Journal of the Chinese Institute of Engineers, Vol. 28, No. 8, pp. 777-782 (2005) 771

PERFORMANCE OF HIGH-RESOLUTION TVvD SCHEMES FOR

1D DAM-BREAK SIMULATIONS

Gwo-Fong Lin*, Jihn-Sung Lai, and Wen-Dar Guo

ABSTRACT

The performance of high-resolution total variation diminishing (TVD) schemes
for simulating dam-break problems are presented and evaluated. Three robust and
reliable first-order upwind schemes, namely FVS, Roe and HLLE schemes, are ex-
tended to six second-order TVD schemes using two different approaches, the Sweby
flux limiter approach and the direct MUSCL-Hancock slope limiter. For idealized
dam-break flows, comparisons of the simulated results with the exact solutions show
that the flux vector splitting (FVS) scheme coupled with the direct MUSCL-Hancock
(DMH) slope limiter approach has the best numerical performance among the pre-
sented schemes. Application of the FVS-DMH scheme to a dam-break experiment
with sloping dry bed shows that the simulated water depths agree well with the
measured.
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I. INTRODUCTION

Since the Saint Venant equations for 1D dam-
break flows are a hyperbolic system of partial differ-
ential equations, they may generate a shock in the
solution. In general, two approaches to obtaining the
solutions containing discontinuities are available: the
shock-fitting approach and the shock-capturing
approach (LeVeque, 1992; Toro, 2001). In the shock-
fitting approach, discontinuities are fitted and com-
puted as true discontinuities (LeVeque, 1992). On
the other hand, the shock-capturing approach has the
ability to automatically produce correct approxima-
tions to discontinuous solutions, without explicit
tracking or use of jump conditions (LeVeque, 1992).

Over the past decade, a great deal of progress
has been made in the development of so-called high-
resolution total variation diminishing (TVD) schemes
for hyperbolic conservation laws (Hirsch, 1990; Tan,
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1992; Toro, 1997). The high-resolution TVD
schemes, belonging to the shock-capturing approach,
resolve sharp discontinuities without spurious oscil-
lations in the vicinity of large gradients and do not
produce too much numerical dissipation. In devel-
oping a high-resolution TVD scheme, a first-order
upwind scheme is commonly used as a basis.
Basically, the first-order upwind schemes can be cat-
egorized into two classes: the flux-difference split-
ting (FDS) scheme and the flux-vector splitting (FVS)
scheme (Hirsch, 1990). -

Recently, these high-resolution TVD schemes
have been widely employed to solve dam-break prob-
lems (Alcrudo et al., 1992; Garcia-Navarro et al.,
1992; Yang et al., 1993; Jha et al., 1995; Zhao et al.,
1996; Delis and Skeels, 1998; Delis et al., 2000;
Tseng and Chu, 2000; Zoppou and Roberts, 2003;
Delis, 2003). Among TVD schemes reviewed, the
FDS-type schemes (the Roe and HLLE schemes) and
their second-order extensions are most commonly
employed and evaluated. However, the FVS scheme
and its different second-order extensions are rarely
applied in dam-break problems. Basically, the FVS
scheme is more efficient than the FDS scheme (Toro,
1997). The authors (Lin et al., 2003) proposed and
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compared four second-order FVS-type schemes, in-
cluding the Liou-Steffen, van Leer, Steger-Warming,
and local Lax-Friedrichs schemes. We found that the
Liou-Steffen FVS scheme is the most accurate among
the four schemes tested, and it avoids an entropy-vio-
lating solution without any additional problems.
Therefore, the Liou-Steffen FVS scheme is selected
to compare with the Roe and HLLE schemes in the
present study.

In this paper, three types of schemes are com-
prehensively evaluated: upwind schemes that are
first-order-accurate, flux-limited schemes that are sec-
ond-order-accurate, and slope-limited schemes that
are second-order-accurate. Herein, first-order upwind
schemes evaluated include the FVS, Roe and HLLE
schemes. Flux-limited schemes based on Sweby’s
flux limiter approach include the FVS-Sweby, Roe-
Sweby and HLLE-Sweby schemes. Slope-limited
schemes based on the direct MUSCL-Hancock slope
limiter approach include the FVS-DMH, Roe-DMH
and HLLE-DMH schemes. The entropy corrections
are incorporated in the Roe scheme, while the FVS
and HLLE schemes do not require corrections. The
simulated solutions solved by three first-order
schemes and six second-order schemes are compared
with exact solutions for idealized dam-break flows
to evaluate the numerical accuracy and computational
efficiency. The comparisons of simulated solutions
with the experimental data in the case of sudden dam
collapse are also presented to demonstrate the appli-
cability of the presented scheme.

II. GOVERNING EQUATIONS

Based on the assumption of hydrostatic-pressure
distribution, incompressibility of water and gentle
bottom slope of the channel, the 1D dam-break un-
steady flows in a rectangular channel can be described
mathematically by the Saint Venant equations. Un-
der the Saint Venant hypotheses, 1D unsteady flow
can be expressed in conservation form as follows:

oU , JF _
7+§—S (1)
in which
k] F= hu . Q= 0 )
v [hu] : F hu2+%gh2 ;S [gh(so—sf)]( )

where U is the vector of conserved variables; F is the
flux vectors in the x-direction; S is the vector of the
source terms; ¢ refers to time; x is the horizontal dis-
tance along a channel; # is the water depth; u is the
depth-averaged velocity; g is the gravity acceleration;
5o is the slope of the channel bottom; and sy is the

friction slope that can be estimated by the Manning
formula.

Using the chain rule gives the quasi-linear form
of Eq. (1):

Py an =0 (3)

where A is the Jacobian matrix of F. It is defined by:

_oF _| O 1 -
A—aU_[CZ—bLZ 214} )
where ¢ = \/gh is the celerity of the gravity wave.
The Jacobian matrix A has a set of independent and
real eigenvalues, A, (k = 1, 2), which are

AM=u+tc; hh=u-c (5)

The independent and real eigenvectors RY, (k= 1, 2)
of the matrix A are expressed as:

R=[lL,u+c];R=[1,u-c]" (6)
III. NUMERICAL SCHEMES
1. First-Order Upwind Schemes

The Saint Venant equations are a hyperbolic
partial differential system, which involve discontinu-
ous as well as smooth solutions. To compute the
discontinuities accurately, a conservative numerical
scheme must be used (LeVeque, 1992). However,
the conservative numerical schemes are only appro-
priate for solving the homogenous part of Eq. (1). To
deal with the source terms, the fractional splitting
technique (Toro, 2001) is employed herein. The split-
ting can be expressed as:

Un +1 — O(At)H(At)(Un) (7)

in which H“ is the homogeneous solution operator,
0 is the ordinary differential equation operator, n
is the time level, and At is the time increment. Based
on Eq. (7), a general form of first-order explicit con-
servative schemes for Eq. (1) is given by:

T =Ur = wF - )" (8)
Uit =T ASIUE T Y2 )

where 7 (= At/Ax) is the mesh ratio with the grid size
Ax and time increment At, and F(D,, is the first-or-
der intercell numerical flux, which approximates
the time-averaged flux across the cell interface at x =

X; 12 between cells i and { + 1, where a cell is given
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by the spatial interval between x; _ 1, and x; 4 1. In
the present study, three first-order upwind schemes,
including the Liou-Steffen FVS, Roe FDS, and HLLE
FDS schemes, are employed to obtain the numerical
flux F{),,. Their corresponding numerical flux func-
tions F; . 12(U;, U;, 1) are briefly described below.

(i) Flux Vector Splitting (FVS) Scheme

The flux vector splitting (FVS) scheme described
here was originally proposed by Liou and Steffen (1993)
for the solution of the Euler equations. Following
the development of Liou and Steffen (1993), the flux
vector FF(U) can be decomposed into a convective com-
ponent F¢ and a pressure component P as

=[h“]=[g]=Fc+p (10)

hu?

where p = gh%/2 is the hydrostatic pressure. Then
introducing the Froude number (F, = u/c) into the con-
vective flux vector, one obtains

FC=F,¢=F,[ hC] (11)

huc

Based on the van Leer flux-splitting technique, the
first-order numerical flux function is expressed as

F'RaU, Uy, ) = F1(F) @+ P°(F,) P,
+ —‘F;(Fr)H 1‘pi+1 + '[P_(Fr)z'+1Pi+
(12)

where T;_L and P* are respectively the split Froude
number and pressure functions, which can be ex-
pressed as (Lin et al., 2003):

i%(F,J_rl)z if |F,|<1

Fi(F) = (13)

%(F, +|F,|) otherwise

and
%(F,i 1)’QFF) if |F|<1

PF) = :
Z_Fr(FrilFrD

(14)
otherwise

The general form of Eqgs. (8) and (9) using the pre-
sented FVS numerical flux function is referred to as
the FVS scheme herein.

(ii) Roe Scheme

The Roe scheme is devised based on the linearized

1

773
form of Eq. (1). Roe’s numerical flux function is (Roe,
1981)
FinWUs Uy, y)
1 1% 517 R
=5FWU) + FWU,;, )] -5 % &) LR (15)
where 1,, &, and R" are respectively the average ap-

proximate eigenvalues, wave strengths, and
eigenvectors. They can be expressed as follows:

A=ii—¢, A, =ii+¢ (16)

& =1an-Baa, o= Lian-Bag amn

R'=(L,a+e&)"; R*=1,i-&" (18)
with

Ah:hi+1—hi,Au:ui+1—ui (19)

in which #, &, and & are called the Roe average. They

can be obtained from:
a=n/ glhi+h;,y) |
2 £

Vhiti+ VR

it = ;
Vhi +hi
h=\hh (20)

For practical computations, the Roe scheme requires
an entropy fix to avoid nonphysical solutions. In this
paper, the implementation of the entropy correction
given by Harten and Hyman (1983) is employed.
Hence, the average approximate eigenvalues |/Tk‘ in
Eq. (15) are modified as | 7, |

mod

| 2l

moa = max[| 2|, max(0, A, — 2 Aiy i — AP

21)

Using the above formula, the entropy correction is
enforced only when an entropy violating discontinu-
ity appears. The general form of Eqs. (8) and (9) us-
ing the presented Roe FDS numerical flux function
is referred to as the Roe scheme herein.

(iii) HLLE Scheme

Harten et al. (1983) proposed the HLL scheme,
which can avoid entropy-violating solutions. Based
on their work, Einfeldt (1988) introduced the Roe
averages into the HLL scheme for improving the nu-
merical accuracy. The resulting scheme is called the
HLLE scheme. The HLLE numerical flux function
can be written as:
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F'il_-li—LIL/JZE(Ui’ Ui +1 )

2
=YFW)+FWU, -3 X &)@k (22)
with
~ b +b” _ b*b~ 23
e e @3)

where A, and the eigenvalues described in the previ-
ous section for the Roe linearizations, and »* and b~
are presented as:

b* = max(b®, 0); b~ = max(b*, 0) (24)

where b® and b* are numerical approximations for the
maximum and minimum characteristic speeds at the
respective locations. They are defined as

R Ty. pL . ol
b =max(u;,; +¢;p > A bo=min(u;—c¢;, 1,)

(25)

where 1, =i+ ¢ and 1, =i — & are taken as the same
as Roe’s average e1genvalues in Eq. (16). Using the
presented HLLE FDS numerical flux function, the
general form of Eqgs. (8) and (9) is denoted as the
HLLE scheme herein.

2. Second-Order Extensions

Harten (1983) derived a sufficient set of TVD
conditions and constructed a modified-flux TVD scheme;
since then, a variety of second-order TVD schemes
have been developed (Sweby, 1984; Yee, 1987; Toro,
2001). Most of the TVD schemes essentially are con-
structed with an idea limiter incorporated in the sec-
ond-order schemes to damp out oscillations. To pro-
vide a second-order accuracy including the source terms,
a general form of the second-order TVD schemes for
Eq. (1) can be written as (Strang, 1968)

U = QW@ 0@y (26)
where

HYUN=U} - 1(F2 -~ F2 )" 27)

O“UN = U + AiS] + —( 9By (28)

in which F® ", 18 the second-order numerical flux.
In the present study, the Sweby flux-limiter approach
and the direct MUSCL-Hancock slope limiter ap-
proach are adopted to obtain the second-order numeri-
cal flux.

(i) Sweby’s Flux-Limiter Approach

Sweby (1984) developed the technique of ob-
taining a second-order TVD scheme by adding the
antidiffusive flux with a limiter to a first-order
scheme. In the present study, high-resolution TV D
schemes based on first-order upwind schemes de-
scribed previously by adding a limited antidiffusive
flux are applied to solve the Saint Vennat equations.

By splitting the flux at a cell interface, the flux
difference is defined as:

(AF; ) ' =F,  —FDn; (AF;, 1)) =FY, — F,
(29)
and note that
(AF;, )"+ (AF,, 1 p) = AF; = F;, - F; (30)
such that
(AF;, 1) +(AF;_ )" = +1/2—F(1)1/2 (31

Then adding both limited positive and negative fluxes
to a first-order numerical flux F(Y, ,, one obtains a
second-order numerical flux F%), ,:

Fi(i)l/Z = Fz+ 12 HOUD g, 1 p(AF; )T

= 07, DO 1p(AF; )] (32)
where
o+ = o 1p(AF, )’ = On(AF ap)
t+l/2(AFz+1/2)+’ 1T o, 1 p(AF; )
(33)
( +1/2)
of 1-7
2= 2( AU,+1/2)
_ 1 (AF;, 1)~
iy ip =51+ 1—7—") 34
HrT2 AU, 1 (B4
AU; 1p=U; 1 - U; (35)

where ¢ is called the non-linear flux limiter which
plays an important role in obtaining monotonic
solutions. Several forms of flux limiter have been
proposed (Hirsch, 1990). In the present study, the
van Leer limiter is applied to ensure the TVD prop-
erty and it is expressed as:

_r4]r|
¢(V)—1+|r| (36)
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Any of the upwind numerical flux function presented
in Section III.1 can be applied in this flux-limiter
approach. For convenience, the second-order exten-
sions of the FVS, Roe, and HLLE scheme using Sweby’s
flux limiter approach are referred to as the FVS-Sweby,
Roe-Sweby and HLLE-Sweby schemes, respectively.

(ii) Direct MUSCL-Hancock Slope Limiter Approach

The original MUSCL-Hancock approach pro-
posed by van Leer (1984) is a two-step approach,
which can be a second-order extension of the
Godunov-type upwind scheme. This approach can
be applied to the system of non-linear hyperbolic con-
servation laws, for example, the Saint Vennet
equations. The original MUSCL-Hancock slope lim-
iter approach can achieve second-order accuracy in
space and time by reconstructing the solution via
piecewise linear functions, evolving boundary-ex-
trapolated values in time, and solving a conventional
piecewise constant Riemann problem.

In the present study, a more direct method pro-
posed by Toro (2001) is adopted to avoid the decoding
of variables in the original two-step MUSCL-Hancock
slope limiter approach by formulating the equations in
terms of a vector W of flow variables. Therefore, the
two-step approach can be reduced to the direct MUSCL-
Hancock slope limiter approach, which is a single step
method. Since there are fewer computational steps in
the direct MUSCL-Hancock slope limiter approach, the
computational time should be less the time used by the
original two-step MUSCL-Hancock slope limiter
approach.

According to the MUSCL method (van Leer, 1979),
the left and right data at the interface x = x; ., U;
and U, ., are reconstructed as

- lry_ At -
U;=W,+ 511 - SEM(W)1 4, (37)
U, =W 1 I-——At[M W. A (38)
i+1 1+l+2[ Ax ( z+l)] i+1

where W = [k, u]” is the flow variable vector for the
Saint Venant equations, W; is the cell average data, I
is the identity matrix, A, is a slope limiter, and ma-
trix M(W) = 0F/0W can be expressed as

u h

2 u (39)

o

In the present study, the van Leer limiter is employed
and expressed as

|Aiin| | 4210
|Ai+l/2|+lAi—1/ZI

(40)

A =[sgn(4; , 1) + sgn(4; _ )]

where A;_1p=W; = W;_1, A y1p= Wi — W;and sgn
refers to the sign-function (Hirsch, 1990).
Therefore, the second-order numerical flux with
monotonicity conditions in Eq. (27) can be obtained
from the restricted cell-interface variables expressed
in Eqs (37) and (38). Then using any of the first-
order numerical flux functions presented in Section
I1I.1, one obtains the second-order numerical flux. For
convenience, the second-order extensions of the FVS,
Roe, and HLLE schemes using direct MUSCL-Hancock
slope limiter approach are referred to as the FVS-DMH,
Roe-DMH, and HLLE-DMH schemes, respectively.

3. Stability and Boundary Conditions

A characteristic feature of explicit difference
schemes is the limits on the time step Af, which is
governed by the stability criteria. In order to ensure
numerical stability, the time step is restricted by a
well-known Courant-Friedrich-Lewy (CFL) stability
condition (Chaudhry, 1993), which can be written as
(41

—C¢
"max(|u|+gh)

where C, is the Courant number (< 1), and Ax is the
grid spacing. With known grid spacing and flow
conditions, the time step is evaluated using Eq. (41).

The boundary conditions used herein are divided
into two different types: the land boundary and the
open boundary (Zhao et al., 1996). For the land
boundary, the velocity normal to the land is set to
zero to represent no flux through the boundary. At
the open boundary, it is necessary to solve a bound-
ary Riemann problem (Zhao et al., 1996).

IV. DAM-BREAK SIMULATIONS
1. Idealized Dam-Break Flows

In this section, the performance of the first-or-
der and second-order schemes is tested by idealized
one-dimensional dam-break flow problems. The sche-
matic diagram of the dam-break flow in a rectangular,
frictionless, and horizontal channel is shown in Fig.
1, where A, and h,, are initial water depths at the down-
stream and upstream of the dam, respectively. At time
¢t = 0%, the dam is removed instantaneously and it cre-
ates a shock wave moving downstream, and a depres-
sion wave (rarefaction wave) propagating upstream.
If the water depth ratio, h,4/h,, is greater than 0.138,
the flow throughout the channel remains subcritical
(Stoker, 1958). For depth ratios smaller than 0.138,
the flow downstream is supercritical while remain-
ing subcritical upstream. For very small values of
the depth ratio, the flow regime becomes strongly
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Dam

Water depth ratio
(= hylh,)

Fig. 1 The 1D dam-break problem

supercritical downstream and the shock wave can be
difficult to capture. Therefore, the proposed schemes
are tested to show their capability to solve severe dam-
break flows.

Consider a horizontal and frictionless channel
of 1000 m in length. A dam is located at the middle
of the channel. The initial upstream water depth 4,
is 10 m, and downstream water depths 2, are 0.05,
and 0.001 m, respectively. Thus, two water depth
ratios hy/h, of 0.005 and 0.0001 are considered for
numerical tests. The Cournat number is set to be 0.8.
For the comparisons of all first-order and second-
order schemes, the space step Ax = 10 m. The simu-
lation time is 25 s after the dam break. The exact
solutions can be found in the literature (Stoker, 1958).
Computations for these test cases were performed on
a Pentium IV equipped with 256 megabyte RAM.

(i) Comparison of First-Order Upwind Schemes

Figures 2(a) and 2(b) show the simulated results
from the three first-order upwind schemes with wa-
ter depth ratios 0.005 and 0.0001, respectively. The
comparison shows that all of them can predict the shock
wave (wave-front) and the rarefaction wave without
spurious oscillation. The simulated shock wave spreads
over several grids and smears due to first-order accu-
racy of the schemes. The head and tail of the rar-
efaction wave (negative wave) are also too smearing.
Thus, these first-order schemes produce numerical dif-
fusion near corners, where the exact solution presents
a discontinuity in a derivative. As shown in Fig.
2(a), the resolution of shock wave for the Roe scheme
is a little better than that of the FVS or HLLE scheme
in case of water depth ratio 0.005; while the FVS scheme
has the highest resolution at the head corner of the
rarefaction wave. In the case of the small water depth

Depth (m)

0 200 400 600 800" 1600
Distance (m)

Depth (m)

Distance (m)

®

Fig. 2 Comparison of exact solutions with simulated depths us-
ing three first-order upwind schemes for the water depth
ratios hy/h, of (a) 0.005 and (b) 0.0001

ratio of 0.0001, the Roe scheme also has the highest
resolution of shock wave among those of the three
schemes. The comparison in Fig. 2(b) indicates that
if the water depth ratio decreases (i.e. strongly
supercritical dam-break flow), the difference of nu-
merical resolutions among these first-order schemes
increases manifestly. From the simulated results pre-
sented in Fig. 2, it is found that the FVS scheme pre-
sents the best resolution in the rarefaction wave at
the dam site, and it also produces better resolutions
at the head corner of the rarefaction wave than those
by the Roe and the HLLE schemes.

To evaluate the overall performance quantita-
tively in the whole flow regions, Table 1 summarizes
the relative error L, norm and the computational time.
To compare the relative error of the water depth in
the simulation domain between simulated and exact
solutions, the relative error L, norm is defined as
(LeVeque, 1992):

Slm exact
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Table 1 The L, norms and the CPU time for the idealized dam-break problem using three first-order

upwind schemes

. L CPU (s)

Depth ratio FVS Roe HLLE FVS Roe HLLE
0.005 0.0339 0.0343 0.0374 0.046 0.078 0.055
0.0001 0.0211 0.0244 0.0266 0.062 0.105 0.075

Table 2 The L, norms and the CPU time for the idealized dam-break problem using three second-order

flux-limited schemes

Depth ratio L, CPU (5)

P FVS-Sweby Roe-Sweby HLLE-Sweby FVS-Sweby Roe-Sweby  HLLE-Sweby
0.005 0.0202 0.0206 0.0212 0.087 0.151 0.105
0.0001 0.0118 0.0119 0.0135 0.111 0.189 0.143

where hiim and h$* are the simulated water depth 12

and the exact solution at grid point i, respectively.
Comparing the overall numerical accuracy, between
the three tested schemes, the FVS scheme yields the
smallest L, norm of water depth, whereas the HLLE
gives the largest one. The overall numerical accu-
racy of the FVS scheme is better than those of the
Roe and HLLE schemes. Moreover, the FVS scheme
consumes, on the average, 78% and 16% less CPU
time than the Roe scheme and the HLLE scheme,
respectively. The CPU time consumed by the FVS
scheme is the smallest. It implies that the FVS scheme
has the best numerical performance.

(ii) Comparison of Second-Order TVD Schemes

The simulated results with water depth ratios
0.005 and 0.0001 by using FVS-Sweby, Roe-Sweby,
and HLLE-Sweby schemes are shown in Fig. 3. Simu-
lated results show that these second-order schemes
result in better numerical resolutions. Compared with
the simulated results by first-order scheme in Fig. 2,
both the shock wave and rarefaction wave of dam-
break flows are predicted obviously better by using
these second-order TVD schemes. All schemes have
similar resolution near both shock wave front and
rarefaction wave, while the FVS-Sweby scheme pro-
duces the best fitting to the exact solution at the head
of the rarefaction wave. The quantitative compari-
son of numerical performance from these second-or-
der TVD schemes is listed in Table 2. The results
indicate that the HLLE-Sweby scheme produces the
largest relative error L, norm, and the Roe-Sweby
scheme consumes the most computational time.
Therefore, the FVS-Sweby scheme presents the best
numerical performance among these three second-
order schemes.

’ — Bxact
10 Y 44 ‘ -~~~ FYS-Sweby
M) P I N I Qe Roe-Sweby
| l 3 --—- HLLE-Sweby
2

10.10

Z
975 | O FVS-Swebys
4t A Roe-Sweby
9402 HLLE-Sweby
o 00 25 250

Depth (m)
()Y

0 200 400 600 800 1000
Distance (m)
(@
12
55
T ~— Exact
10 Vo4 ~~~ FVS-Sweby
Y- N I N | IRTEES Roe-Sweby

8 l w00 s ol HLLESweby
g 10.10 2
=g 4 O FVS-Sweby
2, o A Ro-Swebye
I ! x HLLE-Sweby

4 3 “B“"’n-,‘_)

940 0 2
200 25 250 275 780 860 940
’ t
0 . . . -
0 200 400 600 800 “ 1000
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®)

Fig. 3 Comparison of exact solutions with simulated depths us-
ing three second-order flux-limited schemes for the water
depth ratios h,/h, of (a) 0.005 and (b) 0.0001

By employing FVS-DMH, Roe-DMH, and
HLLE-DMH schemes for the idealized dam-break
flows, the simulated results with water depth ratios
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Table 3 The L, norms and the CPU time for the idealized dam-break problem using three second-order

slope-limited schemes

Depth ratio L, CPU (5)

P FVS-DMH Roe-DMH HLLE-DMH FVS-DMH Roe-DMH HLLE-DMH
0.005 0.0151 0.0157 0.0166 0.059 0.117 0.083
0.0001 0.0083 0.0084 0.0087 0.081 0.168 0.107
12 53 12

— Exact —— Exact
10 | 44 --- FVSDMH 10 o FVS
S e O I RoeDMH (| | N e FVS-Sweby
gl - HLLE-DMH gl -~ FVS-DMH
B |00 &)
::__/ . - »-.u.\“m :G_,/ 6l
S 975 |2 FVS-Sweby A\ & |
a & Roe-Sweby o) g OFVS
4L |x HLLESueby 4 2FVS-Sweby
o m m 0 , 03 o FYS DM
2t r . . % ;\
gl ™ 80 80 90 %
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Fig. 4 Comparison of exact solutions with simulated depths us-
ing three second-order slope-limited schemes for the wa-
ter depth ratios A,/h, of (a) 0.005 and (b) 0.0001

0.005 and 0.0001 are shown in Fig. 4. These results
show that these second-order schemes can well pre-
dict the shock wave and rarefaction wave without
spurious oscillations produced. All these second-or-
der TVD schemes present rather good resolution for
the supercritical dam-break flow downstream. A
quantitative comparison of the above results is listed
in Table 3. The CPU time consumed by the Roe-DMH
scheme is more than the time consumed by FVS-DMH
and HLLE-DMH schemes. The relative error L, norm
of the HLLE-DMH scheme is the largest among the
three schemes. Obviously, Table 3 shows that the
FVS-DMH scheme produces the best numerical per-
formance among the three schemes.

Fig. 5 Comparison of exact solutions with (a) simulated depths
and (b) velocities using the FVS, FVS-Sweby and FVS-
DMH schemes for a water depth ratio 4,4/h, of 0.0001

According to the above analyses of simulated
results, it is apparent that the first-order upwind
scheme with direct MUSCL-Hancock slope limiter
approach has better numerical performance in terms
of relative error L, norm and CPU computational time.
On the other hand, it can be found that the FVS-based
schemes have the best numerical performance among
Roe-, HLLE- and FVS-based schemes. In addition,
to demonstrate the difference of numerical
performance, the first-order FVS and second-order
FVS-Sweby and FVS-DMH schemes are used to
simulate the supercritical dam-break flows with a
water depth ratio h,/h, of 0.0001 using computational
cells of 400. Fig. 5 presents the simulated water
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g. 6 Comparison of the exact solutions with the simulated di-
mensionless shock heights for the range of water depth
ratios (107 < hy/h, < 1)

depths and velocities. It clearly shows that both sec-
ond-order TVD (FVS-Sweby and FVS-DMH)
schemes can obtain better resolution of shock wave
as well as rarefaction wave than the first-order FVS
scheme. In addition, the numerical resolution for the
FVS-DMH scheme is better than that of the FVS-
Sweby scheme. In the severe case of water depth ra-
tio 0.0001, the dam-break flow regime becomes
strongly supercritical downstream, and it seems dif-
ficult to capture the front of the shock wave well by
TVD schemes. In the final analysis, the resolution
of the shock front for the FVS-DMH scheme is better
than that of the FVS-Sweby scheme.

Additionally, the comparison of the exact solu-
tions with the simulated dimensionless shock height
(hf — hg)/h, for a wide range of water depth ratios
(107 < hy/h, < 1) is made and plotted in Fig. 6, where
hyis the water depth behind the shock. For the simu-
lation condition with 100 computational cells, all
presented schemes compare perfectly well with the
exact solution except the three first-order FVS, Roe
and HLLE schemes for the very small water depth
ratio of 0.0001. The three presented first-order FVS,
Roe and HLLE schemes predict higher wave fronts,
whereas the presented six second-order schemes can
simulate well. To improve prediction accuracy at the
wave front, the cell grid is refined and computational
cells increased up to 400. As shown in Fig. 6, the
simulated dimensionless shock heights for all of the
nine presented schemes with 400 computational cells
match the exact solution quite well.

2. Dry Bed Dam-Break Flow

To demonstrate the presented schemes are ca-
pable of simulating flow over a dry bed, the dry bed
dam-break problem is tested herein. Only the sec-
ond-order FVS-DMH scheme is selected and tested.
A channel with 2000 m in length is considered. The
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Fig. 7 The influence of the computational grid size on the simu-
lated (a) water depths and (b) velocities using the FVS-
DMH scheme for the dry bed dam-break problem

dam is located at 1000 m downstream of the channel
inlet. The initial upstream and downstream water
depths, &, and Ay, are 10 m and O m, respectively.
The CFL number is set to be 0.8. In this problem,
there is a single rarefaction wave and no shock wave
exists. Accordingly, an absolute zero depth in the
dry bed can cause mathematical problems (Toro,
2001). To avoid this, an almost negligible water depth
of 0.00001 m is assumed at the downstream channel
bed of the dam. Three different computational cells
of 100, 400 and 800 are considered. Comparison of
exact solution with simulated depths and velocities
at t = 30 s are presented in Figs. 7(a) and 7(b),
respectively. The FVS-DMH scheme using 800 cells
can predict the rarefaction wave quite well. From
the close-up of the dry/wet fronts shown in Fig. 7(a),
obviously the presented scheme using 800 cells cap-
tures the shock fronts in a steeper and less dissipa-
tive manner than those using 100 and 400 cells.

3. Dam-Break Experiment with Sudden Collapse

In order to demonstrate that the presented
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Fig. 8 Experimental and simulated results with sudden dam collapse at (a) x = 30.5 m, (b) x = 68.625 m, (¢) x = 85.4 m, and (d) x = 106.625 m

numerical scheme is capable of describing real dam-
break scenarios, the slope and friction components must
be incorporated. In this section, only the second-or-
der FVS-DMH scheme is selected and tested. The
data of the dam-break experiment conducted by the
Waterway Experiment Station (WES), US Corps of En-
gineers (1960) are adopted in this section.

The experiment was conducted in a 122 m long
and 1.22 m wide rectangular channel with bottom slope
of 0.005. The channel bed roughness is represented
by a Manning coefficient of 0.009. Initially, the wa-
ter depth on the upstream side of the dam is 0.305 m,
and the downstream side of water depth is zero (dry
bed). An absolute zero depth in the dry bed can cause
mathematical problems (Toro, 2001). So, an almost
negligible water depth of 0.00001 m is assumed at the
downstream channel bed of the dam. The flow do-
main along the channel is discretized into 122 grids
with the uniform grid spacing Ax =1.0 m. Figs. 8(a)-
8(d) show the simulated results for WES experiments,
in which the dam-break wave propagates downstream
on a dry bed. The agreement between computed and
measured water depth against time at various locations
is good for the entire duration using the second-order
FVS-DMH scheme. Fig. 9 shows the computed wa-
ter-depth profile variations along the centerline of the
flume at different times, where fairly good agreement
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Fig. 9 The computed water levels at r = 5, 10, and 25 seconds
and the measured water level at ¢ = 10 seconds

has been obtained by use of the presented scheme. In
conclusion, the application herein demonstrates the
capability of the presented scheme to deal with chan-
nel friction, slope and dry bed condition.

V. CONCLUSIONS
In this paper, three robust and reliable first-order

upwind schemes are presented and then extended to
high-resolution TVD schemes based on two different
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approaches, the Sweby flux limiter approach and the

direct MUSCL-Hancock slope limiter approach. For

idealized dam-break flow modeling, three first-order
and six second-order TVD schemes are evaluated, and
it is found that the FVS-DMH scheme is the best one.

Then, the FVS-DMH scheme is applied to the dam-

break experiment of WES. Important conclusions are

as follows.

1. Among the three first-order upwind schemes, the
FVS scheme uses less computational time and has
the least L, error, while the Roe scheme spends
the longest computational time, while it has a bet-
ter resolution of shock wave front. Therefore, the
presented FVS scheme may be useful for research-
ers who are seeking ways to make numerical codes
run faster without the loss of accuracy.

2. Among three flux-limited schemes, the FVS-Sweby
has the best numerical performance. In a like
manner, the FVS-DMH also has the best numeri-
cal performance among three slope-limited
schemes. Moreover, the FVS-Sweby and FVS-
DMH schemes have the inherent properties of nu-
merical performance from the first-order FVS
scheme. Therefore, it is very important to use an
accurate and efficient first-order scheme as a ba-
sis for higher-order extension.

3. Between the FVS-Sweby and FVS-DMH schemes,
the FVS-DMH scheme is preferred because it has
lower L, error and consumes less CPU time.

4. Refining cell grid can improve the accuracy of
shock height prediction. The simulated dimension-
less shock heights from all of the nine presented
schemes with 400 computational cells match the
exact solution quite well for the range of water
depth ratios (107 < hy/h, < 1).

5. Application of the FVS-DMH scheme to the dam-
break experiment case demonstrates the capability
of the presented scheme to deal with channel
friction, sloping bed and dry bed conditions.

NOMENCLATURE

A Jacobian matrix

C, Courant number

c celerity of the gravity wave
F flux vectors in the x-direction
F. convective flux vector

FY,,  first-order numerical flux
F®,, second-order numerical flux
F, Froude number
gravity acceleration
H“ homogeneous solution operator
h water depth
hy initial water depths downstream of the dam
hy shock height

h, initial water depths upstream of the dam

him simulated water depth
R exact water depth
I identity matrix
Ly relative error
n time level
o ordinary differential equation operator
P pressure vector
hydrostatic pressure
Ig(]f) eigenvectors
R average approximate eigenvectors
S vector of the source terms
S0 slope of the channel bottom
S¢ friction slope
t time
U vector of conserved variables
u depth-averaged velocity
w flow variable vector
x horizontal distance along a channel
Ax grid spacing
At time step
T split Froude number function
P* split pressure function
A, slope limiter
) flux limiter
oy, average approximate wave strengths
Ay average approximate eigenvalues
Y eigenvalues
T mesh ratio
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