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BASIS FUNCTION NETWORK APPROACH

Gwo-Fong Lin* and Guo-Rong Chen

ABSTRACT

In this paper, a radial basis function network (RBFN) approach to the determina-
tion of aquifer parameters is developed. The approach is based on the combination of
an RBFN and the Theis or the Hantuch-Jacob solution. The proposed RBFN approach
has advantages over the existing back-propagation network (BPN) approach. It avoids
inappropriate setting of a trained range. It also determines the aquifer parameters
more accurately and needs less training time. Testing the BPN and RBFN approaches
by synthetic data also demonstrates these advantages. As to the comparison between
the RBFN approach and the type-curve graphical method, two applications to actual
time-drawdown data show that the RBFN approach determines the aquifer parameters
more precisely for both nonleaky-confined and leaky-confined aquifers. The RBFN
approach is recommended as an alternative to the type-curve graphical method and
the existing BPN approach.
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I. INTRODUCTION

The determination of aquifer parameters, such
as the transmissivity and the storage coefficient, from
aquifer test data has been studied for many years (for
example, Jacob, 1940; Hantush, 1956; Walton, 1970;
Wikramaratna, 1985; Aziz and Wong, 1992; Zhan et
al., 2001; Chen and Chang, 2002; Balkhair, 2002;
Chen and Chang, 2003) because it holds a central
position in groundwater modeling. The aquifer pa-
rameters obtained by the type-curve graphical method
(Jacob, 1940) are of questionabie reliability (Aziz and
Wong, 1992; Balkhair, 2002). In recent years, some
convenient and reliable approaches based on artifi-
cial neural networks (ANNSs) have been developed.
For example, Aziz and Wong (1992) and Balkhair
(2002) used back-propagation networks (BPNs) to
determine aquifer parameters. BPNs are a class of
~ ANNs. Rumelhart et al. (1986) proposed a super-
vised learning scheme known as a back-propagation
algorithm to train BPNs. However, BPNs have some
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disadvantages (Wasserman, 1993). First, BPNs tend
to yield local optimal solutions. Secondly, BPNs may
produce different results after the training process
even when the same training data are used. Finally,
BPNs are trained slowly.

Apart from the aforementioned disadvantages,
the BPN approach has another drawback. It is not
capable of producing aquifer parameter values accu-
rately when the desired values are out of the trained
range. Hence, the performance of the BPN approach
is largely determined by the selection of a range of
aquifer parameter values in the training phase.
However, there is no established methodology for
selecting an appropriate trained range, especially
when there is no prior information on the aquifer pa-
rameters available. Such a limitation has prompted a
search for an improved ANN approach to estimating
aquifer parameters. In this paper, a radial basis func-
tion network (RBFN) approach is proposed.

RBFNs, which are another class of ANNSs, have
been widely used for nonlinear system identification
because of simple topological structure. Radial ba-
sis functions were first introduced to solve real mul-
tivariate interpolation problems (Powell, 1987).
Broomhead and Lowe (1988) exploited the use of ra-
dial basis function in the design of neural networks.
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Poggio and Girosi (1990) developed regularization
networks from approximation theory with radial ba-
sis function networks. Girosi and Poggio (1990) have
proven that RBFN is a kind of universal approximator.
Given a network with enough hidden layer neurons,
‘RBFN can approximate any continuous function with
arbitrary accuracy.

RBFN has been employed in time series predic-
tion (Broomhead and Lowe, 1988) and nonlinear sys-
tems identification (Moody and Darken, 1989). Park
and Sandberg (1991) studied the universal approxi-
mation problem using the RBFN. More recently,
RBFNs have also found increasing applications in
various aspects of hydrology, such as spatial inter-
polation (Lin and Chen, 2004a) and rainfall-runoff
modeling (Lin and Chen, 2004b).

Based on the combination of an RBFN and the
Theis or the Hantuch-Jacob solution, an alternative
approach to the determination of aquifer parameters
from aquifer test data is proposed. The RBFN ap-
proach has three advantages over the BPN approach.
Firstly, it avoids the aforementioned problem regard-
ing the selection of an appropriate trained range.
Secondly, it determines the aquifer parameter values
more accurately. Finally, the RBFN is trained more
rapidly.

This paper is organized as follows. First, an
RBFN approach is established which is capable of
determining the aquifer parameters from aquifer test
data. Then, applications are performed and their re-
sults are presented to demonstrate the advantages of
the RBFN approach. Finally, conclusions are drawn.

II. RBFN APPROACH
1. Radial Basis Function Network

An RBFN can be presented as a three-layer
feedforward structure (Fig. 1). As shown in Fig. 1,
an RBFN is composed of a number of interconnected
processing elements. These elements, called neurons,
are joined together with weighted connections. The
parameters associated with each of these connections
are called weights. The input vector X, which con-
sists of N;, components, is received by N;, input
neurons. Then the input vector is transmitted to each
hidden neuron that includes a center and an activa-
tion function. A center is a vector and its dimension-
ality is the same as that of the input vector. The out-
put of the jth hidden neuron is obtained by

h(X)=¢;(IX-C}|D), j=1, 2, -, N}, (D)
where |||l denotes the Euclidean norm, C; is the cen-

ter of the jth hidden neuron, ¢;( ) is the activation
function of the jth hidden neuron, and N, is the

Hidden layer

Input layer Output layer

Fig. 1 Architectural graph of an RBFN

number of hidden neurons.

The activation function is a nonlinear function
that is radially symmetric in the input space. The
output of the jth hidden neuron depends only on the
radial distance between the center of the jth hidden
neuron and the input vector. The activation function
used herein is the Gaussian function:

bx-cf
9(X)=e 207 (2)

where o is the width of the hidden neurons. A
Gaussian function is chosen because it is closely re-
lated to the expression of the analytical solutions,
Theis and Hantuch-Jacob solutions. This choice
makes the RBFN approach a more cost-effective so-
lution than the BPN approach.

In this paper, o is obtained by (Haykin, 1999)

& = Gmax 3)
/2N,

where dp,, is the maximum distance between the cen-
ters of hidden neurons. Once the outputs of the hid-
den neurons are obtained, the kth component of the
output vector, y,, can be calculated as

Ny
yk=w0+];1ijhj, k=1, 27 "‘7Nout (4)

where wy is the bias, wy is the weight between the jth
hidden neuron and the kth output neurons, and N, is
the number of out neurons. Once the centers and the
width o are chosen, the bias and the weights connect-
ing the hidden and output neurons can be obtained
using the least mean square method. Eq. (4) can be
represented in matrix notation:

Y=Wop 3)
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Wo Wi W ot Wip
We V‘fo W'12 W.zz WI?/,,Z ®)
Wo Wiy Way ° Wha,,
and
D=1 ¢ ¢ - ¢y (N

The square error, SE, between the actual output of
the network ¥, and the desired output y; can be writ-
ten as

N,
_l out - 2 _ l A_ T _\_
SE=13 [-yl’=3F-D'F-1)  ®)
Substituting Eq. (5) into Eq. (8) yields
SE = %(YTY— 2V W + W W) )

The W can be obtained by minimizing SE. Differen-
tiating Eq. (9) with respect to W gives

OSE __ 5T T
BE o'y + dToW (10)

Setting dSE/dW=0 gives
W=(®"®) '@’y (11)
2. Description of the RBFN Approach

The RBFN approach is developed based on the
combination of an RBFN and an analytical solution
that can calculate the drawdown from known aquifer
parameters. For a leaky confined aquifer, Hantush
and Jacob (1955) presented an analytical solution to
calculate the drawdown s at a distance r at time ¢ from
the transmissivity 7, the storage coefficient S, leak-
age factor B, and the discharge Q. The Hantuch-Jacob
solution can be written as

_ @ r
s = WW(M, F) (12)
where
o0 . 5
W, L) = f FoxR(=y = 75z )dy (13)
and
_ 738
U= g (14)

The analytical solution for a nonleaky confined
aquifer is a special case of the Hantush-Jacob solu-
tion in the limit when the leakage factor B approaches
infinity, and it is written as (Theis, 1935)

5= 22 W) (15)
where
N S U
W(n) = j yexp(— y)dy (16)

The type-curve graphical method is developed
based on the Theis solution for the nonleaky condi-
tion or the Hantush-Jacob solution for the leaky
condition. In the type-curve graphical method for the
determination of aquifer parameters, one has to fit
observed time-drawdown data to the one of families
of type curves of W(u, r/B) versus 1/u and find a match
point. In this paper, the above procedures are done
by an RBFN.

In order to determine the aquifer parameters
from a set of N observed time-drawdown data, the
RBFN constructed herein includes N-1 neurons in the
input layer. These N—1 neurons are designed to pro-
cess an input vector consisting of N—1 components.
The components of the input vector are obtained from
N observed time-drawdown data as

S.
x;=log(s; . 1) —log(sq) = log( fsjl)’
i=1, 2, -, N-1 (17)

where s; is the corresponding drawdown observed at
time 7.

For the leaky-confined condition, the proposed
RBFN is designed to produce the 1/u and r/B coordi-
nates of the match point as

91 =loglz-] (18)
$2=(11B),, (19)

For the nonleaky-confined condition, #/B is set
to zero and only one neuron is needed in the output
layer. The components of the input vector and the
output of the RBFN are shown in Fig. 2.

Training of the RBFN consists of generating the
training patterns and determining the weights and
biases by the least mean square method. A training
pattern includes an input vector and a target output
vector. To generate training patterns, a trained range
of the output values must be specified. According to
the type curves presented by Walton (1970), the
RBFEN output, log(1/x) and r/B, values are selected
from —0.5 to 4.0 and 0.0 to 2.5 respectively. Once a
specific combination of log(1/u) and r/B values is
chosen, the corresponding W(u, r/B) value is calcu-
lated and the corresponding input vector components
are generated as
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Fig. 2 The components of input vector and the output of the
RBFN

W(umtl/ti+ 1)

W5, i=1, 2, -, N-1 (20)

x; =log[

Figure 3 illustrates the input vector and target
output of the training pattern. For the nonleaky-con-
fined condition, r/B is set to zero and only a log(1/u)
value is chosen.

Once the RBFN is trained, it is capable of pro-
ducing an output vector when an input vector trans-
formed from observed data is processed. Then the
coordinates of the match point W, s,,, 1/u,, and t,
are determined from the output vector and time-draw-
down data as follows

a-=10" 21
— - 1 =

Wm - W[umv (r/B)m] = W(W9 )’2) (22)

Si=3S1 (23)

t=ty (24)

Finally, transmissivity T and storage coefficient
S are determined by

o2 Wl )

4rs (25)
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Fig. 3 The input vector and target output of the training pattern

Fig. 4 Structures of (a) the RBFN and (b) the BPN

and

_ATu,t,,

S
72

(26)

Apart from using an RBFN instead of a BPN,
another major difference between the RBFN and the
BPN approaches is the design of the input and output
components. Fig. 4 shows the structures of the RBFN
and the BPN. Our design allows the RBFN approach
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Table 1 The BPN influential parameters used
during training

Table 2 The required training times for the BPN
and the RBFN approaches (Example 1)

Parameter Value Approach Required training time (min)
Learning rate 0.5 BPN 13
Momentum constant 0.6 RBEN 1
Convergence criterion 0.001
Maximum training cycle 10,000
Number of training patterns 1,024

to successfully avoid the problem regarding the se-
lection of an appropriate trained range. Moreover,
the RBFN is trained more rapidly than the BPN.
These advantages will be further demonstrated in the
next section.

II1. APPLICATION AND DISCUSSION

In this section, the RBFN approach is applied
to four examples. In Example 1, 1000 sets of syn-
thetic data are used to test the accuracy of the BPN
and the RBFN approaches for a nonleaky-confined
aquifer. Then a set of actual time-drawdown data,
which are taken from Walton (1970), is used to test
the applicability and reliability of the RBFN approach
in Example 2. The time-drawdown data were mea-
sured during pumping at a constant discharge of
1,199 m*/day and the distance between observed well
and pumping wells is 502 m.

The RBFN approach is applied to leaky-confined
aquifers in Examples 3 and 4. In a like manner, 1000
sets of synthetic data and a set of actual time-draw-
down data are used in Examples 3 and 4, respectively.
The time-drawdown data, which are taken from
Dawson and Istok (1991), were measured during
pumping at a constant discharge of 382 m*/day and
the distance between observed well and pumping
wells is 49 m.

1. Example 1: Testing the BPN and the RBFN
Approaches for a Nonleaky-Confined Aquifer
Using Synthetic Data

In the BPN approach, a three-layered BPN is
designed to produce values of T and S when the val-
ues of s/Q are received. The components of the input
and output vectors are shown in Fig. 4. To generate
training patterns, a trained range of the BPN output
values for both T and § must be specified and then
combinations of these values are used during the gen-
eration process. Once a specific combination of T
and § values is chosen, the corresponding input data
are calculated using the Theis solution, Eq. (15). In

this example, 22 and 2 neurons are constructed in the

input and output layers, respectively. Then the BPN
is trained with 1,024 training patterns which are gen-
erated using T values ranging from 10 to 100 m*day
with a step size of 2.9 m%day and S values ranging
from 107° to 107° with a step size of 2.9x1077. The
BPN influential parameters used during training are
given in Table 1.

The RBFN constructed in this example includes
21 and 2 neurons in the input and output layers,
respectively. To train the RBEFN, a total of 102 cen-
ter patterns and 1,024 training patterns are generated
using log(1/u) values ranging from -0.5 to 4.0 with
step sizes of 0.044 and 0.0044, respectively. The BPN
and the RBFN are trained with the same number of
training patterns.

After the BPN and the RBEN are trained with
the training patterns, the trained BPN and RBFN are
capable of yielding the corresponding estimated out-
put values when the input values of the training pat-
terns are processed. Table 2 summarizes the required
training times for the BPN and the RBFN. The re-
quired training times for the BPN and the RBFN are
13 and 1 min on a 1.8 Ghz personal computer,
respectively.

To assess the generalization performances of the
BPN and the RBFN approaches, 1000 tested patterns
not used during the training process are employed.
The tested patterns are randomly generated from com-
binations of idealized T and S values ranging from
10" to 10* m*day and 107 to 107, respectively. Figs.
5 and 6 show the scatter plots for the idealized and
estimated aquifer parameters, 7 and S, obtained by
the BPN and the RBEN approaches.

2, Example 2: Testing the RBFN Approach for a
Nonleaky-Confined Aquifer Using Field Data

When the BPN approach is applied to this
example, it is very difficult to select an appropriate
trained range because there is no prior information
on the aquifer parameter available. Hence, only the
RBEFN approach is applied herein. Testing the trained
RBFN with the time-drawdwn data results in 7 and S
values of 119 m*/day and 2.223x107°, respectively.
The values of T and S obtained by the type-curve
graphical method are 125 m?%day and 2.0x107
(Walton, 1970). Given a set of T and § values, the
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Fig. 5 Idealized T values versus estimated T values obtained by
(a) the RBFN and (b) the BPN approaches (Example 1)

estimated drawdown can be calculated by the Theis
solution, Eq. (15). Then, the relative root mean square
error (RRMSE) of the estimated drawdown is com-
puted according to

RRMSE =

1% $i—Si2
-3 s @
where §; is the estimated drawdown, s; is the observed
drawdown and N; is the number of drawdowns. Table
3 summarizes the estimated aquifer parameters and
the RRMSE values for the RBFN approach and the
type-curve graphical method. The RRMSE values for
the RBEN approach and the type-curve graphical
method are 2.8% and 9.8%, respectively.

3. Example 3: Testing the BPN and the RBFN
Approaches for a Leaky-Confined Aquifer
Using Synthetic Data

The BPN constructed herein includes 28 and 3
neurons in the input and output layers, respectively.
Fig. 4 shows the components of the input and output
vectors. Then the BPN is trained with 1,024 training

Table 3 The estimated aquifer parameters and
RRMSE values for the RBFN approach
and the type-curve graphical method

(Example 2)
Aquifer parameter RRMSE
Method T N (%)
(m*day)  (107%) °
RBFN approach 119 2.223 2.8
Type-curve
graphical method 125 2.000 0.8
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Fig. 6 Idealized S values versus estimated S values obtained by
(a) the RBFN and (b) the BPN approaches (Example 1)

patterns that are generated using T values ranging
from 10 to 100 m*day with a step size of 6 m%day, S
values ranging from 107 to 10~° with a step size of
6.0x107", and r/B values ranging from 0.0 to 1.0 with
a step size of 0.33. In the RBFN approach, 27 and 2
neurons are constructed in the input and output layers,
respectively. A total of 256 center patterns are gen-
erated from log(1/u) values ranging from -0.5 to 4.0
with a step size of 0.3 and r/B values ranging from
0.0 to 2.5 with a step size of 0.167. The RBFN is
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Table 4 The required training times for the BPN
and the RBFN approaches (Example 3)

Approach

Required training time (min)

BPN 31
RBFN 2
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Fig. 7 Idealized T values versus estimated T values obtained by
(a) the RBFN and (b) the BPN approaches (Example 3)

trained with 1,024 trained patterns, which are gener-
ated from log(1/u) values ranging from -0.5 to 4.0
with a step size of 0.071 and r/B values ranging from
0.0 to 2.5 with a step size of 0.167. Table 4 summa-
rizes the required training times for the BPN and
RBFN approaches. The required training times for
the BPN and RBFN approach are 31 and 2 min on a
1.8 Ghz personal computer, respectively.

Then the trained BPN and the RBFN are tested
with 1000 tested patterns that are not used during
training. The testing data are randomly generated
from T values ranging from 10! to 10* m*/day, S val-
ues ranging from 107 to 1075, and /B values ranging
from 0 to 2.5. Figs. 7, 8 and 9 show the scatter plots
for the idealized and estimated aquifer parameters ob-
tained by the BPN and the RBFN approaches.
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Fig. 8 Idealized S values versus estimated S values obtained by
(a) the RBFN and (b) the BPN approaches (Example 3)

4. Example 4: Testing the RBFN Approach for a
Leaky-Confined Aquifer Using Field Data

The T, S and /B values determined by the RBFN
approach from the actual time-drawdown data are
112 m?%day, 1.552x10™* and 0.30, respectively. The
values of T, S and »/B obtained by the type-curve
graphical method are 55 m*day, 0.095x10™* and 0.75
(Dawson and Istok, 1991). In a like manner, once
the aquifer parameters (7, S and r/B) are determined,
the estimated drawdown can be calculated by the
Hantuch-Jacob solution, Eq. (12). In addition, the
RRMSE of the estimated drawdown is computed ac-
cording to Eq. (27). The estimated aquifer param-
eters and the RRMSE values for the RBFN approach
and the type-curve graphical method are summarized
in Table 5. The RRMSE values for the RBFN ap-
proach and the type-curve graphical method are 1
6.7% and 95.3%, respectively. The RBFN approach
achieves a smaller value of RRMSE than the type-
curve graphical method.

5. Discussion

During the training process, the BPN and the



248 Journal of the Chinese Institute of Engineers, Vol. 28, No. 2 (2005)

Table 5 The estimated aquifer parameters and
RRMSE values for the RBFN approach
and the type-curve graphical method
(Example 4)

Aquifer parameter
Method T S
(m%*day) (107

RBFN approach 112

Type-curve
graphical method

RRMSE
riB (%)

1.552 0.30 16.7

55  0.095 0.75 953

RBFN are trained with the same number of training
patterns. As shown in Tables 2 and 4, the RBFNs are
trained more rapidly than the BPNs for both nonleaky-
confined (Example 1) and leaky-confined (Example
3) aquifers. As compared to the BPN approach, the
RBFN approach yields a training time reduction of
92% and 94% in Examples 1 and 3, respectively.

In the testing process, synthetic data are used to
test the accuracy of the BPN and the RBFN
approaches. As shown in Figs. 5, 6, 7, 8 and 9, the
BPN approach is capable of accurately estimating
aquifer parameters only over the trained range for
both nonleaky-confined (Example 1) and leaky-con-
fined (Example 3) aquifers. When the tested values
fall outside the trained range, the BPN approach can-
not produce the desired output. The performance of
the BPN approach is largely determined by the selec-
tion of the trained range. Moreover, there is no es-
tablished methodology for selecting an appropriate
trained range, especially when there is no prior in-
formation on the aquifer parameters available. Hence,
the BPN approach has the problem of selecting an
appropriate trained range.

On the contrary, almost all the estimated aqui-
fer parameters obtained by the RBFN approaches
match the idealized aquifer parameters perfectly over
the whole tested range (Figs. 5, 6, 7, 8 and 9). The
RBFN approach can accurately estimate aquifer pa-
rameters over a wide tested range. It also can avoid
the problem of selecting an appropriate trained range.
Hence, the RBFN approach is a better method as com-
pared to the BPN approach.

As to the comparison between the RBFN ap-
proach and the type-curve graphical method, appli-
cations to actual time-drawdown data show that the
RBEFN approach achieves a smaller value of RRMSE
for both nonleaky-confined (Example 2) and leaky-
confined (Example 4) aquifers (Tables 3 and 5). The
RBFN approach determines the aquifer parameters
more accurately than the type-curve graphical
method. As compared to the type-curve graphical

2.5

2.0 1

1.5 A

1.0 1

Estimated r/B

0.5 1

0.0 T

0.0 05 1.0 1.5 20 25
Idealized r/B

(a)

Estimated /B

0.0 05 1.0 1.5 20 25
Idealized r/B
(b)

Fig. 9 Idealized 1/B values versus estimated /B values obtained
by (a) the RBEN and (b) the BPN approaches (Example 3)

method, the RBFN approach yields an RRMSE re-
duction of 71% and 82% in Examples 2 and 4,
respectively. Besides, the reliability of the type-curve
graphical method is often doubted (Aziz and Wong,
1992; Balkhair, 2002). Hence another significant
advantage of the RBFN approach is the reliable pro-
cess of obtaining the aquifer parameters. The RBFN
approach is a better method.

IV. SUMMARY AND CONCLUSIONS

ANNs provide a convenient and reliable ap-
proach to the determination of aquifer parameters
from aquifer test data. But the existing ANN
approach, which is a BPN approach, has a problem
of selecting an appropriate trained range. In this
paper, an alternative ANN approach, which is called
the RBEN approach, has been proposed. Apart from
using an RBFN instead of a BPN, another major dif-
ference between the RBFN and the BPN approaches
is the design of the input and output components. Our
design provides the RBFN approach with three ad-
vantages over the BPN approach. First, the RBFN
approach avoids the problem of selecting an appro-
priate trained range. Second, the RBFN approach
determines the aquifer parameter values more
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accurately. Third, the RBFN approach needs less
training time.

Testing the BPN and the RBFN approaches by
synthetic data also demonstrates these three
advantages. As to the comparison between the RBFN
approach and the type-curve graphical method, ap-
plications to actual time-drawdown data shows that
the RBFN approach performs better than the type-
curve graphical method. The RBFN approach is rec-
ommended as an alternative to the existing methods
(the type-curve graphical method and the BPN
approach) because of less required training time,
higher accuracy, and more convenient implemen-
tation.
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