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Stochastic analysis of spatial variability in unconfined
groundwater flow

Abstract In this paper, spatial variability in steady
one-dimensional unconfined groundwater flow in heter-
ogeneous formations is investigated. An approach to
deriving the variance of the hydraulic head is developed
using the nonlinear filter theory. The nonlinear governing
equation describing the one-dimensional unconfined
groundwater flow is decomposed into three linear partial
differential equations using the perturbationmethod. The
linear and quadratic frequency response functions are
obtained from the first- and second-order perturbation
equations using the spectral method. Furthermore, under
the assumption of the exponential covariance function of
log hydraulic conductivity, the analytical solutions of
both the spectrum and the variance of the hydraulic head
produced from the linear system are derived. The results
show that the variance derived herein is less than that of
Gelhar (1977). The reason is that the log transmissivity is
linearized in Gelhar’s work. In addition, the analytical
solutions of both the spectrum and the variance of the
hydraulic head produced from the quadratic system are
derived as well. It is found that the correlation scale and
the trend in mean of log hydraulic conductivity are
important to the dimensionless variance ratio.

Keywords Heterogeneous aquifer Æ Groundwater flow Æ
Nonlinear filter theory

1 Introduction

For investigating the spatial variability of the uncon-
fined heterogeneous aquifer, the log hydraulic conduc-
tivity is often regarded as the sum of a mean and a
perturbation, and the one- or two-dimensional nonlinear
groundwater equation is often adopted. In most of
previous researches, the nonlinear governing equation is

assumed to be linear or can be reduced to linear form
(Gelhar, 1974, 1977; Serrano, 1995). Gelhar (1977)
solved the steady unconfined-flow equation for one- and
two-dimensional variations of hydraulic head with log-
hydraulic transmissivity. He used the linearized equation
and reduced the log transmissivity to linear form. Mizell
(1980) derived the head variance for unsteady flow in a
nonleaky aquifer. Serrano (1995) indicated that the lin-
earized Boussinesq equation with the Dupuit assump-
tions is a reasonable approximation to the original
nonlinear equation using numerical computation. In this
paper, the well-known Boussinesq equation with the
Dupuit assumptions is used and the log hydraulic con-
ductivity is not reduced to linear form.

The spectral analysis of stochastic groundwater flow
is based on the assumption of stationary log-hydraulic
conductivity fields. It is assumed that the heterogeneities
of the stationary log-hydraulic conductivity can be
characterized statistically by the correlation scale of log-
hydraulic conductivity. The assumption of no trend in
log-hydraulic conductivity is often made, and the
important results on the statistical characteristics of
groundwater flow under stationary conditions can be
found in the works of Bakr et al. (1978), Gelhar and
Axness (1983), Dagan (1985), and Gelhar (1986). Dagan
(1989) summarized the subject of stochastic analysis of
the stationary groundwater flow. On the other hand,
effects of the trend in the mean log hydraulic conduc-
tivity on head variance were examined by Smith and
Freeze (1979), and Rejaram et al. (1990). Rehfeldt et al.
(1992) analyzed the log hydraulic conductivity at the
Columbus site and found that the spatial variability of
log hydraulic conductivity can be explained when a
spatial trend in the mean log conductivity is considered.
Adams and Gelhar (1992) analyzed the motion of a
tracer plume at the same site, and found that existing
stochastic theories with the assumption of stationary
mean log conductivity could not explain well the
evolution of the spatial moments. Adams and Gelhar
(1992) attributed this discrepancy to the presence of
a trend. The non-stationary assumption of the log
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hydraulic conductivity has been introduced in recent
researches (Gelhar, 1993; Loaiciga, 1993, 1994; Inde-
lamn and Rubin, 1996). Gelhar (1993) considered the
case that the trend in the mean log conductivity is par-
allel to the mean head gradient. Loaiciga et al. (1993,
1994) considered the case of an arbitrary angle between
the head gradient and the trend in the mean log con-
ductivity. However, the higher-order moments of the
hydraulic head were not considered in the works of
Gelhar (1993) and Loaiciga et al. (1993, 1994). In this
paper, we introduce a trend in log hydraulic conductivity
fields to approximate the nonstationary behavior.

A Gaussian process is completely characterized by its
mean and spectrum, and the response from a linear
system with Gaussian inputs remains Gaussian. The
head variance produced by the bilinear system is zero.
However, for a nonlinear filter, a Gaussian input,
namely ln K, produces a non-Gaussian output. The head
variance is contributed not only by the linear system but
also by the bilinear system. For investigating the effects
of linear and bilinear systems on head variance, one can
use the nonlinear filter theory. Recent developments in
the general theory of nonlinear filters (Tick, 1961;
Priestley, 1988; Bendat, 1997) allow the extension of
conventional spectral analysis of real physical systems to
the more general case of nonlinearity. In general, a
nonlinear relationship between a system input and an
output may be expressed by a Volterra series of infinite
terms (Priestley, 1988). The solution of a nonlinear dif-
ferential equation can be expressed as the form of a
Volterra series expansion (Subba Rao and Gabr, 1984).
Literature reviews indicate previous researches have not
dealt with the spectral and bispectral analyses of a
nonlinear unconfined heterogeneous aquifer system us-
ing the nonlinear filter theory.

In this paper, an approach is developed for deriving
the head variance of a nonlinear unconfined ground-
water flow system using the nonlinear filter theory. The
approach used in this paper is illustrated in Fig. 1. The
influence of hydraulic log-conductivity variations on
hydraulic head variance is investigated. The linear and
quadratic frequency response functions are obtained
from the first- and second-order perturbation equations,
respectively. Furthermore, an analytical solution of the
variance of hydraulic head is derived.

2 Volterra series representation of a general nonlinear
system

In the case of a nonlinear physical system with station-
ary Gaussian inputs, the relationship between the input
and output processes cannot be adequately described by
a simple convolution integral. Likewise, the convolution
linear frequency response function is not sufficient to
characterize the nonlinear input/output relations. We
consider a space-invariant, nonlinear physical system
with a single input IðxÞ and a single output yðxÞ.

A general relationship between IðxÞ and yðxÞ can be
expressed in terms of a Volterra series of the form

yðxÞ ¼
Z1

0

Kn1ðuÞIðx� uÞdu

þ
Z1

0

Z1

0

Kn2ðu; vÞIðx� uÞIðx� vÞdu dv

þ
Z1

0

Z1

0

Z1

0

Kn3ðu; v;wÞIðx� uÞIðt � vÞI

� ðx� wÞdu dv dwþ � � � ð1Þ
where Kn1ðuÞ, Kn2ðu; vÞ and Kn3ðu; v;wÞ are the linear,
bilinear and cubic impulse response functions (IRF),
respectively. They can also be called the first-, second-,
and third-order time domain kernels (Bendat, 1997) or
functional response functions (Amorocho, 1963, 1973).
A system that can be represented by a single term in the
series expansion is homogeneous (Amorocho, 1973;
Subba Rao and Gabr, 1984). For example, a first-order
homogeneous system is called the conventional linear
system or convolution integral, and a second-order ho-
mogeneous system is a bilinear system (Bendat, 1997).
A system that can be represented by the first two terms
is called a quadratic system (Priestley, 1988).

A system of the finite-order successive linear differ-
ential equation is often used to approximate a nonlinear
input/output relationship in many physical systems. The
solution of the equation can be represented by the linear,
bilinear, cubic,. . ., terms in Eq. (1). Such a manner
which was introduced by Wiener (1942, 1958) had also
been explored in the hydrologic field by Jacby (1966),
Amorocho (1963, 1973), Singh (1964), Napiorkowski
and Strupczewski (1979, 1981), and Xia (1991). The
temporally variable subsurface flow for an integral

Fig. 1 The illustration of methodology used in this paper
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balance model has been investigated by Jin and Duffy
(1994). In this paper, the spatially variable subsurface
flow is studied.

Provided that both IðxÞ and yðxÞ are zero-mean sta-
tionary processes and only the linear and quadratic
terms in Eq. (1) are dominant; then Eq. (1) becomes
(Tick, 1961; Subba Rao and Gabr, 1984)

yðxÞ ¼
Z1

0

Kn1ðaÞIðx� aÞdaþ
Z1

0

Z1

0

Kn2ða; bÞ

� fIðx� aÞIðx� bÞ � RIIða� bÞgda db ð2Þ
The introduction of RIIða� bÞ in the second term on the
right-hand side of Eq. (2) is to ensure E½yðxÞ� ¼ 0.

3 Linear filter

3.1 Spectral representation of autocovariance
functions for stationary processes

For a linear physical system with a random input IðxÞ
and a random output yðxÞ, if we assume that the system
is causal without feedback, then the general input-out-
put relationship can be expressed by the convolution
integral (Priestley, 1981)

y1;IðxÞ ¼
Z1

0

I x� sð ÞKn1ðsÞds ð3Þ

If IðxÞ is a zero-mean continuous parameter stationary
process, then there exists a complex orthogonal process
ZIðf Þ such that any realization IðxÞ can be expressed as a
Fourier-Stieltjes transform of the form (Lumley and
Panofsky, 1964)

IðxÞ ¼
Z1

�1

ejaf dZI fð Þ ð4Þ

where

E½dZIðf Þ� ¼ 0 ð5Þ
and

E½dZIðf1ÞdZ�I ðf2Þ� ¼
0 f1 6¼ f2
SIIðf Þdf f1 ¼ f2 ¼ f

�
ð6Þ

where dZ�I ðf Þ denotes the complex conjugate of dZIðf Þ.
Equations (5) and (6) state that any zero-mean station-
ary process can be represented by the sum of sine and
cosine functions with random amplitude ZI fð Þj j and
random phase arg ZI fð Þ.

According to the Wiener-Khintchine theorem
(Priestley, 1981), the autocovariance function RII að Þ of a
continuous stationary random process can be expressed
as a Fourier-Stieltjes transform

RII að Þ ¼ E IðxÞI xþ að Þ½ � ¼
Z1

�1

SIIðf Þejaf df ð7Þ

where j ¼ ð�1Þ1=2; the a is the angular frequency, and
the SII fð Þ is the spectrum of IðxÞ or the first-order
autospectral density function of IðxÞ. The spectrum
function is uniquely determined by the following trans-
formation

SII fð Þ ¼ 1

2p

Z1

�1

e�jaf RII að Þda ð8Þ

When a ¼ 0, the SII fð Þdf is a frequency decomposition
of variance because RII að Þ is even and SII fð Þ is real.

3.2 Linear filters and spectral analysis

Assuming that IðxÞ is stationary and using the spectral
representations for IðxÞ and yðxÞ, one can obtain the
following relationship

dZy1 fð Þ ¼ Py1;I fð ÞdZI fð Þ ð9Þ

where

Py1;I fð Þ ¼
Z1

0

ejf sKn1 sð Þds ð10Þ

The Py1;I fð Þ is the linear frequency response function of
the linear system. Using Eqs. (5) and (9), one can find
the input–output spectral relationship

Syy fð Þ ¼ E dZ�y1 fð ÞdZy1 fð Þ
h i

¼ Py1;I fð Þ
�� ��2SII fð Þ ð11Þ

where Py1;I fð Þ
�� ��2 is the transfer function (TF) of the

linear system. The cross-spectrum for a linear system are
given by

SIy fð Þ ¼
Z1

0

e�jf sRIy sð Þds ð12Þ

The cross spectrum is related to the complex processes
dZI fð Þ and dZy fð Þ by

E dZy f1ð ÞdZ�I f2ð Þ
� �

¼ SIy fð Þdf ; f1 ¼ f2 ¼ f
0 otherwise

�
ð13Þ

Thus, from Eqs. (13) and (9) one can obtain another
important relation

SIy fð Þ ¼ E dZ�I fð ÞdZy1 fð Þ
� �

¼ Py1;I fð ÞSII fð Þ ð14Þ

Since x tð Þ and y tð Þ are real, the following symmetry re-
lations hold:

SII fð Þ ¼ SII �fð Þ

Syy fð Þ ¼ Syy �fð Þ

SIy fð Þ ¼ S�Iy �fð Þ ¼ S�yI fð Þ

Py1;I fð Þ ¼ Py1;I �fð Þ

ð15Þ

where the asterisk denotes the complex conjugate.
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4 Quadratic filter

4.1 An input/output quadratic system

Using the spectral representation for IðxÞ and yðxÞ, one
can rewrite Eq. (2) as

dZyðf1Þ ¼ Py1;Iðf1ÞdZIðf1Þ

þ
Z1

a¼�1

Py2;I;Iðf1 � a; aÞdZIðf1 � aÞdZIðaÞ

� IIydðf1Þdf1 ð16Þ
where d½f � is the Direct d function,

KnIy ¼
Z1

a¼�1

Py2;I;Ið�a; aÞSIIðaÞda ð17Þ

Py1;Iðf1Þ ¼
Z1

0

e�jf1aKn1ðaÞda ð18Þ

and

Py2;I;Iðf1; f2Þ ¼
Z1

0

Z1

0

e�j f1aþf2bð ÞKn2ða; bÞda db ð19Þ

Py1;Iðf1Þ and Py2;I;Iðf1; f2Þ are called the linear and qua-
dratic frequency response functions, respectively. The
Py1;Iðf1Þ of Eq. (18) has the same form as the Py1;I fð Þ of
Eq. (10). The Py2;I;Iðf1; f2ÞdZIðf1ÞdZIðf2Þ represents the
contribution of the components with frequencies f1 and
f2 in IðtÞ to the component with frequency f1 þ f2 in
yðxÞ. Without loss of generality, one may assume that
Py2;I;Iðf1; f2Þ is symmetric (Priestley, 1988). The sym-
metric relations are

Py2;I;Iðf1; f2Þ ¼ Py2;I;Iðf2; f1Þ ¼ P�y2;I;Ið�f1;�f2Þ ð20Þ

where the asterisk denotes the complex conjugate.
According to Eq. (20), the Py2;I;Iðf1; f2Þ has to be evalu-
ated within the domain 0 � f1 � 1, �f1 � f2 � f1. Such
a quadratic system is characterized by the linear and
quadratic FRF (or linear and quadratic IRF).

It is assumed that IðxÞ is Gaussian with autocovari-
ance function RIIðsÞ in order to obtain analytical ex-
pressions for the linear and quadratic FRF in terms of
polyspectra and cross polyspectra. Under this assump-
tion, the linear and quadratic terms in Eq. (2) or
Eq. (16) are orthogonal or uncorrelated (Tick, 1961;
Subba Rao and Gabr, 1984). Multiplying both sides of
Eq. (9) by dZIð�f Þ, taking expectations, and then can-
celling the common term df , one can obtain

SIyðf Þ ¼ Py1;Iðf ÞSIIðf Þ ð21Þ
In a like manner, we use Eq. (21) and the orthogonal
properties stated earlier. Then, multiplying both sides of
Eq. (16) by dZIð�f ÞdZIð�gÞ, taking expectations, and
cancelling the common term df dg on both sides, we can
obtain

SIIyðf ; gÞ ¼ 2Py2;I;Iðf ; gÞSIIðf ÞSIIðgÞ ð22Þ
Using the symmetric relation in Eq. (20) and assuming
that xðtÞ is Gaussian, one can obtain following qua-
druple product

E dZI f1ð ÞdZI f2ð ÞdZI f3ð ÞdZI f4ð Þ½ �
¼ E dZI f1ð ÞdZI f2ð Þ½ �E dZI f3ð ÞdZI f4ð Þ½ �
þ E dZI f1ð ÞdZI f3ð Þ½ �E dZI f2ð ÞdZI f4ð Þ½ �
þ E dZI f1ð ÞdZI f4ð Þ½ �E dZI f2ð ÞdZI f3ð Þ½ � ð23Þ

Thus, one can estimate the linear and quadratic FRF
from the input spectrum and the second- and third-order
cross spectra.

Making use of orthogonality of the linear and qua-
dratic terms in Eq. (2), along with expressions of Eqs. (21)
and (22), one can obtain the output spectrum (Tick, 1961)

Syyðf Þ ¼ Py1;Iðf Þ
�� ��2SIIðf Þ þ 2

Z1

a¼�1

Py2;I;Iðf � a; aÞ
�� ��2

� SIIðf � aÞSIIðaÞda ð24Þ
Once the linear and quadratic frequency response func-
tions are derived and the adequate input spectrum SIIðf Þ is
used, the output spectrum Syyðf Þ can be obtained. Fur-
thermore, the variance of output can be derived as well.

5 Stochastic one-dimensional groundwater flow equation

In general, the equation describing the unconfined-flow is
nonlinear. In most of previous researches, the governing
equation is assumed to be linear or can be reduced to
linear form (Gelhar, 1974; Serrano, 1995). Serrano (1995)
indicated that the linearized Boussinesq equation with
Dupuit assumptions is a reasonable approximation to
the exact solution for hydraulic head and the regional
flow velocity. Using the Dupuit assumptions, one can
express the steady one-dimensional flow equation for the
unconfined aquifer without recharge as

o

ox
KðxÞh xð Þ ohðxÞ

ox

� �
¼ 0 ð25Þ

where KðxÞ is the hydraulic conductivity, and hðxÞ is the
hydraulic head. We consider the flow of incompressible
fluid in heterogeneous media with random conductivity.
When the non-stationary hydraulic conductivity KðxÞ
has a trend, it can be written as (Rajaram, 1990; Loai-
ciga, 1993; Indelamn and Rubin 1996)

KðxÞ ¼ exp Y ðxÞ½ �; Y xð Þ ¼ A � xþ yKðxÞ; E yK xð Þ½ � ¼ 0

ð26Þ
where A is a linear trend in mean log conductivity, and
yk xð Þ is the fluctuation of the stationary log hydraulic
conductivity. Substituting Eq. (26) into Eq. (25) yields

Ah
oh
ox
þ oh

ox

� �2

þh
oyK

ox
oh
ox
þ h

o2h
ox2
¼ 0 ð27Þ
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where ln KðxÞ ¼ Y ðxÞ is the log hydraulic conductivity.
Using the perturbation method, one can express the hy-
draulic head in terms of a series (Indelamn and Rubin,
1996)

hðxÞ¼ h0ðxÞ þ h1 xð Þ þ h2ðxÞ þ � � � þ hnðxÞ þ hnþ1ðxÞ þ � � �;
hn

hnþ1

				
				 ¼ O rYð Þ ð28Þ

where r2
Y is the variance of log hydraulic conductivity,

and E h1ðxÞ½ � ¼ 0. We assume that the head is locally
stationary, so that it has a spectral representation. The A
and �oh0=ox are regarded as varying slowly in space,
that is, the local homogeneity assumption are used in A
and �oh0=ox. Therefore, the mean of hydraulic head has
the property: E hðxÞ½ � ¼ E h0ðxÞ½ � þ E h2ðxÞ½ �. Substituting
Eq. (28) into Eq. (27) and then ignoring the third-order
term, one can obtain the zero-, first-, and second-order
perturbation equations, respectively, as

Ah0
oh0

ox
þ h0

o2h0

ox2
¼ � oh0

ox
oh0
ox

ð29Þ

A
oh0
ox
þ o2h0

ox2

� �
h1 þ Ah0 þ 2

oh0

ox

� �
oh1
ox

þ h0
oh0

ox
oyK

ox
þ h0

o2h1

ox2
¼ 0 ð30Þ

and

�AJh2 þ
oh1

ox

� �2

�2J
oh2
ox
¼ 0 ð31Þ

where J ¼ �oh0=ox. It should be noted that the rY has
to be less than unity, because of the perturbation
approach. If the log hydraulic conductivity is stationary,
then A is equal to zero in Eqs. (29)–(31).

6 Derivation of linear and quadratic FRF for a steady
groundwater flow system

6.1 Linear frequency response function

Dividing Eq. (29) by h0, substituting Eq. (29) into
Eq. (30), and then using Eqs. (4) and (9), one can obtain
the linear frequency response function:

P1 fð Þ ¼ ifJh0

�AJ � J 0 � iðfJ þ Afh0Þ½ � � f 2h0 � ifJ
ð32Þ

where f is frequency, and J 0 ¼ �o2h0=ox2. Gelhar (1977)
obtained different expression of P1 fð Þ, because he lin-
earized the log transmissivity and assumed it stationary.

In his case, the terms in the square bracket of the
denominator of Eq. (32) are neglected. Hence, ignoring
the terms in the square bracket of Eq. (32) yields Gel-
har’s (1977) expression. Furthermore, substituting
Eq. (32) into Eq. (11) with the spectrum of the log hy-
draulic conductivity, one can obtain the spectrum of
hydraulic head.

6.2 Quadratic frequency response function

The spectral representation of Eq. (31) can be expressed
as

�AJdZh2ðf1Þ � f 2
1 dZ2

h1ðf1Þ þ 2jJf1dZh2ðf1Þ ¼ 0 ð33Þ

Multiplying both sides of Eq. (33) by dZY ðf ÞdZY ðgÞ,
taking expectations and then using the properties of Eqs.
(20), (22), and (23), one can obtain

P2ðf ; gÞ ¼
fgP1ðf ÞP1ðgÞ

ð2jJðf þ gÞ � AJÞ ð34Þ

7 Output spectral analysis

7.1 Variance produced from the linear system

If the spectrum of the log hydraulic conductivity is
known, the spectrum of the hydraulic head can be ob-
tained from Eq. (11). The exponential lnK covariance
function is often assumed. It can be expressed as (Gel-
har, 1993)

RYY sð Þ ¼ r2
Y e
�s

k ð35Þ
where k is the correlation scale. The corresponding
spectrum can be given as

SYY fð Þ ¼ r2
Y k

p 1þ k2f 2

 � ð36Þ

where SYY fð Þ is the spectrum of the log hydraulic con-
ductivity. According to the spectral theory, one can
obtain the spectrum of hydraulic head as

Sh1h1 fð Þ¼ f 2h40J4r2
Y k=½p f 4h40þ2f 2h2

0J
2þ J 4þ f 2h2

0J
2l2


 �
� J2þ f 2h20m

2

 �

� ð37Þ
where Sh1h1 fð Þ is the spectrum of the hydraulic head,
v ¼ Ah0=J ; lj j ¼ Ah0=Jð Þ � 2j j ¼ v� 2j j and m ¼ kJ=h0.
Furthermore, the variance of hydraulic head,
namely the Fourier transform of Eq. (37), can be
obtained as

r2
h1 ¼ �

h0Jk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ l2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l4

pq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ l2 þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l4

pq� �3

r2
Y

ffiffiffi
2
p

l3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2

p
ð2þ

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ l2 � l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l4

pq
mþ

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ l2 þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l4

pq
mþ 2m2Þ

ð38Þ
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where m ¼ kJ=h0 � 0 and J 6¼ 0. The m and l are di-
mensionless factors and they are proportional to k and
A, respectively. In Eq. (38), there exits a singularity of
head variance at l ¼ 0, i.e. v ¼ 2. The head variance
approaches zero as m! 0. Figure 2 shows that the
dimensionless head variance versus the variance of log
hydraulic conductivity for various values of m as v ¼ 0,
i.e. A ¼ 0. The dimensionless head variance increases
with increasing m when r2

Y is fixed. Figure 3 shows that
dimensionless variance ratio versus m with various values
of v. The result shows that the dimensionless variance
ratio increases as m increases. Ratio of the head variance
to the variance of log hydraulic conductivity versus m
and v is presented in Fig. 4. In Fig. 4, the dimensionless
variance ratio increases with increasing v for v < 2, but
it decreases with increasing v for v > 2. The maximum
of dimensionless variance ratio occurs as v! 2 when m
is fixed. The result shows that the effects of m and v on
the dimensionless variance ratio are insignificant. That
is, both the correlation scale and the trend in mean of
log hydraulic conductivity are important to the dimen-
sionless head variance.

If the log hydraulic conductivity is stationary (i.e.
A ¼ 0) and h0 �� Jk, which is the typical situation in
the field (Gelhar, 1993), then for the case of the expo-
nential ln K covariance function, the variance of hy-
draulic head becomes

r2
h ¼ 0:3535r2

Y Jkh0 ð39Þ
When the exponential ln K covariance function is used,
the variance of hydraulic head is proportional to the
gradient of hydraulic head, the mean hydraulic head and
the correlation scale as shown in Eq. (39). For the same
case, the variance of hydraulic head derived by Gelhar

(1977) is of the same form as Eq. (39) except with a
constant coefficient of one. One can obtain the same
equation derived by Gelhar (1977) if the terms in the
bracket of the denominator of Eq. (32) is ignored. If the
hydraulic head process is locally stationary, a general
form propose by Gelhar (1993) is

r2
h ¼ Cr2

Y J 2k2 ð40Þ
where C is a coefficient. The relationships for C are
summarized in Table 1. Figure 5 gives the variances of
hydraulic head obtained from Table 1. As indicated in
Fig. 5, the variance obtained from Eq. (39) is 0. 3535
times that of Gelhar (1977).

Fig. 2 Dimensionless head variance versus variance of log hydraulic
conductivity for various m as v ¼ 0

Fig. 3 Dimensionless variance ratio of hydraulic head to log
hydraulic conductivity versus m for various v

Fig. 4 Ratio of head variance to variance of log hydraulic conduc-
tivity versus m and v
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7.2 Variance produced from the quadratic system

The first term of Eq. (24) has been derived in Sect. 7. 1,
that is, Eq. (38). Furthermore, the second term of
Eq. (24) can be derived with Eqs. (34) and (36), i. e. the
quadratic response function and the spectrum of expo-
nential ln K covariance function. Hence, the spectrum of
hydraulic head produced from the quadratic system can
be obtained by summing the first and second terms of
Eq. (24). Consequently, using the Fourier transform, the
variance of hydraulic head produced from the quadratic
system can be derived as

Equation (41) shows that there exist singularities at
v ¼ 0; 2, and 4. The v cannot be zero in Eq. (41), that is,
A cannot be zero in Eq. (41). It should be noted that Ak
should be small relative to 1 (Gelhar, 1993), that is,
mv < 1 in Eq. (41). Equation (41) can be rewritten as

r2
h2 ¼ r2

h1 1�Hr2
Y


 �
ð42Þ

From Eq. (42), we know that Hr2
Y 	 1 because of

Eq. (28). For the case as m ¼ 0:01 and v ¼ 5, the vari-
ance of hydraulic head can be expressed as

r2
h2 ¼ 0:3535 r2

Y h20ð1� 0:167r2
Y Þ ð43Þ

The dimensionless head variances produced by the linear
system and the quadratic system are compared in Fig. 6.

Under the conditions of m ¼ 0:01 and v ¼ 5, the differ-
ence between head variances produced respectively from
the linear system and the quadratic systems are obvious
when Jk=h0 is lager than 0.1.

8 Summary and conclusions

In this paper, an approach to deriving the head variance
for a nonlinear unconfined groundwater system is
developed using the nonlinear filter theory. Most of
previous researches did not derive the analytical solution
up to the second-order perturbation on this problem.
The linear and quadratic frequency functions of a
phreatic aquifer are obtained. Furthermore, the

Table 1 The relationship for coefficient C in Eq. (40)

Flow configuration C Note

Type of
aquifer

Type of ln K
covariance
function

Unconfined Exponential 0:3535 h0Jk See (41)
Unconfined Exponential B=½Jkð1þ Jk=BÞ� See (4.3.4) of

Gelhar (1993)
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analytical solutions of the head variance are respectively
derived for the linear and quadratic systems with non-
stationary log hydraulic conductivity. The major con-
clusions are summarized as follows:

A. For the linear system

1. Under the assumption of the exponential ln K co-
variance function, the head variance derived by Gel-
har (1977) is of the same form as Eq. (14) except with
a constant coefficient of one. The head variance
derived in this paper is 0.3535 times than that of
Gelhar (1977) as h0 �� Jk. The difference is because
the log transmissivity is linearized in Gelhar’s work.

2. The linear frequency response function derived in this
paper, i.e. Eq. (32), can be reduced to that of Gelhar
(1977) if the terms in the square bracket of the de-
nominator of Eq. (32) are ignored.

3. The head variance produced from the linear system
exits a singularity at l ¼ 0, i.e., v ¼ 2. The head
variance approaches zero as m! 0.

4. The maximum of dimensionless variance ratio occurs
as v! 2 when m is fixed.

B. For the quadratic system

1. The head variance exists singularities at
v ¼ 0; 2; and 4. The v cannot be zero in Eq. (41), that
is, the trend of log hydraulic conductivity (i.e. A)
cannot be zero in Eq. (41).

2. The constraints for head variance are Hr2
Y 	 1 and

mv < 1.

The effects of m and v on the dimensionless variance
ratio are insignificant, that is, both the correlation scale
and the trend in mean of log hydraulic conductivity are
important to the dimensionless variance ratio. The ap-
proach developed in this paper can be applied to the
more complex problems.
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