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Abstract

Based on self-organizing map, a method that can perform cluster analysis and discrimination analysis in one step is proposed in
this paper. Using the proposed method, one can view the relative topological relationships of input patterns, determine the proper
number of clusters, and assign unknown patterns to known clusters without losing any information of input patterns. Regarding the
capability of determining the proper number of clusters, the proposed method is superior to conventional cluster analysis. The dis-
crimination results also show that the assignments of unknown patterns to known clusters are reasonable using the proposed
method. The advantages of the proposed method are also demonstrated by an application to the hydrological factors affecting
low-flow duration curves in southern Taiwan.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Hydrologists often encounter a problem that certain
hydrological information is required but unavailable at
an ungauged site. Such a problem can be solved using
regionalization. Regionalization is a useful tool to extrap-
olate certain hydrological information at an ungauged
site using the information of gauged sites [13]. The sub-
stances of regionalization are a set of hydrological factors
that can describe certain hydrological information prop-
erly. For different applications, regionalization may use
different sets of hydrological factors describing different
hydrological information. Regionalization contains two
tasks: delineating the hydrologically homogeneous
regions and developing a regional estimation method.
Delineating hydrologically homogeneous regions is to
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discover the similar hydrological characteristics among
gauged sites so that the accuracy of the extrapolation
can be improved. The identification of the homogeneities
of hydrological factors is the key point of delineating
hydrologically homogeneous regions. The regional esti-
mation method is often a set of regression models based
on several different classes of certain hydrological infor-
mation at gauged sites. Then the extrapolation of certain
hydrological information at an ungauged site can be per-
formed using the corresponding regression model. There-
fore, for well extrapolations, one needs an appropriate
method to help develop and choose the corresponding
regression model for an ungauged site.

Delineating hydrologically homogeneous regions
may combine several procedures [8,13–16], including
principal component analysis, cluster analysis, and dis-
crimination analysis (abbreviated as PCD herein). It is
necessary to explain briefly the objectives of the three
multivariate statistical techniques of PCD used in
regionalization. In conventional regionalization,
principal component analysis is usually used to reduce
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the dimension of the input data. For example, Yu et al.
[16] employed principal component analysis to select
several predominating components, so the dimensions
of the data that was linearly formulated using the origi-
nal hydrological factors were reduced. With the reduced
dimension of input data, the computation complexities
of the subsequent analysis are lowered, but important
information is lost [1]. Nevertheless, the complete infor-
mation contained in the raw hydrological factors should
be preserved. If principal component analysis is only
used to reduce the dimension of input data, principal
component analysis will not be an appropriate proce-
dure for regionalization.

The second procedure of conventional regionalization,
cluster analysis, is to explore the relationships of hydro-
logical factors at gauged sites. After cluster analysis, the
grouping of hydrological factors can be derived and the
hydrological homogeneous areas can then be delineated.
Furthermore, the regional estimation method that is
often a set of regression models is developed. The set of
regression models is derived using regression analysis.
Each cluster has its corresponding regression model that
is derived based on the data members of the cluster.

The third procedure of conventional regionalization,
discrimination analysis, is to build a model to assign an
ungauged site to a known cluster, so that a proper
regression model can be selected to extrapolate the spe-
cific hydrological information. It should be noted that
the hydrological factors of ungauged sites are given
but are not analyzed by cluster analysis. The objective
of discrimination analysis is accomplished using two
steps. The first step is to find out the discriminants of
the hydrological factors of gauged sites whose grouping
is already known. Based on the discriminants, the sec-
ond step is to develop the model to appropriately assign
ungauged sites to known clusters. The cluster that an
ungauged site belongs to can then be determined using
the model developed by discrimination analysis. There-
fore, one can choose the proper regression model for
the ungauged site.

For a clear description of cluster analysis, the follow-
ing mapping equation is used:

U : P! Q ð1Þ

where P and Q are finite sets, and U is the mapping. In
regionalization, P represents the set of hydrological fac-
tors at gauged sites. Q is the set of clusters that P is clas-
sified into. The objective of cluster analysis is to find an
appropriate mapping U without the prior knowledge of
P (i.e., the grouping Q of the data set P). Thus, the term
‘‘unsupervised learning’’ is applied to cluster analysis
[1,4,7]. After the cluster analysis, the grouping of the in-
put data is detected. The number of clusters and the
members belonging to the corresponding cluster are
both determined. According to the results of cluster
analysis, the hydrological homogeneous regions are
delineated. Then the regional estimation method can
be developed and the accuracy of the extrapolation
can be improved.

It is clearer to explain discrimination analysis using
Eq. (1). In discrimination analysis, the prior knowledge
of data set P (i.e., the grouping Q of the data set P) is
known. The objective of discrimination analysis is to
establish a proper mapping U so that the data set P

can be classified into the appropriate clusters. Mean-
while, new data that is not analyzed by cluster analysis
can be assigned to the proper cluster using the results
of the above discrimination analysis. Since the prior
knowledge of P is known, the term ‘‘supervised learn-
ing’’ is applied to discrimination analysis. In conven-
tional regionalization, discrimination analysis develops
a classification model based on the results of cluster
analysis. The classification model is used to assign an
ungauged site to a known cluster according to properties
of the hydrological factors of the ungauged site.

A sufficient method of assigning ungauged sites to
known clusters is necessary for regionalization. Some
studies use only cluster analysis for regionalization
[2,11]. However, choosing a proper regression model for
an ungauged site is difficult using only cluster analysis.
It is realized that PCD comprises three complicated statis-
tical techniques. In most cases of regionalization, the
amount of hydrological information is rather small due
to the limitation of the data acquiring techniques. Hence,
PCD is not an efficient method for regionalization.

One problem of the conventional cluster analysis is to
determine the number of clusters. For hierarchical clus-
ter analysis methods, the dendrogram is used to show
the relative topological relationships of input patterns
and the number of clusters is determined using a certain
complicated statistic computed from the dendrogram
[1,3]. Different hierarchical cluster analysis methods
(e.g., single linkage and complete linkage methods) often
lead to different dedrograms [12], so the clustering
results derived from the different dendrograms are
inconsistent. For non-hierarchical cluster analysis meth-
ods such as K-means [6], the topological relationships of
input patterns cannot be easily obtained. The number of
clusters should be determined in advance although the
actual grouping of input patterns is unknown. Thus,
the determination of the proper number of clusters is
also a problem for non-hierarchical cluster analysis
methods. In conclusion, the determination of the proper
number of clusters is a subtle problem for conventional
cluster analysis methods.

When the conventional cluster analysis is applied to a
data set, the relationships among the data set are discov-
ered. That is the mapping U (Eq. (1)) is found. Intui-
tively, researchers may think that they can assign a
pattern (known or unknown) to a known cluster using
the mapping U, since the mapping U is found. However,
the assignments of patterns cannot be done only with



Fig. 1. Architecture of SOM.
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the conventional cluster analysis. Because the conven-
tional cluster analysis just provides algorithms to ana-
lyze the data set, it does not provide a facility to store
the knowledge (i.e. the mapping U) of data set. After
the conventional cluster analysis is performed, the
knowledge of data is discarded. Only the relationships
of the data are discovered. Thus, for the assignments
of known or unknown patterns, discrimination analysis
is necessary. In short, PCD is not an intuitional method
for hydrologists.

Artificial neural network is now a popular tool to
deal with massive and complex data to derive useful
information. There are many kinds of artificial neural
networks categorized by its learning process. The artifi-
cial neural network used herein is the Self-Organizing
Map (SOM) proposed by Kohonen [7]. SOM is a com-
petitive and unsupervised network. The term, ‘‘unsuper-
vised’’, means that the knowledge of environment is not
learned from the specific input–output examples.
Instead, it learns the knowledge of environment only
from the input patterns and then stores the knowledge
in the network. An attractive capability of SOM is to
map high dimensional input patterns onto a lower
dimensional output space and to preserve the topologi-
cal relations of input patterns. The characteristic, cou-
pled with the unsupervised nature of its learning
algorithm, has rendered the SOM an attractive alterna-
tive for solving various problems that traditionally have
been the domain of conventional statistical and opera-
tional research techniques. SOM is often used to extract
the specific features and to discover the statistical distri-
bution of a complex phenomenon. Mangiameli et al. [9]
compared SOM with other seven hierarchical cluster
analysis methods. Their result shows that the perfor-
mance of SOM in clustering messy data is better than
that of the other seven hierarchical clustering methods.
Michaelides et al. [10] adopted the SOM to classify the
rainfall variability to provide prototype classes of
weather variability. Their results show that SOM can
detect much more detail of rainfall variability than hier-
archical cluster analysis methods can. For the regional-
ization of the flood frequency, Zhang and Hall [18]
compared SOM, Ward’s method and the Fuzzy
C-means approach. Their results indicate that SOM is
preferable over the other two methods.

The nature of the unsupervised network, SOM, is
similar to the conventional cluster analysis. However,
unlike the conventional cluster analysis, the knowledge
of input patterns can be stored in network itself. This
is a fascinating advantage of SOM over the conventional
cluster analysis. The purpose of this paper is to propose
a simple method for delineating hydrological homoge-
neous regions. As aforementioned, principal component
analysis may not be appropriate for regionalization. For
facilitating the delineation of hydrological homogeneous
regions in an intuitional way, the objective of this paper
is to develop a method that can perform cluster analysis
and discrimination analysis in one step. First, the algo-
rithm and architecture of the SOM are presented. On
the basis of the nature of ‘‘unsupervised learning’’,
SOM is a good tool for clustering. Then, based on
SOM, a method combining cluster analysis and discrim-
ination analysis is developed. Finally, the low-flow char-
acteristics in southern Taiwan are analyzed using the
proposed method to identify their homogeneity and to
verify the capability of assigning unknown patterns to
known clusters.
2. Method

2.1. Algorithm of SOM

The essential mechanism of SOM is the competitive
and unsupervised learning process in which the neurons
of the network compete each other to be activated. The
output space of SOM can be one- or two-dimensional.
Higher dimensions of the output space are acceptable
but not common. SOM has two layers: the input layer
containing the input nodes, and the Kohonen layer with
numerous neurons fully connected by every input node
in the input layer. A SOM with two input nodes and
twenty-four neurons is shown in Fig. 1. SOM is an iter-
ative algorithm containing three processes: the competi-
tive process, the cooperative process and the adaptive
process.

2.2. The competitive process

Let an input pattern denoted by

x ¼ ½x1; x2; . . . ; xm�T ð2Þ
where m is the dimension of the input pattern x. The
synaptic weights vector of each neuron has the same
dimension as input patterns. Let the synaptic weights
vector denoted by
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wj ¼ ½wj1;wj2; . . . ;wjm�T; j ¼ 1; 2; . . . ; l ð3Þ
where l is the total number of neurons in the network.
The synaptic weights are initialized as small random
numbers. In the competitive process, the neurons of
the network compete each other to determine which
one to be activated. The neuron that is activated is called
the winning neuron. The way to determine which neu-
ron is the winning neuron is to find the neuron that best
matches the current input pattern feeding to the SOM.
The measure of the similarity between neurons and
input patterns is the Euclidean distance. Hence, we
may determine the winning neuron by applying the con-
dition [7]:

iðxÞ ¼ arg min
j
kx� wjk; j ¼ 1; 2; . . . ; l ð4Þ

where i(x) is the neuron that best matches the corre-
sponding input pattern x and the k Æ kmeans the Euclid-
ean distance.

2.3. The cooperative process

In the cooperative process, the influence (i.e. lateral
interaction) of the winning neuron is delivered to its
neighboring neurons. The location of the winning neuron
is the center of the topological neighborhood of cooperat-
ing neurons. The topological neighborhood implies the
lateral interactions between the winning neuron and its
neighborhood. The amplitude of the topological neigh-
borhood hj,i(x)(n) should decreases monotonically with
the lateral distance. Thus, a typical hj,i(x)(n) is defined by
the Gaussian function [7]:

hj;iðxÞðnÞ ¼ exp �
d2

j;i

2r2ðnÞ

 !
; n ¼ 0; 1; 2; . . . ð5Þ

where dj,i is the Euclidean distance between the winning
neuron i and the activated neuron j in the output space,
hj,i(x)(n) is the topological neighborhood at time n

between the winning neuron i and the excited neuron
j, and r(n) is the effective width which corresponds to
the radius around neuron j at time n. The r(n) should
decrease monotonically with time. Readers can obtain
more details from Kohonen [7].

2.4. The adaptive process

In adaptive process, the synaptic weights are adjusted
according to input patterns. The adjustment of synaptic
weights is based on the Hebbian hypothesis [7]. The
algorithm that adjusts the synaptic weights is defined
as follows [7]:

wjðnþ 1Þ ¼ wjðnÞ þ gðnÞhj;iðxÞðnÞðx� wjðnÞÞ ð6Þ

where g(n) is the learning rate at time n, wj(n + 1) is the
synaptic weights of neuron j at time n + 1, wj(n) is the
synaptic weights of neuron j at time n, and hj,i(x)(n) is
the topological neighborhood as defined in Eq. (5).
The learning rate should shrink with time monotonically
as shown in the following equation [7]:

gðnÞ ¼ gð0Þ exp � n
1000

� �
ð7Þ

where g(0) is the initial learning rate.
As the iteration of SOM proceeds, the winning neu-

ron and the neighboring neurons become more and
more similar to the corresponding input pattern. Thus,
the synaptic weights of the winning neuron and the
neighboring neurons move closer to input patterns.

2.5. SOM-based cluster and discrimination analysis
(SOMCD)

In this section, since the relationships of input pat-
terns can be stored, a SOM-based cluster and discrimi-
nation analysis (referred to as SOMCD hereafter)
method is proposed. SOM is adopted herein to perform
a transformation of input patterns into a two-dimen-
sional discrete lattice to reveal the topological locations
and statistical distributions of input patterns.

After the SOM training is done, feeding the SOM
with all input patterns that have learned by the SOM
can lead to the feature map. Applying Eq. (3) to a
trained SOM with all its input patterns yields the feature
map. The feature map is a two dimensional lattice and
each grid represents one neuron. The way to obtain
the feature map is to label all winning neurons (some
specific grids) in the output space (the lattice) with the
identities of corresponding input patterns. With the fea-
ture map, the relative topological relationships between
input patterns can be identified. The location of a win-
ning neuron in the feature map shows the topological
location of a corresponding input pattern in the input
space, and the density of neurons shows the statistical
distribution of input patterns.

If a neuron responds to a specific input pattern, the
neuron is called the image of the specific input pattern
or the neuron is ‘‘imaged’’ by the specific input pattern.
The density map can be obtained by applying the
following equation to a trained SOM:

N ¼ NumðijÞ; j ¼ 1; 2; . . . ; l ð8Þ
where N is an integer, i is the neuron of the trained
SOM, and Num( ) is a function counting the number
of the neuron i ‘‘imaged’’ by certain input patterns.
Every pattern in the input space has only one image,
but one neuron can be the image of many input patterns.
Patterns that are close in the input space tend to crowd
their images in a certain place of the feature map [19].
The void in the input space where there is no input pat-
tern is also shown in the feature map. According to this
property, the density map can reveal the grouping of in-
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put patterns. From Eq. (8), the density map can be ob-
tained easily by labeling each grid of the map with the
integer N. Suppose that the number of each grid is the
‘‘elevation’’ of the density map. Then the grouping of
input patterns is shown by certain isolated ‘‘plateaus’’
separated by ‘‘valleys’’ on the density map. The ‘‘pla-
teaus’’ imply the aggregations of input patterns that
are mapped onto the density map. The ‘‘valleys’’ imply
the void of input patterns that are mapped onto the den-
sity map. Thus, according to the variation of the ‘‘eleva-
tion’’ on the density map, the grouping of the input
patterns can be easily identified. The valleys are the clus-
ters’ boundaries. Therefore a proper number of clusters
can be determined.

There are some neurons ‘‘imaged’’ by certain input
patterns in the feature map. According to the aforemen-
tioned feature map and density map, labeling the
‘‘imaged’’ neurons with the identity of the correspond-
ing cluster forms a part of a discrimination map. There
are still some blank neurons not labeled. A complete dis-
crimination map can be obtained by applying the fol-
lowing equation to the blank neurons:

I ¼ CðiÞ ¼ arg min
j
kwðiÞ � xjk; j ¼ 1; 2; . . . ; p ð9Þ

where I is the identity of a specific cluster, C( ) is a func-
tion indicating the cluster to which the blank neuron i

belongs, w(i) is the weights of the blank neuron i, x is
a input pattern, and p is the number of input patterns.
The identity of a blank neuron is the identity of the in-
put pattern which best matches the synaptic weights of
the blank neuron. A complete discrimination map can
then be obtained by labeling all blank neurons with their
corresponding identities I as shown in Eq. (9). The dis-
crimination map can be divided into a certain number
of regions. Each region represents a specific cluster. If
a pattern is mapped onto a specific region of the discrim-
ination map, the pattern belongs to this specific cluster.

All the three maps (feature map, density map and dis-
crimination map) derived from SOMCD are for visual
inspection to discover the relationships of input pat-
terns. For visual inspection, the hexagonal lattice of
SOM is more ideal than the square lattice, since the hex-
agonal lattice does not only emphasize horizontal and
vertical directions [7]. Thus in this paper, the lattice of
SOM is chosen to be hexagonal. The dimension of
SOM is another critical item. Kohonen [7] has suggested
the rectangular dimension is better than square one. A
well choice of the dimension of a SOM is q · r where
q and r are different positive integers. A SOM of this
type is well oriented along with its input patterns and
be more stable during the adaption process [7]. The rect-
angular SOM is adopted in this paper.

The adaption process of SOM involves two phases:
an ordering phase followed by a tuning phase [5]. Dur-
ing the first phase, the topological ordering of the
weights of the neurons occurs. And then during the sec-
ond phase, the map is fine tuned so that the statistical
properties of the input patterns are captured accurately.
The parameters (i.e. learning rate, radius, dimension and
training epochs) of SOM during these two phases may
significantly influence the results of SOMCD.

2.6. Components of SOMCD

As shown in Fig. 2, the feature map, the density map
and the discrimination map are the essentials of
SOMCD. The flowchart of SOMCD is shown in
Fig. 2. The initialization stage is to determine the archi-
tecture of SOM, and the sampling stage is to draw an
input pattern to SOM. In the adaption stage, the afore-
mentioned competitive, cooperative and adaptive pro-
cesses are performed sequentially. The stop condition
is when SOM does not change anymore through adap-
tion. If the stop condition is not satisfied, the analysis
returns to the sampling stage. Once the stop condition
is satisfied, a SOM can be obtained from which the fea-
ture map can be derived. Furthermore, the density map
can be derived from the feature map. Finally, based on
both the feature map and the density map, the discrim-
ination map can be obtained. It should be noted that the
feature map, the density map and the discrimination
map are all derived from the same SOM.

The functions of the feature map, the density map
and the discrimination map are stated below. The rela-
tive topological relationships of input patterns can be
identified using the feature map, and the proper number
of clusters can be easily determined using the density
map. Comparing the feature map and the density map,
one can obtain the members of each cluster. A pattern
can be properly assigned to a known cluster using the
discrimination map.
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3. A case study

In this section, the hydrological factors affecting low-
flow characteristics in southern Taiwan are analyzed
using SOMCD. The procedures of the analysis are pre-
sented and the results are then discussed.

3.1. Study area and data description

Fig. 3 shows the study area and the locations of 33
streamflow gauges. The study area has an area of about
6000 km2. The flow-duration curves for rivers at these 33
streamflow gauges and the hydrogeological formations
of the corresponding watersheds are the data set ana-
lyzed in this paper. It should be noted that the gauge
number also serves as the identity of the watershed.
Watersheds 3, 16 and 17 are randomly chosen for the
validations of the discrimination capabilities of
SOMCD. Both the spatial and temporal distributions
of rainfall in the study area are highly non-uniform.
Thus the low-flow characteristics are important infor-
mation for the planning and management of the water
resource in this area.

In this paper, the term ‘‘low-flow’’ is defined as the
portion of the daily flow duration curve with more than
30% time flow exceeding indicated value. For three rea-
sons, the nine hydrogeological parameters of the 30
watersheds are used to delimit the homogeneous
regions in this paper. First, the low-flow characteristics
are significantly influenced by the hydrogeological for-
mations of a watershed [15,16]. Second, these parame-
ters vary little in time so that the delineations are
stable. Third, these hydrogeological parameters can be
estimated at ungauged watersheds, so it is possible to
assign an ungauged site into the proper homogeneous
Fig. 3. The study area and the locat
region. According to the hydrogeological map [17],
there are nine hydrogeological formations (lake and
eight surficial rocks). The properties of these nine
hydrogeological formations are listed in Table 1. Ratios
of each hydrogeological formation’s area to the whole
watershed area are used as the hydrogeological factors
herein.

3.2. Results

The three maps of SOMCD are all derived from the
same SOM, but the interpretations are different.
Regarding these three maps, it should be noted that
the horizontal and vertical directions have no explicit
meanings, and only the relative topological relationships
and densities of the images of the input patterns are
concerned.

Our experiences on SOMCD show that the radius
(i.e. r(n) of Eq. (5)) is the dominant parameter. The
influence due to the radius on SOMCD is given in this
section. For demonstrating the influence of the radius,
different settings of the radius are used to perform
SOMCD while other parameters are fixed. The values
of the radius are quite different during the two phases
of SOM. During the ordering phase, the radius should
be set to cover all neurons at the beginning of the phase
and then shrinks to the distance between two neighbor-
ing neurons [7]. All SOMs used in this paper follow the
principle. During the tuning phase, the initial value of
the radius should be set to a smaller value than that dur-
ing the ordering phase. For convenience, the initial value
of the radius during the tuning phase is defined as rt(0).
Different rt(0) may cause different results of SOMCD.
Also, the radius during the tuning phase shrinks to the
distance between two neighboring neurons.
ions of 33 streamflow gauges.



Table 1
Properties of lake and different types of rocks

Symbol Formation Property

Rock 1 Conglomerate and pyroclastics Parts of the area of this rock have aquifers
Rock 2 Lateritic terrace deposits Parts of the area of this rock have high yielding aquifers
Rock 3 Terrace deposits Most parts of the area of this rock have high yielding aquifers
Rock 4 Recent alluvium High yielding aquifers distributing over downstream area
Rock 5 Mudstone No aquifer in the area of this rock
Rock 6 Shale and argillite Area of this rock has poor yielding aquifers
Rock 7 Sandstone Area of this rock has poor yielding aquifers
Rock 8 Limestone and coral reef Parts of the area of this rock have few poor yielding aquifers
Lake Lake Providing recharge of groundwater and supply of baseflow
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The input patterns of SOMCD are the 30 sets of nine
hydrogeological factors for the 30 watersheds in the
study area. Both the percentages and the spatial distri-
butions of the nine hydrogeological parameters of the
studied watersheds are different. As a consequence, the
weightings that imply the influences of the nine hydro-
geological parameters on the low-flow characteristics
are not easily assessed. There is no prior information
about the degree of the respective hydrogeological fac-
tors affecting the low-flow characteristics. Thus, assum-
ing these nine hydrogeological parameters have the same
influence on the low-flow characteristics is a choice. In
this paper, we assume these nine hydrogeological factors
have the same weight. If the evidence of giving different
Fig. 4. Combinations of the feature maps and the density maps
derived from the SOM of dimension 5 · 3 with (a) rt(0) = 1 and (b)
rt(0) = 2.
weights to these nine hydrogeological parameters is
found, different weights shall be assigned to these
parameters.

Two SOMs of different dimensions are used in this
paper. One is 5 · 3 and the other is 7 · 4. Two different
rt(0) are used to train the two SOMs. Other parameters
(i.e., training epochs and learning rate) of the SOMs are
all the same. The training epochs of the ordering phase
are 1000 and those of the tuning phase are 4000. The ini-
tial learning rates during the ordering phase and the tun-
ing phase are respectively 0.9 and 0.02. The grids of the
three maps (feature maps, density maps and discrimina-
tion maps) represent the neurons in the output space.
The feature maps derived from the two SOMs with
Fig. 5. Combinations of the feature maps and the density maps
derived from the SOM of dimension 7 · 4 with (a) rt(0) = 1 and (b)
rt(0) = 2.
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different rt(0) are combined with the corresponding den-
sity maps in Figs. 4 and 5, respectively. The numbers in
each grid of feature maps refer to the identities of water-
sheds (the gauge numbers). The numbers underlined in
the parentheses are the ‘‘elevation’’ of the grids. The
‘‘elevation’’ of blank grids is zero. Regions surrounded
with bold lines are isolated plateaus. According to the
density map of Fig. 4(a), the 30 sets of hydrological fac-
tors are classified into three clusters. According to the
density maps of Figs. 4(b) and 5(a), the 30 sets of hydro-
logical factors are classified into four clusters. The mem-
bers of each cluster can be identified by comparing the
feature map and the corresponding density map. One
can find that the clustering results of the SOM of dimen-
sion 5 · 3 with rt(0) = 2 (Fig. 4(b)) and the SOM of
dimension 7 · 4 with rt(0) = 1 (Fig. 5 (a)) are identical.
Cluster II (Fig. 4(a)) is identical to Cluster B (Figs. 4(b)
and 5(a)). Cluster III (Fig. 4(a)) is identical to Cluster D
(Figs. 4(b) and 5(a)). The discrimination maps derived
from the two SOMs with different rt(0) are given in Figs.
6 and 7. In the discrimination maps, symbols (3), (16)
and (17) label the images of watersheds 3, 16 and 17
which are for validations of discrimination capability
Fig. 6. The discrimination maps derived from the SOM of dimension
5 · 3 with (a) rt(0) = 1 and (b) rt(0) = 2.

Fig. 7. The discrimination map derived from the SOM of dimension
7 · 4 with rt(0) = 1.
of SOMCD. In Fig. 6(a), watersheds 3, 16 and 17 are
assigned to clusters I, II and III, respectively. The dis-
crimination maps in Figs. 6(b) and 7 both indicate that
watersheds 3 and 16 are assigned to cluster A and
watershed 17 to cluster D. The results of discrimination
in Figs. 6(b) and 7 are the same.
4. Results discussions

4.1. Demonstrations of the relative topological relations

of input patterns using the feature map

The feature map provides topological relationships of
30 sets of hydrogeological factors. In Figs. 4 and 5, the
images of watersheds 5 and 6 all fall in the same grid.
The image of watershed 25 is in the opposing side of
the image of watersheds 5 and 6. This phenomenon
implies that the hydrogeological factors of watersheds
5 and 6 are similar. And the hydrogeological factors of
watershed 25 significantly differ from those of water-
sheds 5 and 6. The comparison of the hydrogeological
formations of watersheds 5, 6 and 25 is provided in
Fig. 8. An advantage of SOMCD over conventional
cluster analysis methods is that the relative topological
relationships of input patterns can be easily identified
from the locations of the corresponding images in the
feature map. Similar input patterns are mapped onto
the vicinity regions of the feature map; on the other
hand, dissimilar input patterns are mapped onto differ-
ent regions in the feature map. When images are distant
from each other in the feature map, it implies that the
corresponding input patterns are far from each other
in the input space. In contrast, when images are close
in the feature map, it implies that the corresponding
input patterns are close to each other in the input space.
However, the distance between two neurons on the
feature map is not an absolute measure of the corre-
sponding input patterns in the original input space. It
should be noted that only the relative topological rela-
Fig. 8. Ratio of each hydrogeological formation’s area to the whole
watershed area.



Fig. 9. The average specific low-flow duration curves of the three
clusters.

Fig. 10. The average specific low-flow duration curves of the four
clusters.
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tionships of input patterns are shown in the output
space of SOM.

4.2. The number of clusters

The clustering result deduced from Fig. 4(a) is
referred to Result I. Result II refers to the clustering
result deduced from Fig. 4(b), and Result III corre-
sponds to that from Fig. 5(a). As aforementioned, the
Result II is identical to Result III.

The initial value of the radius during the tuning
phase, rt(0), plays a vital role in SOMCD. A significant
crowding effect results from a larger value of rt(0). On
the contrary, the crowding effect is slight when a smaller
value of rt(0) is used. The crowding effect refers to the
degree of the images of input patterns crowding in some
regions of the output space. For example, the rt(0) used
to obtain Fig. 4(a) is less than that used to obtain
Fig. 4(b). The distribution of the images of input pat-
terns in Fig. 4(a) is more even than the distribution of
the images of input patterns in Fig. 4(b). In other words,
the images of the input patterns in Fig. 4(b) are more
crowding in some regions of the output space so that
the number of the blank neurons in Fig. 4(b) is more
than that in Fig. 4(a). From Fig. 4(a) and (b), the image
of watershed 7 and 25 moves to the up-right neuron
from their original neuron, while rt(0) alters from 1 to
2. The similar phenomenon can be found in Fig. 5(a)
and (b). A large rt(0) enlarges the ability of SOM distin-
guishing the clusters of input patterns, but reduce the
capability for displaying details of the topological rela-
tionships of input patterns.

The dimension of SOM also influences SOMCD. For
example, the dimension of SOM of Result I is smaller
than that of Result III. The rt(0) used in Result I is iden-
tical to Result III. The fraction of the blank neurons in
Fig. 5(a) is more than that of Fig. 4(a). One interesting
thing can be observed from Results I and III. Watershed
2, 20 and 21 are drawn out from Cluster I. They form
Cluster C. If watershed 2, 20 and 21 is eliminated,
Results I, II, and III are all the same. From the above
discussions, it can be concluded that Cluster I is a nested
cluster. Clusters A and C are small clusters within Clus-
ter I. A SOM of a large dimension shows more details of
the topological relationships of input patterns, but
makes the identification of clusters boundaries (i.e., the
determination of the proper number of clusters) more
difficult.

From Fig. 5(b), one can find that there is a cluster
that has only one member. The purpose of the cluster
analysis in regionalization is to provide a clustered data
set for developing a regional estimation method. The
regional estimation method is a set of regression models.
The confidence of a regression model highly depends
upon the number of available data. Only one data point
is not sufficient to construct a regression model, espe-
cially a nonlinear regression model. The clustering result
deduced from Fig. 5(b) is not suitable for regionaliza-
tion. Thus, the bold line of isolated plateaus in
Fig. 5(b) is not drawn. The corresponding discrimina-
tion map is skipped. The discussions of the clustering
results of Fig. 5(b) are also ignored in this paper. The
confidence of a regression model may increase as the
number of available data contained in the correspond-
ing cluster increases. The accuracy of extrapolations
may increase with increasing number of clusters. How-
ever, the number of clusters increases as the number of
available data that are for developing regression models
decreases. There is the trade-off between the confidence
of regression models and the accuracy of extrapolations.
The proper number of the hydrogeological factors can
be 3 or 4 depending on the requirements and judgments
of the analysts. The average specific low-flow duration
curves deduced from Results I are depicted in Fig. 9.
The average specific low-flow duration curves deduced
from Results II and III are depicted in Fig. 10.
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4.3. Validations of the discrimination maps

Since the knowledge of input patterns is stored in the
SOM itself, unlike convention cluster analysis, one does
not need another method to perform discrimination
analysis. The assignments of unknown patterns to
known clusters are one kind of ‘‘generalization’’ of
SOM. The capability of SOM for ‘‘generalization’’ is
guaranteed [7]. The basis of the regionalization of the
low-flow characteristics is that watersheds with similar
Fig. 11. Validations of the discrimination map (three-cluster case): (a)
watershed 3, (b) watershed 16, and (c) watershed 17.
hydrogeological factors should have similar low-
flow characteristics, whereas watersheds with distinct
hydrogeological factors should have different low-flow
characteristics. The validations of the capability of dis-
crimination of SOMCD are shown in Figs. 11 and 12.
In Figs. 11 and 12, the upper and lower limits indicate
one time of standard deviation of the data points in each
cluster. In Fig. 6(a), the discrimination analysis is per-
formed based on the Result I. Since watersheds 3, 16
and 17 are respectively assigned to clusters I, II and
III, the specific low-flow duration curves of watersheds
3, 16 and 17 should be similar to the average ones of
clusters I, II and III, respectively. The results shown in
Fig. 11 conform to the inference. In Figs. 6(b) and 7,
the discrimination analysis is performed based on
Results II and III. Watersheds 3 and 16 are assigned
to cluster A, and watershed 17 to cluster D. Hence,
the specific low-flow duration curves of watersheds 3
and 16 should be similar to the average one of cluster
A, and the curve of watershed 17 similar to the average
one of cluster D. The results shown in Fig. 12 conform
to the inference. The discrimination results of SOMCD
are reasonable. The locations of streamflow gauges of
the three clusters derived form Result I are shown in
Fig. 12. Validations of the discrimination map (four-cluster case): (a)
watersheds 3 and 16, and (b) watershed 17.



Fig. 13. Locations of streamflow gauges (three-cluster case).

Fig. 14. Locations of streamflow gauges (four-cluster case).
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Fig. 13. The locations of streamflow gauges of the four
clusters derived form Results II and III are shown in
Fig. 14.

4.4. Parameters settings

The other two parameters of SOMCD (training
epochs and learning rate) influence the results of
SOMCD, but the effects are not as significant as that
of the rt(0). However, the two parameters should be
selected carefully. The number of the training epochs
should be large enough so that SOM matures. SOM
should be trained as many epochs as no significant
changes of the result of SOMCD can be found. This is
a strategy to determine the number of training epochs
and is adopted in this paper. Another thing we found
is that when the number of training epochs is sufficient,
learning rate would not influence the results of SOMCD.
However, learning rate during the ordering phase should
be significantly larger than that during the tuning phase
[7]. There is one more thing should be stated clearly. The
initialization method of SOM in this paper is random
initialization. Kohonen [7] indicated this is an inefficient
method. Other more elaborate initialization methods
may be considered. However, in our applications, the
whole procedures of SOMCD performed on the data
set in hand are completed in no more than 2 seconds.
Methods that improve the efficiency of SOMCD are
not considered in this paper.

Using SOMCD, analysts should first use a SOM of a
small dimension and then use several different rt(0) to
train the SOM. rt(0) should not be larger than half of
the value of the initial radius during the ordering phase.
Several results can be obtained by using different rt(0). If
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the results were reasonable and satisfied, then analysis
procedures stop. Otherwise, a SOM of a larger dimen-
sion is chosen, and then above procedures are performed
on the SOM again until a reasonable and satisfied result
is obtained. Because the efficiency of SOM is rather high,
the strategy of using SOMCD is simple and feasible.

4.5. Comparisons of SOMCD with conventional

cluster analysis

There are various statistics in conventional cluster
analysis that help hydrologists select the proper number
of clusters [3]. However, they are independent from the
methods for conventional clusters analysis, so that addi-
tional works are required to calculate the statistics. The
numbers of clusters that are determined using these sta-
tistics are also likely inconsistent. Hydrologists who use
conventional cluster analysis to determine the appropri-
ate number of clusters should select the proper combina-
tion of the clustering method and the statistic among the
various options. Therefore, we think that the determina-
tion of the proper number of clusters is a difficult task
for conventional cluster analysis.

One advantage of SOMCD over conventional cluster
analysis methods is that it does not need to determine
the number of clusters in advance. Like hierarchical
cluster analysis, hydrologists can inspect the input pat-
terns in various views with SOMCD. The grouping of
input patterns can be displayed by the ‘‘topography’’
of the density map and then the proper number of clus-
ters can be easily determined by dividing the density
map into several regions. That is SOMCD can display
the boundaries between clusters explicitly on the maps,
even when different resolutions of SOMCD are adopted.
Consequently, the proper number of clusters can be eas-
ily determined using SOMCD without additional works.
The assignments of unknown patterns to known clusters
can be appropriately achieved by using the discrimina-
tion map. In conclusion, SOMCD combines cluster
analysis and discrimination analysis in only one step.
Table 2
Comparison of SOMCD and PCD

Item SOMCDa PCDb

Complexity Low High
Revealing the relative topological

relationships of input patterns
Yes *

Determining a proper number
of clusters

Easy Difficult

Assigning unknown patterns to
known clusters

Yes Yes

Performing cluster analysis and
discrimination analysis in one step

Yes No

a SOMCD: SOM-based Cluster and Discrimination analysis.
b PCD: Principal component analysis + Cluster analysis + Discrim-

ination analysis.
* Depends on the cluster analysis method used.
SOMCD is less complex than PCD. The comparison
of SOMCD and PCD is provided in Table 2.
5. Conclusions

A method (SOMCD) that can perform cluster analy-
sis and discrimination analysis in one step is proposed in
this paper. First the algorithms of SOMCD are devel-
oped and presented. A case study is performed using
SOMCD to identify the homogeneity of hydrogeological
factors affecting low-flow characteristics in southern Tai-
wan. The clustering results show that low-flow duration
curves of the study area can be classified into three or
four clusters. Analysts should choose the results accord-
ing to the requirements of applications and their own
judgments. The assignments of unknown watersheds to
known clusters are also performed with the correspond-
ing discrimination map. The discrimination results show
that the assignments of ungauged watersheds to known
clusters are reasonable. It is concluded that the proposed
SOMCD is an efficient and effective method for identify-
ing the homogeneity of hydrological factors and assign-
ing unknown patterns to known clusters.
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