 0.7 are documented for completeness, but a grey band will
be used to highlight their uncertainty on the corresponding figures.

The typical data set for a single experimental run includes on the order of 100 000
velocity vectors (see figure 7) and cell roundness measurements. This is one order of
magnitude higher than the 10 000 measurements identified by Louge & Jenkins (1997)
as the minimum size needed to obtain statistically meaningful vertical profiles of gran-
ular temperature. Such large sample sizes are similar to those generated by computer
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simulations, and the same statistical techniques (e.g. Allen & Tildesley 1987; Rapaport
1995) are needed to extract useful information.

Binning is used to extract vertical profiles of velocity and concentration. The flow
depth is subdivided into non-overlapping horizontal slices of thickness δ =1 to 2
particle diameters, into which measurements are distributed to obtain local averages
(see figure 7). The average horizontal velocity ūk within the kth bin, for instance, is
given by

ūk = ū(yk) =

∑
n

∑
i

I
(n)
i (k)u(n)

i∑
n

∑
i

I
(n)
i (k)

, (3)

where yk is the height of the centre of the kth bin and I
(n)
i (k) is an indicator function

defined by {
I

(n)
i (k) = 1 ifyk − δ/2 � y

(n)
i < yk + δ/2

I
(n)
i (k) = 0 otherwise.

(4)

For the volumetric concentration, bin averages ξ̄k are first obtained from roundness
values ξ

(n)
i , then transformed into solid concentration values cs using relation (2).

Since some of the runs present a certain degree of unsteadiness (see below), we also
estimated coarse-grained mean velocities ū

(l)
k , averaged over blocks of 10 successive

image frames rather than the entire image sequence. Once these mean velocities are
obtained, fluctuation velocities are estimated from

u
′(n)
i = u

(n)
i − ū

(n)
i , (5)

where ū
(n)
i is the mean velocity component taken at location y

(n)
i and time t (n). Rather

than simply using the average ū
(l)
k of the corresponding bin k and block l, we estimate

the ū
(n)
i by bilinear interpolation between the ū

(l)
k . Interpolation in space is especially

important because the product of the mean flow gradient by the bin thickness is of the
same order of magnitude as the velocity fluctuations. Simply subtracting the local bin
average would thus add a spurious gradient contribution to the actual fluctuations.

In a manner analogous to (3), one could now estimate the mean-squared velocity
fluctuations from

u′2(yk) =

∑
n

∑
i

I
(n)
i (k)u′(n)2

i∑
n

∑
i

I
(n)
i (k)

(6)

(see for example Hsiau & Shieh 1999). This estimate is however sensitive to measure-
ment errors due to the limited accuracy and finite frequency at which particle positions
are sampled. Based on the full velocity autocovariance function 〈u′(n)

i u
′(n+k)
i 〉, we show

in the Appendix how it is possible to compensate both errors and obtain a more
reliable estimate. The mean-squared velocity fluctuations reported hereafter are all
obtained using this novel correction procedure.

2.3. Flow regimes

Experimental runs can first be subdivided into solid bed and loose bed runs. Flows
over a solid bottom occur when the granular phase deforms at finite shear rates down
to the fixed floor of the flume. Flows over loose beds, by contrast, occur when a
static deposit forms underneath the moving granular–liquid layer (see figure 1). Inside
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this loose granular deposit, shear rates decrease to zero before reaching the flume floor.
The thickness of the deposit is not predetermined, but adjusts to the flow through
erosion or accretion until a state of dynamic equilibrium is reached (Egashira, Itoh &
Takeuchi 2001). Intermediate conditions can also be observed, in which the flowing
layer is in contact with the solid floor in the central portion of the flume (as seen
through the port-hole) while static deposits line the corners between the floor and side-
walls. Ancey (2002) documented a similar situation for dry granular flows. To avoid
unnecessary complications, test runs in which this hybrid situation was encountered
are not included in the present data set.

The macroscopic behaviour of the experimental flows can be described using
three non-dimensional parameters: (i) the inclination angle of the channel β; (ii) the
volumetric transport concentration Cs = Qs/Q where Qs is the solid discharge and Q

the total discharge (grains + water); (iii) the Froude number

Fr =
U√
gH

, (7)

where H is the thickness of the flow layer (not including the static deposit), U

is the depth-averaged velocity of the flow, and g is the gravitational acceleration.
The transport concentration can be measured in two different ways: first, as the ratio
C(bulk)

s = Q(bulk)
s /Q(bulk) of solid to total discharge measured in bulk at the flume outlet;

secondly, by integrating the sidewall imaging measurements over depth according to

C(imag)
s =

q (imag)
s

q (imag)
=

∫ y(max)

y(min)

csū dy

∫ y(max)

y(min)

(cs + cw)ū dy

, (8)

where y(min) and y(max) are lower and upper limits of the imaging window, qs and
q are respectively solid and total discharges per unit width, cw is the water content
(= 1 − cs wherever the granular phase is saturated with water). Here the mean velocity
of water is assumed to coincide with the mean velocity ū of the grains. Based on the
permeability measurements of figure 4, the specific discharge due to relative motion
between the water and the grains was computed for all runs. It was checked to
amount to no more than 10 % of the corresponding total discharge.

For solid bed runs, the depth H can be measured manually as the height of
the flow free surface above the flume bottom, then the mean velocity estimated from
U = Q(bulk)/BH where B is the channel width (20 cm). For loose bed runs, the thickness
of the flow layer is more difficult to estimate since the boundary between moving
and motionless grains is not sharply defined (see e.g. figure 6). Precise definitions of
H and U can nonetheless be introduced based on depth-averaged momentum and
kinetic energy:

(Csρs + (1 − Cs)ρw)HU = Π =

∫ y(max)

y(min)

(csρs + cwρw)ū dy, (9)

(Csρs + (1 − Cs)ρw)
HU 2

2
= K =

∫ y(max)

y(min)

(csρs + cwρw)
ū2

2
dy, (10)

where Π and K are the depth-integrated momentum and kinetic energy per unit bed
surface, and ρs and ρw are the densities of the granular material and water, respec-
tively. In all three definitions (8), (9) and (10), the integration limits y(min) and y(max)
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Figure 8. Relationship between the channel inclination β and the Froude number Fr for
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do not need to correspond to any physically meaningful boundary. In effect, material
contributions are weighted according to their participation in the flow motion, as
measured by the local mean velocity ū. Estimates (9) and (10) are inspired by
analogous treatments of boundary layers (e.g. Liggett 1994) and turbidity currents
(Parker 2000). When detailed imaging measurements are available, they are also
applicable to the solid bed runs.

The above macroscopic parameters can now be used to contrast the different flow
regimes. A plot of Froude number Fr versus channel inclination β is first given on
figure 8. Very different trends are observed depending on the state of motion along the
floor of the flume. For the solid bed runs, the Froude number grows with increasing
channel inclination. This is in accordance with intuitive expectations for open-channel
flows. For the loose bed runs, by contrast, the Froude number decreases as the channel
becomes steeper! This apparent paradox can be understood by examining the role of
the granular concentration. In the solid bed case, the inclination is assigned and the
transport concentration (adjusted by altering the solid–liquid ratio inside the flume) af-
fects only moderately the flow behaviour. As shown in figure 8, flows with a high trans-
port concentration (in the range Cs = 0.53–0.55) are somewhat slower than flows with
a low transport concentration (in the range Cs = 0.51–0.53), due to the contribution of
the granular phase to the flow resistance. The impact of concentration on the Froude
number is limited, however, because the flow depth is constrained by the solid bottom.

The situation in the loose bed case is quite different. First, the slope is no longer
predetermined, but becomes coupled with the transport concentration. The flowing
layer must find an equilibrium with the underlying static bed, reached when the flow
neither erodes nor accretes the loose deposit. For a given transport concentration,
there is a unique inclination at which this uniform, equilibrated state is obtained.
Figure 9 shows the resulting relationship between slope and transport concentration:
overall, higher solid to liquid ratios are needed to achieve balance when the inclination
steepens. The influence of these higher solid concentrations on the flow rheology leads
to slower flows. Furthermore, the thickness of the flowing layer also adjusts to the
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Figure 10. Typology of the examined flows: (a) loose bed, immature flow (sheet-flow);
(b) loose bed, mature flow; (c) loose bed, plug flow; (d) solid bed flow.

flow conditions: thicker flowing layers are obtained for steeper inclinations. The
slower, thicker flows obtained on steeper slopes are thus characterized by significantly
reduced Froude numbers, as illustrated on figure 8.

The loose bed data plotted on figures 8 and 9 exhibit a rather sharp break of trend
at a channel inclination of around 8◦. This corresponds to a transition of the flow from
oversaturated to undersaturated conditions. Below an inclination of 8◦, water more
than saturates the entire granular layer: a clear water layer flows over a fluid-driven
sheet of granular material supported by contacts with the stagnant bed. This regime
is called immature flow in the debris flow literature (Takahashi 1991), and sheet flow
in the context of coastal sediment transport (see e.g. Jenkins & Hanes 1998). Above
8◦, by contrast, water does not saturate the whole moving layer: a partially emerged
assembly of grains translates rigidly over a liquid–granular shear layer. This is the
so-called plug flow regime. The intermediate state, or mature flow regime, features a
saturated moving layer, composed throughout of a mixture of liquid and grains. The
transport concentration at which full saturation occurs lies around Cs =0.5.

As schematized on figure 10, four main regimes of interest can thus be distinguished:
(a) loose bed, immature sheet flow; (b) loose bed, mature flow; (c) loose bed, plug
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Total Flow Mean
Flow Run Plot Slope discharge Transport thickness velocity

regime no. symbols β [deg.] Q(bulk) [s−1] concentration Cs H [cm] U [m s−1]

Immature, 11 6.9 5.81 0.430 3.2 0.47

sheet-flow 83 7.4 9.15 0.465 5.3 0.69
84 6.2 4.21 0.346 2.5 0.60

85 6.2 4.71 0.346 2.2 0.60

Mature flow 5 8.4 10.33 0.529 7.1 0.48
88 8.1 5.75 0.504 5.2 0.33
90 8.5 7.50 0.511 6.6 0.40
91 8.4 6.73 0.508 7.0 0.41

Partially 6 12 5.34 0.525 8.0 0.21
unsaturated 104 10.7 9.64 0.503 12.6 0.28

plug flow 105 12.3 9.93 0.511 12.9 0.27
106 12.4 10.98 0.515 12.6 0.29

Solid bed flow 38 19 12.57 0.514 3.0 1.36

41 22 10.04 0.542 3.1 1.35

42 22 10.13 0.516 2.7 1.48
46 23 12.43 0.493 2.7 1.65

Table 2. Parameters of the experimental runs selected for detailed imaging analysis. Hollow
symbols denote collisional behaviour, and filled symbols denote frictional behaviour, as
determined on the basis of the local Stokes number St ′ (see explanations in § 4.3).

flow; and (d) solid bed flow. A more complete typology would include hybrid flow
states featuring mixed loose–solid bed conditions across the flume width, and would
further differentiate basal shear flows according to the degree of saturation. In the
present work, we do not pursue such refinements and concentrate our attention on
the micromechanics of loose bed flows. The ensuing analysis will thus focus on loose
bed cases (a) to (c), with the solid bed case (d) examined for comparison purposes.
Over solid beds, we restrict our attention to flows which are close to full saturation.
Out of a catalogue of more than 100 experiments, 4 runs of each type are chosen for
detailed imaging analysis. These 16 runs and their properties are listed in table 2.

2.4. Steady uniform planar flow approximation

Throughout our physical interpretation of the imaging measurements, we will assume
that the observed mean flow field is steady in time, uniform in the longitudinal
direction, and homogeneous in the transverse direction. Variations along the direction
normal to the bed will be the only ones considered, greatly simplifying the picture.
In particular, the stress state within the flow can then be deduced from simple equi-
librium considerations. Here we present various checks that were made to verify and
qualify this idealization.

As illustrated on figure 7(b), the steady uniform character of the flow can be ascer-
tained by examining mean velocity profiles averaged over separate time intervals (here
10 successive intervals of 1/10 the total footage duration for run 085). The longitudinal
velocity profiles fluctuate within a certain range, but indicate no systematic drift that
would indicate a sustained acceleration or deceleration of the flow. Plotted on the same
figure 7(b), normal-to-bed velocity profiles fluctuate likewise around their long-term
average, but the latter is very close to zero. If the average flow was not longitudinally
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Figure 11. Kinetic energy time history used as a check of the steady character of the
observed flows: (a) solid bed runs 41 and 46; (b) loose bed runs 85, 90, and 105.

uniform, converging or diverging streamlines would lead to non-zero mean velocities
normal to the bed. Similar profiles are obtained for the other runs, although some of
them feature stronger fluctuations.

To document the strength and nature of these fluctuations, figure 11 presents time
histories of the observed kinetic energy for representative flows of each of the four
types. Here the specific kinetic energy is defined as

E
(
t (n)

)
=

1

2

∑
i

(
u

(n)2
i + v

(n)2
i

)
(11)

i.e. the sum of the kinetic energies of the particles observed inside the imaging window
at any given time t (n), divided by particle mass. This indicator was proposed by
Campbell (1989) to verify steady state in the context of granular dynamics simulations.
It is verified that, aside from some fluctuations, the specific kinetic energy remains
steady over the measurement time frame. Some low-frequency pulsations are nonethe-
less observed for the solid bed runs. Among all the tests, run 46 had the highest Froude
number (Fr = 3.2) and exhibited the strongest free-surface fluctuations (see figure 11a).
This run also made clear the source of the unsteady behaviour: roll wave instability of
the steep flows. In-phase variations of velocity and depth are a characteriztic signature
of roll waves. As shown on figure 12, this feature shows particularly vividly on a
plot of specific kinetic energy E versus specific potential energy P of the observed
particles, where the latter is estimated at any given time t (n) from

P
(
t (n)

)
= g

∑
i

y
(n)
i . (12)
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Figure 12. Particularly strong roll waves observed in solid bed run 46: phase trajectory on a
plot of potential versus kinetic energy.

Even for the most extreme case, however, the pulsations are moderate and superposed
onto a recognizable steady state. This is possibly because the channel is too short
for roll wave coarsening to develop (Chang, Demekhin & Kalaidin 2000). Similar
free-surface instabilities have been observed for chute flows of dry granular materials
(Prasad, Pal & Romkens 2000; Louge & Keast 2001). For flows over loose beds
(figure 11b), steady state is closely approximated, except for some pulsations observed
for the immature flow runs. Froude numbers greater than 3 for run 46 and greater
than 1 for run 85 lie within the range of possible occurrence of roll waves and anti-
dunes, respectively.

The assumption that the flow is homogeneous in the transverse direction is most
subject to question. Three different means can be used to ascertain departures from
this assumption: (i) measurements of free-surface velocities across the channel width;
(ii) observations of the state of motion at the bottom boundary through the flume
floor por-thole; (iii) comparison of depth-integrated sidewall measurements with bulk
volumetric measurements made at the flume outlet. Measurements of free-surface
velocities imaged from the top yield nearly flat velocity profiles across the width,
indicating a high degree of transverse uniformity. This is illustrated on figure 13(a, b)
for run 41, and similar results were obtained for earlier runs over both solid and loose
beds. It would be tempting to assume that this high degree of transverse uniformity
recorded at the free surface applies as well to the flow interior, but this is not the case.
Bottom observations through the flume floor port-hole show that the state of motion
at the flume centreline can be quite different from the motion close to the sidewall.
For cases in which hybrid loose–solid bed conditions occurred, a static layer having a
thickness of up to 6 cm could be observed at the sidewall while the lowermost grains
at the centre of the channel were still moving (as seen through the bottom port-hole).
Thus corner effects appear to endow the flow with a significant three-dimensional
character at the base of the moving layer. Similar features have been documented by
Spence & Guymer (1997) and Ancey (2002).

A further clear indication of transverse non-uniformity is provided by the discharge
measurements. The total volumetric discharge Q(bulk) measured at the outlet provides
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Figure 14. Depth-integrated estimates based on sidewall imaging measurements compared
with bulk measurements at the outlet: (a) total discharge Q(imag) vs. Q(bulk); (b) transport
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a reference value. On the other hand, an indirect estimate can be obtained by extra-
polating sidewall imaging measurements to the whole flume width B. This estimated
discharge is given by Q(imag) = q (imag)B , where q (imag) is the depth-integrated flux defined
in (8). Figure 14(a) plots the measured values of Q(imag) and Q(bulk) against each other.
For transversely uniform flows, one would expect Q(imag) ≈ Q(bulk). Instead, the sidewall
imaging estimate Q(imag) is found to underestimate the total discharge Q(bulk) by some
30 %. This represents a much greater discrepancy than would be anticipated based
on free-surface velocity data alone, which underlines that departures from uniformity
become more severe towards the bottom.

Although measurements of the longitudinal velocity inside the flow are not available,
it is possible to reconstruct a hypothetical velocity distribution which fits the above
observations. The paraboloid surface illustrated on figure 13(c) was tuned to roughly
match the observed pattern of motion along the top, side and bottom in a typical
loose bed run. For this reconstruction as in the experiments, the apparent sidewall
discharge is 30 % lower than the true total discharge. To check that the planar flow



288 A. Armanini, H. Capart, L. Fraccarollo and M. Larcher

approximation remains reasonable despite such deviations from transverse uniformity,
force balance considerations will be required. This will be addressed in the next section.

Even if sidewall measurements underestimate the overall flow rate, they may still
reliably capture local flow properties such as the solid concentration and the granular
temperature. The sidewall estimates of transport concentration, for instance, are in
relatively good agreement with bulk outlet measurements, as shown on figure 14(b).
The exceptions are the dense plug flow runs (data circled on figure 14b), but the
large discrepancies for these data are probably due to the measurement technique
(the pattern-based concentration estimate breaks down in the dense limit) rather than
to sidewall effects. Using computer simulations, Louge & Jenkins (1997) checked
that the granular temperature is not strongly affected by the presence of a smooth
sidewall. At least for rapid flow conditions, a good correspondence between near-wall
and interior flow states should thus be obtained.

3. Measured profiles and stress estimation
3.1. Depth profiles

Measured depth profiles for the four different flow regimes are plotted on figures 15
to 18. On these and all subsequent figures, data points from a specific run are
assigned a unique symbol shape. A legend documenting the correspondence between
runs and symbols is included in table 2. For a given run, filled and hollow symbols
are used to denote data for which the predominant behaviour is ascertained to be
either frictional or collisional, respectively. This distinction is made according to
a criterion which will be introduced later in the analysis. On figures 15–18, four
panels are used to plot the following quantities: longitudinal velocity ū, granular
concentration cs , shear rate γ̇ = ∂ū/∂y, and root-mean-squared fluctuation velocity

T 1/2 =
√

1
2
〈u′2 + v′2〉. For three-dimensional granular flows, the granular temperature

T is defined as T = 1
3
〈u′2 + v′2 + w′2〉; however the third component of velocity w is

not measured in the present experiments, hence the r.m.s. fluctuation velocity is given
instead as the square root of T = 1

2
〈u′2 + v′2〉.

The plots are made dimensionless using a combination of depth-averaged and
viscous scales. First, depth-averaged quantities H and U are used to normalize the
depth axis y and the mean velocity ū. Secondly, to obtain dimensionless descriptors
of the shear rate and fluctuation velocity, we define the two Stokes numbers

St =
1

18

ρs

ρw

d2γ̇

νw

and St′ =
1

18

ρs

ρw

dT 1/2

νw

(13a, b)

where νw is the kinematic viscosity of the liquid, and d the particle size. Let a particle
move at velocity V with respect to the surrounding liquid. The Stokes number re-
presents the ratio of two time scales: the time scale 1

18
ρsd

2/µw of deceleration due
to the Stokes viscous drag force 3πµwdV , and the time d/V needed for a particle to
move a distance of one diameter through the liquid. Expressions (13a) and (13b) result
from choosing as representative velocity V either the relative velocity dγ̇ between
adjacent sheared rows of particles, or the fluctuation velocity T 1/2.

This hybrid choice of dimensionless parameters is motivated by the following
considerations. First, the mean velocity profiles are normalized using depth-averaged
variables in order to highlight the high degree of macroscopic similarity between
different test runs corresponding to the same flow type. As shown on panel (a) of
each of figures 15–18, the mean velocity profiles collapse onto well-defined curves for
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Figure 15. Depth profiles for the sheet-flow regime: (a) mean velocity; (b) solid concentration
(grey band indicates range in which concentration measurements are uncertain); (c) shear rate;
(d) fluctuation velocity. See table 2 for symbol legends.

each of the flow regimes. On the other hand, normalizing the shear rates and
granular temperature data by their depth-integrated values would obscure the flow
rheology. Dimensionless Stokes numbers are therefore used instead on panels (c, d) of
figures 15–18. Because all runs of our experiments involve the same granular material
and liquid, these dimensionless numbers are not strictly necessary to compare measure-
ments within the present dataset. In fact, each of the two Stokes numbers (13a) and
(13b) includes either γ̇ or T 1/2 as the single variable quantity. Stokes numbers are
adopted nonetheless to facilitate comparisons with data obtained by other investi-
gators for different solid particles and liquids. To highlight the fact that both dimen-
sionless and dimensional representations are equivalent for variables γ̇ and T 1/2, scales
are given in dimensional units as well on panels (c) and (d) of figures 15–18.

The various profiles bring out the characteriztics of each flow regime. For the sheet-
flow runs (figure 15), the mean velocity profiles (panel a) are convex, with maximum
shear rates (panel c) observed in a sub-layer close to the free surface. The solid con-
centration (panel b) evolves monotonically over depth, with maximum values in the
closely packed bed and very small values close to the free surface. The concentration
profiles are close to linear in the flowing region, in accordance with the observations of
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Figure 16. Depth profiles for the mature flow regime: (a) mean velocity; (b) solid
concentration; (c) shear rate; (d) fluctuation velocity.

Shook et al. (1982). Unlike the kinetic theory computations of Jenkins & Hanes (1998)
and Hsu, Jenkins & Liu (2004), the present results do not exhibit any conspicuous
‘shoulder’ region of constant concentration within the flowing layer. Finally the fluc-
tuation velocity profiles of panel (d) present an interesting region of nearly constant
values spanning much of the flow depth, with decaying values in the vicinity of the bed.
Such a region of constant fluctuation velocity at the top of the sheet-flow layer was
predicted by the computations of Jenkins & Hanes (1998; see also Hsu et al. 2004).

For the mature flow runs (figure 16), the maximum shear rate occurs at mid-depth,
where a change of concavity of the mean velocity profile occurs (see figure 16a, c).
The velocity profile is close to linear over much of the shear layer depth, tapering
off at the top and bottom. Comparison of panels (c) and (d) of figure 16 shows that
the shear rate and fluctuation velocity profiles are similar to each other over much
of the flow depth. The most significant departure from similarity occurs at the top
of the flow, where the shear rate approaches zero but the fluctuation velocity reaches
a new maximum. A similar inflection near the free surface was observed by Silbert
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Figure 17. Depth profiles for the plug flow regime: (a) mean velocity; (b) solid
concentration; (c) shear rate; (d) fluctuation velocity.

et al. (2001) in their simulations of dry granular flows on a rough incline, without any
lateral boundary. In the present case, however, this effect seems to be associated with
stick–slip motion of partially emerged but wet particles adhering intermittently to the
flume sidewall. Images filmed from the side show these motions clearly. On the other
hand, footage filmed from above indicates that the free-surface fluctuation velocities
are much lower away from the sidewall. The high fluctuation velocity measured here
at the top thus appears to be an artefact due to the lateral boundary.

As seen on figure 17, the plug flow runs feature a mid-depth shear layer between two
nearly rigid blocks of densely packed grains. The plug layer at the top translates at
constant velocity, while the loose bed stays motionless at the bottom (see figure 17a).
The corresponding shear rate and fluctuation velocity profiles (figure 17c, d) have a
Gaussian-like shape with values reaching a maximum in the middle of the shear layer,
and decreasing to zero in both the overlying plug and underlying bed. The shear rate
and fluctuation velocity curves are seen to present a very high degree of similarity.
On figure 17(b), pattern-based solid concentration measurements are seen to break
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Figure 18. Depth profiles for the solid bed flows: (a) mean velocity; (b) solid concentration;
(c) shear rate; (d) fluctuation velocity.

down for the dense plug flow runs. This is indicated by the flat profiles capped at the
maximum admissible value c(max)

s =0.69.
For the above three regimes, the flows find an equilibrium with the erodible static

bed. The lowermost parts of the curves of figures 15–17 (panels a–c) are very similar:
they asymptotically connect to a state of no motion at the bottom. As shown on
figure 18, profiles for the solid bed flows are quite different. The maximum shear
rates are observed at the bottom of the layer, close to the flume floor, rather than at
the top or at mid-depth (figure 18a, c). Solid concentrations are minimum close to
the bottom (figure 18b). Finally, the fluctuation velocity (and hence the granular
temperature) is maximum at the base of the flowing layer (figure 18d). Very different
from the loose bed results of figures 15–17, the present solid bed measurements are
similar to computed profiles derived from discrete particle simulations of dry granular
flows (Campbell 1990; Silbert et al. 2001).

For further observations regarding the global behaviour of the different flow re-
gimes, the reader is referred to Armanini et al. (2000) and Larcher (2002). Our purpose
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for the remainder of the present analysis is to probe the flow behaviour on the local
scale. Specifically, our aim is to examine the rheology of the flow: relate the local
stress state to the local concentration and motions of the liquid-bathed solid grains.
Preliminary findings were reported in Capart et al. (2000).

3.2. Estimation of the granular stresses

Assuming that the flows are steady, uniform, and planar, granular stresses can be
determined based on force balance in directions normal and parallel to the bed. In
the present section, the procedure adopted to estimate the stresses is first explained.
The procedure does not take into account non-equilibrium pore pressures or friction
along the sidewalls. These effects will then be examined to check that their influence
on the results is limited.

In order to determine the granular stresses, both the solid and liquid concentrations
must be known over the flow depth. The imaging measurements yield solid
concentration profiles cs(y). The water concentration profiles cw(y) are then estimated
as follows. Below the saturation line yw (identified by visual inspection of the video
images), the water content is simply cw = 1 − cs . Above the saturation line, on the
other hand, it is set to the value cw = Sr = 0.08 of the specific retention (see table 1).
Assuming that the flow is planar and steady uniform, the shear stress τ (y) at a given
level y balances the longitudinal component of the overlying weight according to

τ (y) =

∫ y(max)

y

(cs(y)ρs + cw(y)ρw)g sinβ dy, (14)

where β is the inclination of the flow with respect to the horizontal. Likewise the total
normal stress σ (y) at level y balances the normal component of the overlying weight

σ (y) =

∫ y(max)

y

(cs(y)ρs + cw(y)ρw)g cos β dy. (15)

To obtain the effective normal stress representing the contribution of granular con-
tacts, one must then subtract the pore water pressure

σ ′ = σ − pw. (16)

When the entire granular layer is submerged and saturated with water, the pore water
pressure is simply pw = ρwg(yw − y) cosβ , where yw is the water surface level. The
effective normal stress is then

σ ′ =

∫ yw

y

cs(y)(ρs − ρw)g cosβ dy, (17)

which balances the submerged weight of the overlying grains. On the other hand,
when the top of the granular layer desaturates and partly emerges above the water
level yw , the pore pressure at level y < yw becomes

pw = ρwg(yw − y) cosβ − ρwghc, (18)

where hc = height of capillary rise. Upon partial desaturation, the full weight of the
emerged grains, the retained water, and the weight of the capillary water must be sup-
ported by granular contacts underneath (see e.g. Das 1990). Capillary rise was observed
for a partially emerged plug flow run by connecting at position xP a piezometric tube
of large diameter to the sidewall of the flume. The height of capillary rise hc was then
measured during flow as the difference in elevation zw(xP) − zP between the saturation
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line and the water level in the tube. The height obtained in this fashion was found
to lie between 5 and 6mm, corresponding to the lower end of the range measured in
static tests (see table 1). A value hc = 5 mm is used for the present calculations.

Two important assumptions made in the above analysis need to be critically exami-
ned. First, pore pressures pw are assumed to be hydrostatic. Non-equilibrium pore
pressures associated with volumetric expansion or contraction of the granular phase
are thus neglected. These effects are known to be important for unsteady debris surges
in which the granular matrix has a low permeability (Iverson 1997; Major & Iverson
1999). They are however expected to be very limited in the present experiments
involving steady uniform flow of coarse grains and a low-viscosity liquid. A time scale
for pore-pressure relaxation can be estimated as (Spence & Guymer 1997)

trelax =
ρw

ρs − ρw

cb − c̄s

cbc̄s

H

k
, (19)

where H is the depth of the flowing liquid–granular layer, k and c̄s are respectively the
permeability and average solid concentration in this flowing layer, and cb is the solid
concentration in the resedimented static bed. A corresponding length scale is given
by relax = Utrelax where U is the mean velocity of the flowing layer. For the present
experiments, representative values are (see tables 1 and 2) ρs/ρw = 1.54, c̄s = 0.5,
k = 7 cm s−1, cb = 0.6, H = 8 cm and U =30 cm s−1. Pore-pressure relaxation effects can
therefore be expected to act on scales of the order of trelax = 0.6 s and relax = 20 cm,
whereas our experimental flows are allowed to develop on time scales of some
10 seconds and length scales of a few metres. This appears to be more than enough
for pore pressure to equilibrate over the depth and attain the hydrostatic values cor-
responding to steady uniform conditions.

A second important assumption is that forces due to the sidewalls can be neglected
in the longitudinal force balance. For dry granular flows over self-forming stationary
heaps in channels of finite width, Taberlet et al. (2003) found that lateral friction
effects could play a strong role. Those experiments, however, concern thin channels
for which the width W is small in proportion to both the grain diameter d(W/d ∼ 10)
and flow depth H (W/H = 2/3 to 2). In the present experiments, the width to diameter
ratio W/d is around 70, hence sidewall-induced force networks should be weaker.
Runs classified as sheet-flow and mature are also characterized by higher aspect ratios
W/H = 3 to 10. For these runs, it appears reasonable to neglect the effect of lateral
friction compared to the influence, say, of the liquid content, which plays a key role
in our experiments.

This can be checked by looking at the macroscopic force balance for these runs
(Takahashi 1991; Armanini et al. 2000). Consider a flowing layer of grains over a loose
slope of inclination β , fully saturated with water, having thickness H and average
solid concentration c̄s assumed to coincide with the transport concentration Cs . At
the base of the layer, frictional conditions apply, and we expect a Coulomb–Terzaghi
relationship between shear stress and effective normal stress

τ = tan θcσ
′, (20)

where θc = 31◦ is the critical friction angle derived from the simple shear tests (see
table 1). On the other hand, assuming steady uniform conditions, shear and normal
effective stresses can be estimated by balancing forces applied to the flowing layer.
Neglecting friction along lateral walls, the forces involved are the pull of gravity and
stresses along the base. Hydrostatic pore pressures are also assumed. The resulting
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expressions are

τ = [ρw + (ρs − ρw)Cs]gH sinβ, (21)

σ ′ = (ρs − ρw)CsgH cos β, (22)

Substitution into the Coulomb–Terzaghi expression yields a relationship between the
inclination β and the transport concentration Cs:

tan β =
(ρs − ρw)Cs

ρw + (ρs − ρw)Cs

tan θc. (23)

The resulting curve is plotted on figure 9 against the measured data. Good agreement
is found up to an inclination β = 8◦. This is the slope beyond which a plug flow
regime is observed, and the relationship no longer applies because part of the moving
granular layer desaturates. At least for the sheet-flow and mature runs, a macroscopic
force balance obtained by neglecting sidewall and non-equilibrium pore pressure
contributions is thus found to be consistent with the observations.

For the plug flows, the ratio W/H drops to 2 and below. Also, partial desaturation
of the granular layer changes the nature of the contacts between the grains and
the walls. A stronger influence of the sidewalls on the force balance can therefore
be expected. This influence could be estimated if measurements were available for
various flume widths (as in Taberlet et al. 2003). Unfortunately, such experiments were
not performed, and sidewall effects had to be neglected even for the plug flow runs.

4. Rheological interpretation
Subject to the limitations highlighted above, the present experiments yield measure-

ments of mean velocity, fluctuation velocity, and solid concentration as well as
estimates of shear and normal stresses. The uniform flow flume thus provides sufficient
information to serve as a rheometer. The present section now seeks to exploit this
information to construct an interpretation of the flow structure.

4.1. Transition between frictional and collisional behaviour

The relationship between stress and shear rate can first be examined in the light of
the ideas proposed by Bagnold (1954). To describe the stresses induced by shearing
a liquid-saturated granular dispersion, Bagnold introduced a non-dimensional shear
rate defined as

Ba =
ρSλ

1/2d2

µw

γ̇ , (24)

subsequently called the Bagnold number by Hill (1966). Aside from the absent
numerical factor 1/18, the Bagnold number Ba differs from the Stokes number St
defined earlier only by the presence of a non-dimensional factor λ called the linear
concentration. This factor was introduced by Bagnold to account for the effect of
solid concentration cs and is defined as

λ(cs) =
1

(cs0/cs)1/3 − 1
, (25)

where cs0 = 0.74 is the solid concentration corresponding to a crystalline close packing
of equal spheres. He further introduced non-dimensional shear and effective normal
stresses

τ

µ2
wλ/(ρsd2)

,
σ ′

µ2
wλ/(ρsd2)

. (26a, b)
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Figure 19. Variation of the normalized shear stress τ/[µ2
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2)] with the local Bagnold
number Ba = (ρsλ

1/2d2/µw)γ̇ . See table 2 for symbol legends. The relationships proposed by
Bagnold (1954) for the macro-viscous and grain-inertia regimes are shown as dashed and solid
lines, respectively.

The term dispersive stress was used by Bagnold to refer to the rate-dependent colli-
sional normal stress observed in his experiments. Here we retain the more general term
effective normal stress used in soil mechanics to describe the normal stress associated
with particle interactions regardless of the nature of these interactions. On figures 19–
21, we use these quantities to characterize the relationship between stresses and shear
rate observed in the present experiments. Figures 19, 20, and 21 respectively show the
dimensionless shear stress, dimensionless normal stress, and stress ratio τ/σ ′ over the
full range of Bagnold numbers Ba covered by the flow profiles of figures 15–18.

Based on his experiments performed with neutrally buoyant wax particles bathed
in either water or a glycerin–water–alcohol mixture, Bagnold identified two different
rheological behaviours: a macro-viscous regime (for Ba < 40) characterized by a linear
relation τ ∝ γ̇ 1 between stress and shear rate, and a grain-inertia regime (for Ba > 450)
where stresses vary as the square of the shear rate τ ∝ γ̇ 2. On the log-log plots of
figures 19 and 20, these relationships correspond to straight lines with inclinations 1
and 2, respectively. For the present experiments performed with particles heavier than
the surrounding liquid (ρs/ρw = 1.57), the data suggest a different picture. For large
Bagnold numbers (Ba > 1000), measurements are indeed consistent with a quadratic
relation τ ∝ γ̇ 2 between shear stress and shear rate, corresponding to Bagnold’s
inertial regime. However for lower Bagnold numbers (slower rates of deformation),
the data do not switch to a linear relationship, but to a band of roughly zero slope
τ ∝ γ̇ 0 implying approximately rate-independent shear stresses.

Turning our attention to the stress ratio τ/σ ′ (figure 21), Bagnold suggested constant
values τ/σ ′ ≈ 0.75 and τ/σ ′ ≈ 0.32 applicable to the macro-viscous and grain-inertia
regimes, respectively. Here again a different behaviour is recorded in the present
experiments. For slow deformation, the data do cluster around a roughly constant
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stress ratio. The level of this stress ratio further appears reasonably well-approximated
by the value tan 31◦ = 0.6 applicable at steady state to the very slow deformation rates
of the simple shear tests (see table 1). This correspondence is observed despite the
fact that the stresses applied in the simple shear tests have a much greater magnitude
than those experienced in the channel.

For larger Bagnold numbers, however, stress ratios do not lock onto another con-
stant value. While both the shear and normal stress vary roughly quadratically with the
shear rate, their precise ratio is neither constant nor dependent solely on the shear rate.
Rather, measurements for differing flow conditions diverge from each other in a way
that indicates that an important degree of freedom is missed. For dry granular flows,
kinetic theories hold that the extra variable which is involved is the granular temperat-
ure, a measure of the intensity of velocity fluctuations. These fluctuations are likewise
expected to play a role when rapidly sheared grains are bathed in a liquid. Thus our
rapid shear data are consistent with a collision-dominated inertial regime, but the
observed behaviour is not quite as simple as Bagnold’s description would imply.

To summarize, for slow shear (Ba < 1000) the data present all the characteriztics of
Coulomb-type frictional behaviour: shear and normal stresses proportional to each
other and at most weakly dependent on the rate of shear. For rapid deformation, on
the other hand, the stresses scale quadratically with the shear rate in accordance with
expectations for a collision-dominated inertial regime. Putting the pieces together, the
data thus indicate a transition from frictional to inertial behaviour instead of the trans-
ition from macro-viscous to inertial behaviour identified by Bagnold. A sharp contrast
between frictional and collisional behaviours was similarly observed by Aharonov &
Sparks (1999) in their numerical simulations of sheared granular assemblies.

This frictional–collisional picture presents one puzzling feature. Nowhere does one
observe the scaling τ ∝ µwγ̇ expected of a Newtonian-like macro-viscous fluid. In the
frictional state, the shear and normal stresses relate to each other rather than to the
rate of deformation. In the collisional state, on the other hand, the water viscosity µw

drops out from the quadratic scaling

σ ′

µ2
wλ/(ρsd2)

∝ Ba2 =

(
ρsλ

1/2d2

µw

)2

γ̇ 2. (27)

Hence for both frictional and collisional states, the viscosity of the liquid plays no
apparent role in controlling the stresses. And yet, the transition from frictional to
collisional behaviour appears well-defined on Bagnold plots constructed on the basis
of viscosity scalings. Specifically, the transition seems to occur around a Bagnold
number Ba∗ ≈ 1000. This means that while the viscosity of the pore liquid controls
neither the frictional nor the collisional behaviour, it may determine the point at
which the sheared mixture switches from one behaviour to the other. In other words
the frictional–collisional transition could be controlled by viscous effects through a
mechanism that remains to be elucidated.

At this point, we have not yet exploited the information provided by the direct
measurements of granular temperature. We will now use these data to try to refine
this emerging picture of the flow rheology.

4.2. Relationship between shear rate and fluctuation velocity

Figure 22 documents the observed relationship between shear rate γ̇ = ∂ū/∂y and
square root of the granular temperature T 1/2. Both quantities are plotted in their
dimensionless Stokes number forms St and St′ defined in equations (13a, b). An
alternative way to compare the mean rate of shear γ̇ = ∂ū/∂y with the intensity of
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the granular velocity fluctuations is to form the ratio

R =
dγ̇

T 1/2
=

St

St′ , (28)

a dimensionless parameter introduced by Savage & Jeffrey (1981). As discussed in
Savage (1998) and Louge (2003), the parameter R is typically found to be of order
unity in computer simulations of sheared granular media. Savage (2002, personal
communication) even suggests that a constant value of R ≈ 0.8 may characterize
granular behaviour over a wide range of conditions, including rapid collisional flow
and slow frictional deformation.

In the present experiments, shear rate and fluctuation velocity are indeed found to
be approximately proportional to each other. Constant values of the Savage–Jeffrey
parameter R plot as straight lines on figure 22, and the data cluster in a sector
that goes from R =1 to R = 2.5. However the measured Stokes numbers St and St′

do not lie on a straight line over their entire range of variation. Stokes numbers
corresponding to slow deformation (roughly St < 10) evolve roughly in the one-to-one
ratio

R =
St

St′ ≈ 1. (29)

Yet beyond values of St ≈ St′ ≈ 5–10, the data deviate from this straight line and
eventually reach ratios as high as R = 2.5 for rapid shear rates. Here again, the data
suggest a transition dependent upon the rate of shear. The Stokes number St∗ ≈ 7.5 at
which the transition occurs corresponds to a shear rate γ̇ ∗ ≈ 6 s−1 and to a fluctuation
velocity (T 1/2)∗ ≈ 2.4 cm s−1.

This value of the Stokes number also matches the transitional Bagnold number
Ba∗ ≈ 1000 identified earlier, if one adopts for the linear concentration λ the value
λ(max) ≈ 40 associated with a compact granular medium (cs = c(max)

s =0.69).
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On both sides of the transitional Stokes number St∗ ≈ 7.5, the data trends are con-
sistent with frictional and collisional behaviours, respectively. Under slow deforma-
tions, frictional stresses are transmitted through enduring contacts among solid
particles. As they stay in close contact, neighbouring particles must undergo coordi-
nated motions. Under such kinematic constraints, fluctuating and mean shear
components of the granular flow must relate to each other. It is thus not surprising
to find that in the limit of slow deformation, grain motions are characterized by a
constant Savage–Jeffrey parameter. For rapid collisional flow, by contrast, particles
interact through short-lived contacts. The fluctuation energy and shear rate remain
coupled through energy constraints, as the kinetic energy dissipated by random
motions must be derived from the work of the mean shear. However the random
motions of the particles are only loosely constrained by the motions of their
neighbours, hence the fluctuation velocity and the shear rate must not remain locked
in strict proportion to each other.

There are two other reasons to believe that Stokes numbers in the vicinity of
St∗ ≈ 7.5 have a special significance. The first reason is microscopic, and has to do
with the effect of the ambient fluid on collisions between individual grains. Various
studies (Davis Serayssol & Hinch 1986; Joseph et al. 2001; Gondret, Lance & Petit
2002) have shown that particles immersed in a fluid bounce off each other in a way
that is governed by the value of Stokes number

Stcoll =
1

18

ρs

ρw

d(2Ui)

νw

, (30)

where Ui is the particle speed before impact, measured relative to the collision plane
(either the plane tangent to two particles at their point of contact or a rigid wall in the
case of particle–wall collisions). At very high Stokes numbers (Stcoll > 1000), particles
rebound with a velocity Ur characterized by a coefficient of restitution e =Ur/Ui close
to the value applicable to dry collisions. For lower Stokes numbers, by contrast, the
coefficient of restitution decreases under the influence of the viscous ambient fluid.
Most dramatically, when the Stokes number falls below a critical value of about
St∗

coll ≈ 10, the elastic energy stored upon contact is entirely dissipated in the fluid and
the coefficient of restitution drops to zero. Particles no longer exhibit any rebound.

Drawn from experiments involving collisions of individual particles with a vertical
wall (Joseph et al. 2001) or horizontal floor (Gondret et al. 2002), the above observa-
tions are consistent with the elastohydrodynamic analysis of Davis et al. (1986)
and have also been found recently to account for a change in avalanche regime in
rotating drum experiments (Courrech du Pont et al. 2003). They suggest a compel-
ling microscopic interpretation of the change in behaviour observed in the present
experiments in the vicinity of St∗ ≈ 7.5. Under rapid shear, particles are able to
rebound upon colliding and thus interact through short-lived contacts. Under slower
deformations, on the other hand, the shear-induced fluctuating motions are not strong
enough for particles to rebound upon impact and take off from their enduring contacts
with neighbouring grains. Under the influence of the viscous ambient fluid, therefore,
inelastic collapse occurs at the transition.

The second reason to attach a special significance to the transitional Stokes number
St∗ ≈ 7.5 lies in the observed macroscopic behaviour of the downslope flows. As
discussed earlier, uniform flows over loose beds increase their solid-to-liquid ratio and
decrease their velocity as flow inclinations become steeper. However, the experiments
indicate that there is a clear limit to how slow the steep flows can become. This is
documented on figure 23, which plots maximum shear rates against flow inclination.
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The maximum shear rate γ̇max = (∂ū/∂y)max observed for a given run is defined as the
maximum value taken by the shear rate over the entire depth of the debris flow. It is
made dimensionless by introducing the Stokes number

Stmax =
1

18

ρs

ρw

d2γ̇max

νw

. (31)

Rather than decreasing indefinitely as flow inclinations get steeper, the maximum
shear rate is found to reach an asymptote

(Stmax)min ≈ 5 ≈ St∗ (32)

where Stmax levels off to values close to the transitional Stokes number St∗ ≈ 7.5. The
transitional Stokes number thus appears to set a minimax constraint on the downslope
flow, determining a minimum value that must be attained by the maximum shear
rate.

This suggests that for the slowest flows, the maximum shear rate γ̇max (observed for
the plug flows at the core of their mid-depth shear layer) does not decrease below the
minimum level necessary for viscous and/or collisional effects to retain control on
the overall flow rate. If a slowly flowing layer exhibited purely frictional behaviour,
then because frictional rheology is rate-independent there would be no constraint on
the speed of deformation. By contrast, the emergence of a rate-dependent control
somewhere in the flow (in this case in the middle of the shear layer) provides an
internal boundary condition which can set the overall flow rate.

4.3. Rheological structure of the loose bed flows

Based on the above observations, the full set of measurements corresponding to the
16 detailed test runs documented on figures 15–18 were tentatively split into two
subsets. Data for which St ′ <St∗ form the first subset, and are assumed to represent
predominantly frictional behaviour. Data for which St ′ > St∗, on the other hand, are
taken to represent predominantly collisional behaviour. On the various figures, data
classified as frictional or collisional in this fashion are plotted as filled or hollow
symbols, respectively. Admittedly, the choice of a precise cut-off at the value St∗ ≈ 7.5
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is somewhat arbitrary. Nonetheless, the resulting binary scheme accounts rather well
for the distinct trends documented on figures 19 to 22.

The classification can now be used to examine the distribution of rheological
behaviour over depth for the various loose bed flow regimes. When mapped back
to the original profile data of figures 15–18, the frictional–collisional classification
organizes the flow into separate sub-layers governed predominantly by one mechanism
or the other. For the immature flow regime (figure 15), water-entrained grains are
sheared sufficiently strongly to be characterized by collisional behaviour over most of
the depth of the flowing layer. Frictional behaviour is relegated to a thin boundary
layer separating the collisional sheet from the static underlying loose bed. This is
consistent with the description of sheet-flow sediment transport proposed by Jenkins &
Hanes (1998) and analysed recently in more detail by Hsu et al. (2004). At the other
end of the range (figure 17), the plug-flow regime features relatively slow deformations
and frictional behaviour over the entire depth, except for the core of the shear layer
which lies close to the transition point between frictional and collisional behaviour.
In between, the mature regime (figure 16) exhibits a composite structure in which
a collisional layer of finite thickness is sandwiched between two frictional layers.
Granular–liquid flows over a loose bed can thus be described as rheologically stratified
flows, responding to changes of inclination and liquidity by modifying the extent of
their frictional and collisional sub-layers.

4.4. Collisional stress functions

A final objective of the present rheological analysis is to examine more closely the
collisional behaviour of the granular–liquid mixture. In accordance with our binary
classification, this examination is restricted to measurements for which St ′ >St∗, the
transitional Stokes number ascertained earlier to mark the approximate onset of
collisional behaviour. Specifically, the aim of this subsection is to compare measure-
ments in that range with both the original relations of Bagnold and the more recent
predictions of kinetic theories.

The relationships between stresses and shear rate proposed by Bagnold (1954) on
the basis of his neutral suspension experiments can be written

σ ′ = 0.042 cosα λ2ρsd
2γ̇ 2, (33)

τ = 0.042 sin α λ2ρsd
2γ̇ 2, (34)

where tan α =0.32 and λ(cs) is the function of granular concentration defined in (25).
The corresponding stresses predicted by kinetic theories of collisional granular flows
involve the granular temperature T in addition to the shear rate γ̇ . Derived in analogy
with the kinetic theory of dense gases (Chapman & Cowling 1970; Lun et al. 1984),
the relationships can be written (Jenkins & Hanes 1998)

σ ′ = (1 + 4csg0) csρsT , (35)

τ =
8csg0E

5π1/2
csρsdT 1/2γ̇ , (36)

where

E = 1 +
π

12

(
1 +

5

8csg0

)2

. (37)

In the above relations, the function

g0(cs) =
2 − cs

2(1 − cs)3
(38)
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describes the dependence of the rate of collisions between particles on the granular
concentration cs , and was derived by Carnahan & Starling (1969) from an approximate
virial expansion.

The description of Bagnold and kinetic theory are similar in various regards. One
can check first that the functional form of Bagnold’s equations (33)–(34) is retrieved by
assuming a constant value of the Savage–Jeffrey parameter R = dγ̇ /T 1/2 in relations
(35)–(36). Through functions λ(cs) and g0(cs), furthermore, both relations account
for the highly nonlinear influence of the granular concentration cs . A difference is
that while the Bagnold relations are semi-empirical in nature, the kinetic relations
follow from theory through a rigorous approximation procedure and involve no
adjustable empirical constants. Their predictions have been validated to a great extent
by three-dimensional computational simulations (Campbell 1989). Predictions for
two-dimensional granular flows (monolayers of disks or spheres held between parallel
plates) were further found to agree well with detailed experiments (Azanza et al.
1999). As he was the first to propose that granular shear and normal stresses could
be quadratic in the shear rate, Bagnold himself can of course be credited for some of
the achievements of the kinetic theories.

Despite this success, the applicability of either or both of these descriptions to
liquid–granular flows of the type examined in the present study is not a settled issue.
First, Bagnold’s 1954 experiments were performed with neutrally buoyant spheres in
water (ρs = ρw) instead of particles denser than the ambient fluid. In addition, a recent
re-analysis of the experimental device and results of Bagnold (Hunt et al. 2002) has
cast some doubts on his conclusions. Kinetic theories of collisional granular flows, on
the other hand, were originally derived for dry granular flows. While it was argued
by Jenkins & Hanes (1998) that relations (35) and (36) could be applied to granular–
liquid flows as well, this has not to date been checked against detailed measurements
of granular motions.

Comparisons with the Bagnold relations are first presented. On figures 24 and 25,
ratios σ ′/[ρsd

2γ̇ 2] and τ/[ρsd
2γ̇ 2] are plotted as a function of granular concentration

cs . The measured data collapse reasonably well on both plots, with only moderate
scatter. The curves representing the Bagnold stress functions (33) and (34), however, do
not agree equally well with the corresponding measurements. On figure 24, the normal
stress function of Bagnold is found to agree rather well with the data across the whole
range of concentrations cs . For the shear stress function (34) plotted on figure 25,
however, the agreement is much less satisfactory: the shear stress ratio τ/[ρsd

2γ̇ 2]
is strongly underestimated at lower values of concentration. This stems from the
fact that the present collisional flow measurements do not exhibit the constant stress
ratio τ/σ ′ assumed by Bagnold. While not consistent with Bagnold’s analysis, this
feature is nonetheless compatible with Bagnold’s own measurements. In their recent re-
assessment, Hunt et al. (2002) point out that the stress ratio in Bagnold’s experiments
was not constant but varied by as much as a factor of 3. A similar range of variation
is observed in the present experiments (see figure 21).

In their re-assessment, Hunt et al. (2002) suggest that Bagnold’s 1954 experimental
findings could in fact be due to flaws in the design of his annular rheometer, rather
than reflect actual collisional interactions between grains. In particular, they show
that the shear stress dependence on the shear rate measured by Bagnold could just as
well have been produced by a Newtonian fluid with a concentration-dependent vis-
cosity undergoing boundary layer flow along the end plates of the annulus.

While we cannot rule out the alternative mechanism suggested by Hunt et al.,
the present experiments do provide some support for Bagnold’s original conclusions
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Figure 24. Comparison of the present collisional data (St > St∗) with Bagnold’s normal stress
function. Grey band indicates range in which concentration measurements are uncertain.
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Figure 25. Comparison of the present collisional data (St >St∗) with Bagnold’s shear
stress function.

regarding the inertial regime. Our measurements of liquid–granular flow in a recti-
linear flume exhibit behaviour close to that observed by Bagnold in his annular
rheometer and attributed by him to collisional effects. Despite the quantitative devi-
ations, Bagnold’s shear stress relation does match the qualitative data trend recorded
in the present experiments. Most strikingly, the normal stress relation proposed by
Bagnold to fit his data agrees quite well with our new measurements. Since the
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Figure 26. Comparison of the present collisional data (St > St∗) with the normal stress
function of kinetic theory. Solid line: basic theory (Jenkins & Hanes 1998); dashed line:
revised theory with added mass correction.

alternative mechanism of Hunt et al. can account for the shear stresses but not for
the normal stresses observed by Bagnold, we feel that Bagnold’s original interpretation
in terms of granular collisions remains compelling.

Comparisons with kinetic theory predictions are presented on figures 26 and 27.
Here the measured ratios σ ′/[csρsT ] and τ/[csρsdγ̇ T 1/2] are plotted as a function of
concentration, together with solid lines denoting the kinetic functions (35) and (36).
Unlike the Bagnold relations, the stress functions derived from kinetic theory are
found to underestimate both the normal and shear stresses. Since computational and
experimental data for dry granular flow have been found to confirm the predictions
of kinetic theories, we tentatively attribute this discrepancy to the presence of a dense
interstitial liquid in our experiments.

More specifically, we surmise that added mass effects are largely responsible for the
underestimation of the normal and shear stresses recorded in figures 26 and 27. For
particles to move about within the two-phase mixture, conjugate motions of the
surrounding water are required. In particular, abrupt changes in granular velocities
associated with interparticle impacts must be associated with pressure impulses and
sudden accelerations of the pore water. The resulting dynamic coupling between the
particles and the liquid can be described as an added mass contributing to particle
inertia.

Such added mass effects play a key role in bubbly flows (Russo & Smereka 1996;
Kang et al. 1997), where the apparent inertia of the massless bubbles is entirely due to
the embedding liquid. While not quite as prevalent, they should likewise be expected
to play a role in liquid–granular flows, where the density of the interstitial fluid is of
the same order as the density of the particles. This was verified by Zenit, Hunt &
Brennen (1997, 1998), who documented experimentally the water pressure impulses
induced by submerged collisions of particles with each other and with walls.
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Figure 27. Comparison of the present collisional data (St >St∗) with the shear stress function
of kinetic theory. Solid line: basic theory (Jenkins & Hanes 1998); dashed line: revised theory
with added mass correction.

A quantitative estimate of the added mass effect in the present flows is derived in
the following way. First, the added mass associated with random particle motions is
estimated in the way suggested by Zuber (1964; see Batchelor 1988). It is assumed
that a single particle accelerates in an environment constrained by neighbouring
motionless particles, with the particle packing dependent on the concentration cs (as
in the experiments of Mahgerefteh & Khodaverdian 1996). This constraining effect
is then approximated by a rigid spherical shell of volume (1/cs)π d3/6 centred on
the particle and surrounding its associated region of freely moving liquid. Assuming
potential flow, the added mass associated with the motion of a spherical particle in
such a shell is given by the exact expression (Lamb 1932, pp. 124–125)

ρa = ρw

1 + 2cs

2(1 − cs)
. (39)

This expression reduces to the well-known result ρa = 1
2
ρw in the dilute limit cs → 0.

However as the concentration rises and the interstitial liquid is forced to flow within
increasingly tight boundaries, much higher values of the added mass are attained.
While the expression above involves no tuning parameter, it is obtained at the price of
some drastic idealizations. Real liquid motions will involve vorticity and depend on the
evolving configuration of neighbouring particles. Endowed with their own trajectories,
nearby particles will further respond to any sudden change (e.g due to a collision) in
the motions of their neighbours (Sangani & Didwania 1993). Nevertheless, expression
(39) can be hoped to provide a rough estimate of the added mass in fluctuating
solid–liquid flows.

The influence of this added mass can then be incorporated into the stress functions
in the way proposed by Kang et al. (1997) for dense bubble suspensions. The density
ρs of the particle itself is supplemented by the added mass density ρa in the stress
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relations (35)–(36), i.e. we rewrite the normal and shear stress functions as

σ ′ = (1 + 4csg0)cs(ρs + ρa)T , (40)

τ =
8csg0E

5π1/2
cs(ρs + ρa)dT 1/2γ̇ , (41)

where the dependence of the added mass on concentration ρa(cs) is given by (39).
The resulting relations are plotted as dashed lines on figures 26 and 27. For both the
normal and shear stress functions, the added mass correction improves substantially
the agreement of kinetic theory with the data.

4.5. Collision frequency

The collision frequency constitutes one further quantity for which the predictions of
kinetic theory can be compared with the present data. A proxy for the collision fre-
quency is furnished by the inverse correlation time of the fluctuation velocity. The
correlation time is defined as the exponential decay time t0 of the velocity auto-
covariance function. It is obtained in the present experiments as a by-product of the
procedure used to measure the granular temperature presented in Appendix 1. This
exponential decay time t0 can also be derived from the kinetic theory of dense gases
(Chapman & Cowling 1970), leading to the following expression (Savage & Dai 1993):

1

t0
=

8(1 + e)

π1/2
csg0

T 1/2

d
, (42)

where e is the restitution coefficient (e =1 for perfectly elastic particles) and g0(cs) is
again the function of concentration given by (38). Expression (42) is similar to the
theoretical collision frequency given by

ωcoll =
24

π1/2
csg0(cs)

T 1/2

d
. (43)

The two expressions are not identical due to the fact that particles retain some
memory of their previous velocity after a collision event (Chapman & Cowling
1970). For the case of elastic particles (e = 1), equations (42) and (43) indicate that
the exponential decay time of the velocity autocorrelation is 3/2 times longer than
the mean time interval between collisions ω−1

coll. The correlation decay time t0 is also
related to the self-diffusion coefficient D through the relation

D = t0T , (44)

where T is the granular temperature. Studies of self-diffusion in dry granular flows
have been conducted by Savage & Dai (1993), Campbell (1997), Hsiau & Shieh
(1999), and Wildman, Huntley & Hansen (1999).

Figure 28 compares the collision frequency function (43) with the measured auto-
correlation decay times t0 derived from the observed particle trajectories (see the
Appendix). The normalized collision frequency ωcolld/T 1/2 is plotted against the solid
concentration cs , where the theoretical ωcoll is given by relation (43) and the measured
ωcoll is approximated by

ωcoll = 3
2
t−1
0 , (45)

i.e. the expression appropriate for perfectly elastic collisions. On figure 28, the colli-
sional data from the different experimental runs are seen to collapse convincingly
together. However the theoretical collision frequency (43) matches the inverse cor-
relation time only for low solid concentrations cs . For higher granular concentrations,
the observed fluctuation velocities remain correlated longer (by up to one order of
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Figure 28. Comparison of measured inverse correlation time with the collision frequency
predicted by kinetic theory.

magnitude) than predicted. Thus agreement of theory and experiment for the colli-
sional stresses does not guarantee that all features of collisional flow behaviour are
described well by kinetic theory.

5. Conclusions
Using a recirculating flume and imaging techniques, the present work has sought to

characterize in detail the vertical structure of steady uniform granular–liquid flows.
For four different flow regimes (loose bed immature flow, mature flow and plug flow,
and solid bed flow), depth profiles were obtained for the mean velocity, solid concen-
tration, shear and normal stresses, and granular temperature. Based on these data, it
was found possible to probe the local rheological behaviour of the flow as well as
examine variations in behaviour over the flow depth. A rather painstaking inductive
process was necessary to make sense of the experimental measurements, yet the overall
picture which emerges is surprisingly coherent.

Gravity-driven granular–liquid flows are found to organize themselves into distinct
sub-layers dominated by either frictional or collisional behaviour. Frictional behaviour
is characterized by (i) slow deformations; (ii) a nearly constant ratio of mean shear
rate to fluctuation velocity for which the Savage–Jeffrey parameter is close to unity
(R ≈ 1); (iii) rate-independent shear and normal stresses which are proportional to
each other. Collisional behaviour, on the other hand, is characterized by (i) rapid
deformations; (ii) a slightly variable ratio of mean shear rate to fluctuation velocity
(from R ≈ 1 up to R ≈ 2.5); (iii) quadratic dependence of the shear and normal
stresses on the shear rate, with a variable ratio of shear to normal stress. From both
a kinematic and kinetic point of view, therefore, the two behaviours exhibit distinct
signatures.

The transition between frictional and collisional behaviour appears controlled by
viscous effects. First, changes in the local flow rheology are observed to occur within a
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narrow range of the Stokes number, around St = 5–10. Secondly, this Stokes number
threshold also acts as a macroscopic constraint on the downslope flows: it defines the
minimum value that must be attained by the maximum rate of shear of the slowest
flows. Finally the same Stokes number range can be readily interpreted from a micro-
scopic perspective: it corresponds to the threshold below which particles colliding in
a viscous liquid cease to bounce off each other, as reported in various recent studies.
Thus the available evidence conspires to suggest this surprising paradox: no viscous
or macroviscous flow behaviour is observed alongside frictional and collisional beha-
viours, but the frictional–collisional transition seems controlled by viscosity.

Looking at the observed local rheology in greater detail, the present frictional
measurements are found to be consistent with simple shear experiments conducted at
the very low rates of shear typical of geotechnical tests. The collisional measurements,
on the other hand, corroborate both the Bagnold description and the more recent
kinetic theories of granular flows, even if the agreement requires some qualifications.
In the present experiments, the shear and normal stresses do not exhibit a constant
ratio, which runs counter to Bagnold’s description but agrees with Bagnold’s own
measurements. Overall, however, our results tend to confirm rather than undermine
Bagnold’s pioneering work. Turning to the kinetic theories, it was found possible to
achieve quantitative agreement with the present measurements only by accounting
for the inertia of the interstitial liquid. This is achieved by incorporating in the stress
functions an added mass which varies with the solid concentration as if each particle
moves about within a liquid-filled rigid shell.

To account for the present observations, it was not found necessary to invoke
a hypothetical frictional–collisional regime which would blend at the microscale
features associated with both frictional and collisional behaviour (as in the proposals
of Johnson & Jackson 1987, or Savage 1998). Rather, our results suggest that the
local behaviour is either frictional or collisional, and that the granular–liquid medium
can switch between the two behaviours much like ice can melt into water. The
behaviour shift would thus be analogous with a thermodynamic phase transition
(as in the views proposed by Jenkins & Askari 1991, or Zhang & Campbell 1992).
The gravity-driven flows observed in the present experiments appear rather sharply
stratified into separate frictional and collisional sub-layers. Hence the term frictional–
collisional regime would apply only in the macroscopic sense of flows exhibiting
the two behaviours at different locations over their depth, without implying hybrid
behaviour at the local level.

To be sure, the interpretation summarized above is open to argument and bound to
be revised as experimental and theoretical work proceeds. Alternative interpretations
of the present data are possible, and we have retained in the present paper only
the explanations which we find most compelling. To compensate, we have tried to
document the present experiments as completely as we could, and hope that this will
allow the reader to come to his or her own conclusions.

The experiments and data are also subject to a number of significant limitations.
Foremost among them is probably the two-dimensional nature of the sidewall mea-
surements. The present two-dimensional measurements are bound to reflect only
partially the three-dimensional conditions near the sidewall, and will miss the three-
dimensional features of the flow inside the bulk. One specific limitation in this regard
concerns the solid concentration measurements, for which the two-dimensional
pattern-based estimate breaks down in the dense limit. Because of this, the data
gathered in the present work are not suited to examine the role of solid concentration
in the frictional regime.
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To address these limitations, efforts are under way to obtain three-dimensional
measurements. Preliminary results in this direction are encouraging (see Larcher
2002; Spinewine et al. 2003). However the technical difficulties involved mean that the
acquisition of a data set comparable in scope to the present one lies some distance
into the future. Further improvements would also include direct measurements of
stresses and pore pressures, to confirm and refine the force balance estimates used in
the present work. Finally, experiments with liquids of different viscosities would be
desirable to test the effect of viscosity on the flow behaviour in general and on the
frictional–collisional transition in particular. New experimental efforts are definitely
needed to further the understanding of granular–liquid flows.
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Appendix. Autocovariance-based estimation of the granular temperature
Velocity measurements obtained by particle-tracking velocimetry (PTV) are prone

to errors due to limited spatial accuracy and finite sampling frequency. For the mean
velocity components, these errors average out and can be made arbitrarily small
provided a large ensemble of data is used. This is not the case, however, for the root-
mean-square velocity fluctuations or, in the case of granular flows, the granular
temperature. On the one hand, spurious contributions to the apparent fluctuation ve-
locity arise due to measurement noise. On the other hand, attenuation of the apparent
fluctuation velocity occurs due to the smoothing effect of finite sampling frequency.
This Appendix outlines a procedure to correct for these effects when estimating the
granular temperature from PTV measurements. The procedure is based on an exa-
mination of the Lagrangian velocity autocovariance functions.

A.1. Error model

To simplify the analysis, it is assumed that tracking mismatches have been previously
filtered out. This is achieved in practice using the pattern- and path-based methods
detailed in Capart et al. (2002). Particle images observed on two successive frames can
thus be unambiguously paired and associated to one and the same physical particle.
We further assume that the particle is tracked over many successive frames, and
restrict our attention to a single velocity component. The PTV estimate of the x-wise
velocity history of the particle is given by (e.g. Adrian 1991)

û(n) =
x̂(n+1) − x̂(n)

t (n+1) − t (n)
, (A 1)

where x̂(n) is the measured position of the particle sampled at regularly spaced
instants t (n) = n�t . To devise a simple error model, one can first assume that the
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measured position x̂(n) is equal to the true particle position x(n) = x(t (n)) to which is
added a random measurement error, i.e.

x̂(n) = x(n) + sε(n), (A 2)

where s is the standard deviation of the measurement error on position, related to the
pixel resolution of the images, and the ε(n) are random variables of zero mean and unit
standard deviation. We assume that successive position errors ε(n) are uncorrelated, i.e.〈

ε(m)ε(n)
〉

= 0, m �= n, (A 3)

where the brackets denote an average carried out over an ensemble of trajectories.
Substituting (A2) into (A1) and invoking relation x(t) = ∫u(t) dt , the following
relationship is obtained between the measured velocity history û(n) and the true
velocity history u(t) of a particle:

û(n) = ũ(n) +
s

�t

(
ε(n+1) − ε(n)

)
, (A 4)

where

ũ(n) =
1

�t

∫ t (n+1)

t (n)

u(t) dt (A 5)

represents the average of the unresolved particle velocity over time interval �t . The
above relationship constitutes an observation equation (Honerkamp 1998) for the
PTV measurement process, i.e. an idealized description of the connection between
the true signal and the observed one. Expression (A 4) accounts for two discrepancies
between the measured velocity and the actual velocity. The first discrepancy is due to
the discrete sampling of particle positions, which amounts to averaging the velocity
over interval �t and damps out high-frequency velocity fluctuations. The second
discrepancy, expressed by the second term on the right-hand side, is a corrupting
noise due to random position error. One can immediately observe that

〈û〉 = 〈ũ〉 = 〈u〉 = ū, (A 6)

i.e. neither the averaging nor the zero-mean noise on the position induce any bias on
the average velocity. For the fluctuation components defined by

u′(t) = u(t) − ū, ũ′(n) = ũ(n) − ū, û′(n) = û(n) − ū, (A 7)

however, the situation is not so favourable. Their mean squared values are not
equivalent, i.e.

〈û′2〉 �= 〈ũ′2〉 �= 〈u′2〉. (A 8)

A.2. Incidence on the velocity autocovariance function

Let us take a slightly more general view and examine the autocovariance functions
(or ACF in shorthand)

〈u′(t)u′(t + δt)〉,
〈
ũ′(n)ũ′(n+k)

〉
,

〈
û′(n)û′(n+k)

〉
, (A 9)

where δt is arbitrary but k is restricted to integer values. The averaged ACF
〈ũ′(n)ũ′(n+k)〉 is related to the true ACF 〈u′(t)u′(t + δt)〉 by the exact relation

〈
ũ(n)ũ(n+k)

〉
= 1/(�t)2

(∫ �t

0

dt ′
∫ t ′

0

dt ′′〈u′(t ′ + k�t)u′(t ′′)〉

+

∫ �t

0

dt ′′
∫ t ′′

0

dt ′〈u′(t ′ + k�t)u′(t ′′)〉
)

, (A 10)
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in which t ′ and t ′′ are variables of integration. Equation (A10) derives (after some
developments) from definition (A5). It generalizes a relation proposed by Batchelor
(1949) and exploited by Hansen & McDonald (1986) and Campbell (1997) to analyse
self-diffusion processes. The generalized relation (A10) and its usefulness in the context
of PTV error analysis do not seem to have been reported before.

On the other hand, the measured ACF 〈û′(n)û′(n+k)〉 (including the presence of noise)
is related to the averaged ACF 〈ũ′(n)ũ′(n+k)〉 by relation

〈
û′(n)û′(n+k)

〉
=




〈ũ′2〉 +
2s2

(�t)2
if k = 0,

〈
ũ′(n)ũ′(n+1)

〉
− s2

(�t)2
if |k| = 1,〈

ũ′(n)ũ′(n+k)
〉

if |k| > 1,

(A 11)

which follows immediately from (A2) and the assumption that errors on successive
particle positions are uncorrelated. An important consequence of this assumption is
that the noise does not affect the ACF beyond the first two points k = 0 and k = 1.

A.3. Signal model

To exploit the observations above, it is useful to adopt a simple model for the physical
signal as well. Theoretical arguments by Hansen & McDonald (1986), computer
simulations by Savage & Dai (1993) and by Campbell (1997) and experiments with
vibro-fluidized disks by Wildman et al. (1999) indicate that for granular flows the
short-time behaviour of the physical velocity auto-correlation function should be
well-approximated by an exponential curve, i.e.

〈u′(t) u′(t + δt)〉 = 〈u′2〉 exp(−|δt |/t0), (A 12)

where the decay constant t0 is related to the average time between successive particle
collisions (Savage & Dai 1993). Substituting (A12) into (A10) and carrying out the
integrations yields the explicit result

〈
ũ′(n)ũ′(n+k)

〉
〈u′(t)u′(t + k�t)〉 =




f (�t/t0) = 2
t0

�t

(
1 +

t0

�t

[
exp

(
−�t

t0

)
− 1

])
if k = 0,

g(�t/t0) =
t2
0

(�t)2

[
exp

(
−�t

t0

)
+ exp

(
�t

t0

)
− 2

]
if |k| > 0,

(A 13)

The effect of finite sampling frequency on the signal is two-fold: first, the variance
(corresponding to k = 0) is attenuated by a factor f (�t/t0) < 1; conversely, the tail
of the autocovariance function (|k| > 0) is amplified by a factor g(�t/t0) > 1. As the
function g is independent of k, furthermore, the tail of the observed ACF retains an
exponential shape governed by the same decay time t0 as the physical ACF. Under
the assumptions of the simple model adopted above, it is therefore concluded that
the tail of the observed autocovariance function 〈û′(n)û′(n+k)〉 (k > 1) is affected only in
a very limited way by the two sources of error which corrupt the variance 〈û′2〉.

A.4. Corrected estimate of the granular temperature

The adopted correction procedure derives immediately from the observations above.
Instead of choosing direct estimate 〈û′2〉 for the mean-square velocity fluctuations, the
idea is to exploit the less corrupted information contained in the tail of the observed
autocovariance function 〈û′(n)û′(n+k)〉 (k > 1). An exponential curve is fitted to this tail,
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keeping only the points 2 � k � m, where m is a time cut-off chosen to avoid the
deviations from exponential and the poorer statistics of the long-time tail. The fit
yields an estimate for the decay time t0, as well as a revised zero-intercept 〈u′2〉fit for
the ACF. This latter estimate is affected by the amplification factor g(�t/t0) given in
(A13), which is easily accounted for by letting

〈u′2〉corr =
〈u′2〉fit

g(�t/t0)
, (A 14)

which is our corrected estimate for the mean-square velocity fluctuations. Depending
on whether the effect of noise or attenuation is prevalent, this value may be either
lower or higher than the direct estimate 〈û′2〉. In practice, we apply the above procedure
jointly to the two components of the velocity vector u = (u, v) by considering the
covariance 〈u′(t) · u′(t + δt)〉. This allows us to derive a corrected estimate of the
granular temperature

T = 1
2
〈u′ · u′〉 = 1

2
〈u′2 + v′2〉 (A 15)

and a single estimate of the correlation decay time t0.
As a further useful by-product, the procedure also yields an estimate for the r.m.s.

error on particle position s. We get from (A13)

〈ũ′2〉 = f (�t/t0)〈u′2〉corr. (A 16)

From (A11), on the other hand,

s =
�t√

2
(〈û′2〉 − 〈ũ′2〉)1/2, (A 17)

which allows an a posteriori evaluation of the magnitude of the incurred position error.

A.5. Monte-Carlo tests

The theory and procedure presented above were checked using Monte-Carlo simula-
tions. To synthesize an artificial ‘physical’ signal, a simple model derived from the
Enskog theory of uncorrelated binary collisions is adopted (see Hansen & McDonald
1986). In this model, a single particle collides with other particles at random time
intervals of mean duration t0. Particle velocities are constant between collisions, and
each collision is assumed to completely decorrelate the velocity. Thus velocities on
separate intervals are taken to be independent Gaussian variables of constant mean
and standard deviation. For this process, the exponential velocity ACF (A12) is
exact with decay time equal to t0. Realizations of this process are straightforward to
generate using typical Monte-Carlo methods (see e.g. Ross 1990). The ‘true’ random
particle trajectories can be integrated exactly, and positions sampled at regular time
intervals to simulate PTV measurements. Uncorrelated Gaussian noise of zero mean
and constant standard deviation can then be added to the data to reproduce the
random position errors.

‘True’ and observed fluctuation velocities u′(t) and û′
i generated in this fashion

are plotted on figure 29(a). The corresponding auto-covariance functions (ACF) are
shown on panel (b). Finally panel (c) compares raw r.m.s. values and corrected ACF
estimates with the true fluctuation velocity T 1/2, for various signal-to-noise ratios
T 1/2�t/s. The raw root-mean-square average 〈û′2〉1/2 (black dots) overestimates the
fluctuation velocity when noise dominates, and underestimates the true value when
attenuation dominates. In both cases, the corrected estimate (A14) based on the
Lagrangian ACF (white squares) succeeds in recovering values closer to the true
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Figure 29. Monte-Carlo simulations of PTV measurements: (a) fluctuation velocity histories
(solid line: ‘true’ signal u′(t), dots: PTV data û′

i); (b) velocity autocovariance functions (dashed
line: true ACF, solid line: attenuated ACF, dots: measured ACF); (c) measured fluctuation
velocity against true value for various signal-to-noise ratios (black dots: direct estimate, white
squares: corrected estimate, diagonal: line of perfect agreement).

fluctuation velocity. All fluctuation velocity and granular temperature measurements
reported in the present work were obtained using this procedure.

A.6. Sample results

Application of the autocovariance-based approach to actual measurements is illustra-
ted on figure 30. Panel (a) shows actual ACF results measured at mid-depth for exper-
imental run 85. Overall, the observed shape of the autocovariance function is consis-
tent with the assumptions of the present analysis. There is however one significant
difference: errors on particle position include a periodic perturbation at a frequency of
50 Hz in addition to uncorrelated random noise. This shows up on the autocovariance
plot of panel (b) as high-frequency sawteeth. By filming a bed of particles at rest
under conditions identical to those of the experiments, it was checked that this noise
is due to a faint flickering of the halogen lamps used to illuminate the flows. Since
this noise occurs at sufficiently high frequency, however, it does not affect the low-
frequency ACF fit used to estimate the granular temperature. Using relation (A17)
the root-mean-squared error on particle position was estimated to be of the order
of 0.2 pixel in the present experiments. This is comparable to the error magnitude
reported by Veber, Dahl & Hermansson (1997) in their analysis of PTV accuracy.

Figure 30(b) shows the fluctuation velocity profile T 1/2 of run 85. The values of
fluctuation velocity T 1/2 obtained using the direct r.m.s. estimate and those obtained
using the ACF-based correction procedure are plotted as solid and dashed curves,
respectively. The correction procedure is applied separately to each of the 20 averaging
bins shown earlier on figure 7. The noise component is seen to be the predominant
source of error, causing the direct root-mean-squared average to overestimate the
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Figure 30. Estimation of fluctuation velocities based on the Lagrangian autocovariance
function (ACF): (a) ACF measured at mid-depth for run 85 (dots: measured ACF; dashed
line: exponential fit); (b) comparison of direct (solid line/black dots) and corrected estimates
(dashed line/white squares) of the fluctuation velocity profile for run 85. Error bars indicate
±2 standard deviations estimated by coarse-graining.

fluctuation velocity. In relative terms, this effect is most severe in the lowermost part
of the flow, where the granular motion is slow. Below a depth y ≈ 9 cm, the grains are
actually motionless, as indicated by the mean velocity profile of the same run plotted
on figure 7. The direct estimate nonetheless yields a finite value of the fluctuation
velocity. By contrast, the corrected estimate successfully filters out the noise compon-
ent. Error bars on figure 30(b) represent the statistical error (± 2 standard deviations)
associated with the estimates. This statistical error is evaluated by coarse-graining
(see e.g. Rapaport 1995): quantities are estimated on 10 separate data subsets rather
than the full data set, then the standard deviation of the 10 resulting numbers is
divided by

√
10 to approximate the standard deviation of their average. Due to the

large data set acquired in the present experiments, the statistical errors are small. In
this case they are also rather poor indicators of the actual measurement errors. The
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small error bars around the raw r.m.s. values at the bottom of the flow, for instance,
indicate only that noise is measured very precisely, not that the signal is accurately
captured! For this reason, a better indication of the uncertainty associated with the
present measurements is probably provided by the data scatter between different
experimental runs.

REFERENCES

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid
Mech. 23, 261–304.

Aharonov, E. & Sparks, D. 1999 Rigidity phase transition in granular packings. Phys. Rev. E 60,
6890–6896.

Ahn, H., Brennen, C. E. & Sabersky, R. H. 1991 Measurements of velocity, velocity fluctuation,
density, and stresses in chute flows of granular materials. Trans. ASME E: J. Appl. Mech. 58,
792–803.

Allen, M. P. & Tildesley, D. J. 1987 Computer Simulations of Liquids. Clarendon.

Ancey, C. 2002 Dry granular flows down an inclined channel: Experimental investigations on the
frictional-collisional regime. Phys. Rev. E 65(1), art. no. 011304.

Aragon, J. A. G. 1995 Granular-fluid chute flow – experimental and numerical observations.
J. Hydr. Engng 121, 355–364.

Armanini, A., Fraccarollo, L., Guarino, L., Martino, R. & Bin, Y. 2000 Experimental analysis
of the general features of uniform debris flow over a loose bed. In Proc. 2nd Intl Conf. on
Debris-Flow Hazards Mitigation, Taipei, Taiwan (August 2000) (ed. G. F. Wieczorek & N. D.
Naeser), pp. 327–334. Balkema.

Asano, T. 1995 Sediment transport under sheet-flow conditions. J. Waterway Port Coast. Ocean
Engng 121(5), 239–246.

Azanza, E., Chevoir, F. & Moucheront, P. 1999 Experimental study of collisional granular flows
down an inclined plane. J. Fluid Mech. 400, 199–227.

Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian
fluid under shear. Proc. R. Soc. Lond. A 225, 49–63.

Bakthiary, A. Y. & Asano, T. 1998 Effects of particle properties on oscillatory sheet-flow dynamics.
JSCE Coastal Engng J. 40, 61–80.

Batchelor, G. K. 1949 Diffusion in a field of homogeneous turbulence: I. Eulerian analysis. Austral.
J. Sci. Res. 2, 437–450.

Batchelor, G. K. 1988 A new theory of the instability of a uniform fluidized bed. J. Fluid Mech.
193, 75–110.

Bauer, E. 1996 Calibration of a comprehensive hypoplastic model for granular materials. Soils and
Foundations 36, 13–26.

Campbell, C. S. 1989 The stress tensor for simple shear flows of a granular material. J. Fluid Mech.
203, 449–473.

Campbell, C. S. 1990 Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57–92.

Campbell, C. S. 1997 Self-diffusion in granular shear flows. J. Fluid Mech. 348, 85–101.

Campbell, C. S. & Brennen, C. E. 1985 Computer simulations of granular shear flows. J. Fluid
Mech. 151, 167–188.

Capart, H., Fraccarollo, L., Guarino, L., Armanini, A. & Zech, Y. 2000 Granular temperature
behaviour of loose bed debris flows. In Proc. 2nd Intl Conf. on Debris-Flow Hazards Mitigation,
Taipei, Taiwan (August 2000) (ed. G. F. Wieczorek & N. D. Naeser), pp. 361–368. Balkema.

Capart, H., Young, D. L. & Zech, Y. 2002 Voronöı imaging methods for the measurement of
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