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Time series forecasting by combining the radial basis
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Abstract:

Based on a combination of a radial basis function network (RBFN) and a self-organizing map (SOM), a time-series
forecasting model is proposed. Traditionally, the positioning of the radial basis centres is a crucial problem for the
RBEFN. In the proposed model, an SOM is used to construct the two-dimensional feature map from which the number
of clusters (i.e. the number of hidden units in the RBFN) can be figured out directly by eye, and then the radial
basis centres can be determined easily. The proposed model is examined using simulated time series data. The results
demonstrate that the proposed RBFN is more competent in modelling and forecasting time series than an autoregressive
integrated moving average (ARIMA) model. Finally, the proposed model is applied to actual groundwater head data.
It is found that the proposed model can forecast more precisely than the ARIMA model. For time series forecasting,
the proposed model is recommended as an alternative to the existing method, because it has a simple structure and
can produce reasonable forecasts. Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Time series modelling and forecasting continues to be an important area in hydrological research and
application. Stochastic time series theory has been applied to solve hydrological problems (Bras and Rodriguez-
Iturbe, 1985; Brockwell and Davis, 1987; Lin and Lee, 1992, 1994). Traditional methods, such as time series
regression, exponential smoothing, and autoregressive integrated moving average (ARIMA), are available for
stochastic time series analysis. In particular, the ARIMA model is representative of time series models and
has achieved great popularity. Detailed discussions and applications of these models can be found in Box and
Jenkins (1976). Regarding the analysis of groundwater head time series, the Box—Jenkins model has been
proved to be useful for studying the behaviour of groundwater heads over time (Knotters and Van Walsum,
1997; Van Geer and Zuur, 1997; Ahn, 2000).

In recent years, artificial neural networks have been proposed as a promising alternative approach to
time series forecasting. Many successful applications have shown that neural networks provide an attractive
alternative tool for time series modelling and forecasting. Generally speaking, neural networks are information-
processing systems devised via imitating brain activity. Neural networks let data speak for themselves and
have the capability to identify the underlying functional relationship in the data. Theoretically, neural networks
are universal functional approximations and can approximate any nonlinear function with arbitrary accuracy
(Cybenko, 1989; Hornik et al., 1989; Hornik, 1991). This is a very important advance for neural networks,
because the number of possible nonlinear patterns is huge for real-world problems and a good model should
be able to approximate them all well (Granger, 1993). Empirically, neural networks have been shown to be
effective in modelling and forecasting nonlinear time series with or without noise (Saxen, 1996; Zhang et al.,
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1998). Moreover, many comparisons have been made between neural networks and traditional methods on
time series forecasting performance (Kuan and Liu, 1995; Kohzadi et al., 1996; Zhang et al., 1998).

There are a number of reasons to use neural networks for time series analysis. First, neural networks are
nonlinear models, which makes them quite flexible and powerful in modelling complex real-world phenomena.
Second, neural networks are nonparametric methods. That is, they do not require any assumptions about
the underlying model form. This is very important for many real-time series, because one may not know
what the underlying data-generating process is. Third, theoretical results show that neural networks can
approximate any complex function with arbitrary accuracy given a large enough network. If an underlying
functional relationship exists between the inputs and the outputs for any forecasting model, then the accurate
identification of this function is very important. All these features make neural networks very useful for time
series modelling and forecasting.

Based on the structure of the neural networks and the learning algorithm, various neural network models
are frequently proposed to solve time series problems. The back-propagation network is the popular one.
However, the back-propagation algorithm has several serious training problems (Wasserman, 1993). First, it
tends to yield local optimal solutions. Second, it may produce different results after the training process even
when the same training data are used. Finally, its training rate is slow. In order to overcome these problems,
we use a radial basis function network (RBFN) instead of the back-propagation algorithm. RBFNs have
been widely used for nonlinear systems identification because of their simple topological structure and their
ability to reveal how learning proceeds in an explicit manner. RBFNs were first introduced in solving the real
multivariate interpolation problem (Powell, 1987). Broomhead and Lowe (1988) then exploited the radial basis
function in the design of neural networks. RBFNs have been employed in nonlinear systems identification
and time series prediction (Broomhead and Lowe, 1988; Moody and Darken, 1989). More recently, RBFNs
increasingly used in hydrologic systems (such as rainfall-runoff forecasting), radar target recognition, and
spatial interpolation (Mason et al., 1996; Zhao and Bao, 1996; Fernando and Jayawardena, 1998; Lin and
Chen, 2004a,b).

In general, there are two steps in the design of an RBFN. The first step initializes the centres using a
clustering method. The second step determines the parameters and minimizes the error with respect to the
connecting weights. Between the existing learning algorithms, the main difference resides in the first step.
The positioning of the radial basis centres is a crucial problem for an RBFN. An easy solution is to set the
radial basis centres equal to the input vectors of the training data set. However, this solution is unrealistic
when the dimension of the training data set is large, and hence clustering methods are often applied to reduce
the number of centres (Moody and Darken, 1989; Musavi et al., 1992).

A number of clustering methods have been proposed to solve the clustering problem. The clustering methods
consist of hierarchical methods, like Ward’s minimum variance method, and nonhierarchical methods, such
as the K-means method. However, each clustering method carries its own shortcomings. Ward’s minimum
variance method tends to be easily affected by the outliers and cannot accommodate large sample sizes. On
the other hand, the K-means method cannot determine the number of clusters. The number of clusters and
the starting points are selected randomly. Furthermore, when the number of clusters is too large, there are
probably no training data in a cluster. These aforementioned disadvantages reveal that further improvement
is still necessary. Recently, owing to increasing computer power and decreasing computer costs, the self-
organizing map (SOM) has been employed to solve clustering problems. Chen et al. (1995) have demonstrated
that an SOM is a superior clustering technique and its advantage over conventional techniques increases with
increasing cluster dispersion in the data. Mangiameli ef al. (1996) showed that the SOM performed the best
when compared with the other seven hierarchical clustering methods.

The SOM was developed to simulate brain function (Kohonen, 1990). It can project a high-dimensional
input space on a low-dimensional topology so as to allow one to figure out the number of clusters directly by
eye. The SOM was first used as an information-processing tool in the fields of speech and image recognition.
More recently, the SOM is the most widely investigated and reported method because of its close ties
to biological nervous systems, its simplicity, and the wide variety of problem areas to which it might be
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applied (Wang et al., 1996; Orwig et al., 1997; Tokutaka et al., 1999; Michaelides et al., 2001; Tennant and
Hewitson, 2002). These advantages, coupled with the unsupervised nature of the SOM’s learning algorithm,
have rendered the SOM an attractive alternative for solving various problems that traditionally have been the
domain of conventional statistical and operational research techniques.

In this paper, a time-series forecasting model is developed. The model is based on the combination of
an RBFN and an SOM. First, the algorithms and architectures of the RBFN and the SOM are presented.
Then, simulated time series with prescribed parameters are used to compare the forecasting performance of
the proposed model and the traditional ARIMA model. Finally, the model is applied to actual groundwater
head data.

RADIAL BASIS FUNCTION NETWORK

The RBFN is traditionally used for strict interpolation in multi-dimensional space. An RBFN is composed of
three layers: an input layer, a hidden layer and an output layer. The hidden layer of an RBFN is nonlinear,
whereas the output layer is linear. The argument of the activation function of each hidden unit in an RBFN
computes the Euclidean distance between the input vector and the centre of the hidden unit in the network.
The basic architecture of a three-layered neural network is shown in Figure 1. The learning algorithm can be
described as follows.

The input data Z is a P-dimensional vector, Z = [z1, z2, ..., zp]T. In the structure of the RBFN, the input
layer serves only as an input distributor to the hidden layer. The dimensionality of hidden units is the same as
that of the input data. The response from the jth hidden unit for the ith input data z; has the following form:

¢j(zi) =¢(lzi —c;l) j=1.2, ..., Ny (1)

where || || denotes the Euclidean norm, c; is the centre of the jth unit in the hidden layer, ¢( ) is the
activation function, and N, is the number of hidden units. In the structure of the RBFN, the activation
function of hidden units is symmetric in the input space, and the output of each hidden unit depends only on
the Euclidean distance between the input vector and the centre of the hidden unit. The activation function has

Output Layer Bias

Hidden Layer

Input Layer

Figure 1. The structure of the RBFN
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different forms. The popular form is the Gaussian function:

$(Z) = exp —M )
2p
where B is the centre width, which can be obtained from (Haykin, 1994)
dmax
B = (3)
\/2Np
where d . 18 the maximum distance between the centres of hidden units.
The activity of the rth unit in the output layer y, can be obtained from
Ny,
Br=wot Y wed @) r=1,2 ... Ng “)
g=1

where ¢,(Z) is the response of the gth hidden unit resulting from all input data, wy, is the connecting weight
between the gth hidden unit and the rth output unit, wy is the bias term, and Ny is the number of output units.

Once the centres and widths of hidden units are determined, each weight in Equation (4) can be determined
by the least-squares method. The number and centres of hidden units are determined using an SOM herein.
The structure and methodology of the SOM are described in the next section.

SELF-ORGANIZING MAP

Figure 2 shows the architecture of the SOM. The SOM has two layers: one is the input layer containing the
input neurons, and the other is the output layer (Kohonen layer) with numerous neurons fully connected by
every input neuron. The output layer can be one- or two-dimensional. An attractive capability of SOMs is to
map the high-dimensional input patterns into a lower dimensional output space and to preserve the topological
relations of input patterns. There are three essential processes in the formation of an SOM: a competitive
process, a cooperative process and an adaptive process.

Output Layer

Input Layer

Figure 2. Architecture of the SOM
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1. Competitive process. Let an M-dimensional input vector (pattern) be denoted by
X =[x, x, -, ayl )

The output layer includes the output neurons u;, j =1, 2, ..., N, which are typically organized in a planar
(two-dimensional) lattice. Moreover, each connecting line in Figure 2 denotes a value of weight. The weights
from the input layer neurons to the output layer neurons are w;;,i =1, 2, ..., M, j=1, 2, ..., N.The
weight vector of each neuron has the same dimension as the input pattern. The weight vector can be written as

W;=I[wij, waj, -, wy;1' j=1,2, ..., N (6)

In the competitive process, the neurons of the network compete with each other in order to determine
which one is to be activated. The neuron activated is called the winning neuron. The way to determine which
neuron is the winning neuron is to measure the similarity between neurons and input patterns. The Euclidean
distance d; between the weight vector W; and input vector X is frequently used as the similarity measure:

di=|X-W;|l= (7

The output neuron whose weight vector has the smallest distance from the input vector is called the winning

neuron. The weights of this winning neuron are adjusted in the direction of the input vector.

2. Cooperative process. In the cooperative process, not only the winning neuron but also the neurons in
the topological neighbourhood of the winning neuron are affected by the competition. The topological
neighbourhood implies the lateral interactions between the winning neuron and its neighbourhood. The
winning neuron is the centre of the topological neighbourhood and the influence of competition decays
symmetrically from the winning neuron location. A Gaussian function is a typical choice of topological

neighbourhood:
laj — u?])?
hj =exp Ry (8)

where £; is the topological neighborhood, o is the ‘effective width’ of the topological neighborhood, and u’,‘

is the winning neuron.

3. Adaptive process. In the adaptive process, the weights are adjusted according to the input patterns. The
adjustment of weights is based on the Hebbian hypothesis (Kohonen, 1995). The change to the weight
vector W ; can be obtained as

where 7 is the learning-rate parameter of the algorithm. Hence, the updating weight vector W ;(¢ 4 1) at time
t 4+ 1 is defined by (Kohonen, 1982)

Wit+1)=W;@®) +n®h;O)X — W;(®) (10)

where 1(t) and h;(¢) are the learning-rate parameter and the topological neighbourhood at time ¢. The learning-
rate parameter 7 () is time varying, as indicated in Equation (10). In particular, it starts at an initial value and
then decreases gradually with increasing time.

Upon repeated presentations of the training data, the weight vectors tend to move toward the input pattern
due to the neighbourhood updating. That is, the adjustment makes the weight vectors similar to the input
pattern. The winning neuron shows the topological location of the input pattern. The neighborhood of the
winning neuron shows the statistical distribution of the input pattern. Concerning the number of iterations, as
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a general rule this must be at least 500 times the number of neurons in the network (Haykin, 1994). There is
no theoretical principle for determining the optimum size of the output layer; hence, the output layer is kept
large to ensure that the maximum number of clusters is formed from the training data.

The SOM is an appropriate tool for cluster analysis. After the SOM training is finished, one can figure
out the number of clusters directly by eye according to the two-dimensional feature map. The way to obtain
the feature map is to mark all winning neurons (some specific grids) in the output space (the lattice) with
the symbol (identity) of the corresponding input patterns. The location of the winning neuron in the output
space shows the topological location of the corresponding input pattern in the input space, and the density
of neurons shows the statistical distribution of the input patterns. If a neuron responds to a specific input
pattern, then the grid representing the neuron in the output space (i.e. the feature map) is called the image
of the specific input pattern. Every pattern in the input space has only one image in the feature map, but
one neuron can represent the images of many input patterns. Moreover, if there are no input patterns in the
input space, then the void is also shown in the feature map. This property enables the feature map obtained
by labelling each grid therein to reveal the grouping of the input patterns. The number in each grid indicates
how many input patterns project to this grid. Suppose that the number in each grid is the ‘elevation’ of the
feature map. Then the grouping of input patterns can be shown by the ‘plateaus’ separated by ‘valleys’ on
the feature map. The ‘plateaus’ and valleys imply the groupings and the void of the input patterns that are
mapped into the feature map respectively. Hence, the grouping of the original input patterns can be easily
recognized according to the variation of the elevation on the feature map.

EXPERIMENTAL DESIGN

Can neural networks approximate and forecast well the underlying structure of linear time series? What is
the relative performance of neural networks when compared with traditional ARIMA methods for linear time
series forecasting? To answer these questions, we conduct a simulation study with three linear time series
generated from ARIMA models in this section.

To control for the differences in the characteristics of time series better, three linear time series are generated
from the well-known Box—Jenkins ARIMA(p, d, g) family (Box and Jenkins, 1976). The three types of
ARIMA process employed in this study are: listed below:

1. The AR(1) process

Ve = Y1t & an
2. The AR(2) process
Ve =Y-1—0:6y2+¢& (12)
3. The ARIMA(1, 1, 1) process
(I =B)y, =050 —B)y—1 + & + 0-5¢,_; (13)

where &, is white noise. These ARIMA processes represent the most commonly encountered nonseasonal
Box-Jenkins models used in hydrological processes.

In total, there are 200 training data and 100 testing data in each time series. The training data are used to
construct the RBFN and to estimate the optimal parameters of the ARIMA models. The testing data are used
for testing the predictive ability of the forecasting model. The parameters of ARIMA models are estimated
using the least-squares method. Regarding the RBFN structure, after the training data are clustered using an
SOM, there are four, seven, and five hidden units in the RBFN for the ARIMA processes 1 to 3 respectively.

Copyright © 2005 John Wiley & Sons, Ltd. Hydrol. Process. 19, 1925—-1937 (2005)
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To learn the models’ performance, the models’ forecasts in 200 training data sets and 100 testing data sets
are both determined. The mean-square-error (MSE) and the median absolute percentage error (MdAPE) are
used herein as the performance measures. They are defined as

1< . )
MSE = — ;[y, — vl (14)

where J; is the forecast at time ¢, y; is the actual observation at time # and T is the number of forecasts, and

}yt_yt

MJAPE = Median (
Yt

y 100) (15)

Gardner (1983) recommends these two measures and discusses the reasons why they should be used for
forecasting comparisons. Although MSE is the most widely used measure of overall accuracy of a forecasting
method, it is also the one that incurs the most criticism (Clements and Hendry, 1993). It should be noted that
there is no uniformly accepted forecasting error measure. Hence, it is important to understand the advantages
as well as the limitations of each error measure in evaluating forecasting models. The relative advantages
of MdAPE over MSE and mean absolute percentage error (MAPE) have been discussed (Armstrong and
Collopy, 1992; Fildes, 1992).

The performances of the fitted ARIMA model and the proposed RBFN are summarized in Tables I-III.
The results apparently show that the proposed RBFN has better performance than the fitted ARIMA model. In
addition, the results of the proposed RBEN in the training data set indicate that it can grasp the major trends
in all cases. All of them indicate that the proposed RBFN has an efficient ability to learn and a high accuracy.

Table I. Comparative performance of the fitted AR(1) model and the proposed RBFN

Method Training data Testing data

MSE MdAPE MSE MdAPE
AR(1) model 1-084 0-762 1-009 0-601
Proposed RBFN 1-026 0-749 0-965 0-528

Table II. Comparative performance of the fitted AR(2) model and the proposed RBFN

Method Training data Testing data

MSE MdAPE MSE MdAPE
AR(2) model 0-990 0-660 1-041 0-709
Proposed RBFN 0-969 0-535 0-901 0-626

Table III. Comparative performance of the fitted ARIMA(1, 1, 1) model and the pro-

posed RBFN
Method Training data Testing data
MSE MdAPE MSE MdAPE
ARIMA(1, 1, 1) model 0-228 0-298 0-259 0-387
Proposed RBFN 0-220 0-302 0-260 0-384

Copyright © 2005 John Wiley & Sons, Ltd. Hydrol. Process. 19, 1925—-1937 (2005)
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APPLICATION

The study data

In this paper, actual groundwater head data from Hsiu-Lin Station in southern Taiwan are used. Figure 3
shows the monthly average groundwater head for Hsiu-Lin Station. Groundwater head records are available
from 1982 to 2001. In total, there are 240 sets of monthly average groundwater head. Of these 240 data sets,
the first 192 data sets are selected as the training set and the remaining 48 data sets are used as the testing set.

ARIMA model

First, the sample autocorrelation function (ACF) and partial ACF (PACF) for the original series are shown
in Table IV. They appear to be annual or 12 month spikes in the ACF and PACF. The ACF in Table IV clearly
exhibits the prima facie advance of seasonal nonstationarity. That is, it is evident that we need a seasonal
differencing. The sample ACF and PACF for the seasonally differenced series are presented in Table V. The
sample ACF shows a clear sine—cosine phenomenon and the PACF exhibits significant spike at lag 1. Since
W = —0-05, Sy = 1-59, and n = 180, the ¢-value of W = —0~05/(1~24/«/@) = 0-54, which is significant,
and thus a deterministic trend is needed. We identify the following process as a tentative model for the series:

(1—®B)(1 —B™)Z, =6y +a, (16)
where Z, denotes a measured groundwater head time series at time ¢, B is a backward shift operator
(B¥Z, = Z,_1), ® is the autoregressive parameter, 0, is a constant, and a, is a Gaussian white noise. Using
a standard nonlinear estimation procedure of time series software, we obtain the following results:

(1 —0-69B)(1 — B'*)Z, = —0-09 + q, (17)

However, the residual ACF for the above fitted model as shown in Table VI has a significant spike at lag 12.
We modify the model to an ARIMA(1, 0, 0) x (0, 1, 1)5:

(1 —®B)(1 —B"%)Z, =0y + (1 — ©B'?)q, (18)
where ® is the moving-average parameter. Parameter estimation gives

(1 —0-68B)(1 — B'?)Z, = —0-03 + (1 — 0-91B'%)q, (19)
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Figure 3. Monthly average groundwater head for Hsiu-Lin Station
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Table IV. Sample ACFs and PACFs for monthly average groundwater head at Hsiu-Lin Station®

1933

ACF py for {Z,}; (Z =25.89, S; =1.29, n =192)

k 1 2 3 4 5 6 7 8 9 10 11 12
Ok 0-73 0-55 0-40 0-22 0-08 0-00 —0-01 0-00 0-09 0-12 0-18 0-25
SE 0-10 0-12 0-12 0-13 0-13 0-13 0-13 0-13 0-13 0-13 0-13 0-13
k 13 14 15 16 17 18 19 20 21 22 23 24
Ok 0-21 0-14 0-08 0-00 -0-08 -0-16 —-0-14 —-0-09 —-0-04 0-00 0-10 0-18
SE 0-13 0-13 0-13 0-13 0-13 0-14 0-14 0-14 0-14 0-14 0-14 0-14
k 25 26 27 28 29 30 31 32 33 34 35 36
Ok 0-16 0-18 0-17 0-19 0-15 0-09 0-08 0-06 0-05 0-07 0-10 0-13
SE 0-14 0-14 0-14 0-14 0-14 0-14 0-14 0-14 0-14 0-14 0-15 0-15
PACF ¢
k 1 2 3 4 5 6 7 8 9 10 11 12
<2>kk 0-73 0-05 -0-04 —-0-14 —-0-08 0-01 0-10 0-07 0-14 -0-02 0-07 0-08
SE 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07
k 13 14 15 16 17 18 19 20 21 22 23 24
&kk -0-09 -0-09 -0-02 -0-04 -0-03 -0-10 0-10 0-08 —-0-01 —-0-04 0-13 0-07
SE 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07
k 25 26 27 28 29 30 31 32 33 34 35 36
b —0-08 0-08 0-04 0-16 —0-04 —0-05 0-06 —0-06 0-00 0-08 0-00 0-00
SE 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07
Standard error.
4SE:

Table V. Sample ACFs and PACFs for the seasonally differenced series
ACF py for {W, = (1 — B'®)Z,}; (W = —0.05, Sy = 1.59, n = 180)
k 1 2 3 4 5 6 7 8 9 10 11 12
o 0-70 0-55 0-42 0-30 0-17 0-10 0-01 -0-11 -0-15 -024 —-034 -0-50
SE 0-10 0-12 0-13 0-13 0-13 0-13 0-13 0-13 0-13 0-14 0-14 0-15
k 13 14 15 16 17 18 19 20 21 22 23 24
o -034 -032 -029 -029 -026 -0-27 -023 -0-15 -0-13 -—-0-11 —0-03 0-02
SE 0-16 0-16 0-16 0-16 0-17 0-17 0-17 0-17 0-17 0-17 0-17 0-17
k 25 26 27 28 29 30 31 32 33 34 35 36
Dk 0-05 0-15 0-22 0-31 0-34 0-34 0-31 0-23 0-17 0-15 0-09 0-06
SE 0-17 0-17 0-17 0-18 0-18 0-19 0-19 0-19 0-19 0-19 0-19 0-19
PACF ¢y
k 1 2 3 4 5 6 7 8 9 10 11 12
&)kk 0-70 0-13 -0.01 —-0-05 -0-10 0-01 —-0-08 —0-15 0-00 -0-13 —-0-18 —-0-30
SE 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07
k 13 14 15 16 17 18 19 20 21 22 23 24
e 0-36 -0-03 -0-07 -0-18 —-0-04 —-0-04 —-0-06 0-02 -0-02 -0-16 —-0-02 —-0-13
SE 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07
k 25 26 27 28 29 30 31 32 33 34 35 36
i 0-28 0-11 0-05 0-03 —-0-05 —0-08 0-00 -0-03 —-0-05 -0-03 —-0-01 —0-04
SE 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07 0-07
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Table VI. Residual ACFs p; from the fitted model (1 — 0.69B)(1 — B'?)Z, = —0.09 + a,
k 1 2 3 4 5 6 7 8 9 10 11 12
Ok —0-03 0-09 0-16 —0-09 —0-08 0-03 —-0-09 —0-12 0-08 —0-04 —0-04 0-00
SE 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08
k 13 14 15 16 17 18 19 20 21 22 23 24
Ok 0-07 0-01 0-05 0-04 0-03 —0-07 —0-03 002 —-0-10 —0-11 002 —0-36
SE 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-09 0-09 0-09 0-09
k 25 26 27 28 29 30 31 32 33 34 35 36
Ok —0-09 0-11  —0-07 0-10 0-17 0-04 0-06 0-07 —0-15 0-00 —0-01 0-01
SE 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10
Table VII. Residual ACFs p; from the fitted model (1 — 0.68B)(1 — B'?)Z, = —0.03 + (1 — 0.91B?)q,
k 1 2 3 4 5 6 7 8 9 10 11 12
o —0-03 0-09 0-10 —0-09 —0-08 0-03 —0-09 —0-11 0-08 —0-04 —0-04 0-00
SE 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08
k 13 14 15 16 17 18 19 20 21 22 23 24
o 0-07 0-01 0-05 0-04 0-03 —0-07 —0-03 0-02 —0-10 —0-11 0-02 —0-36
SE 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-08 0-09 0-09 0-09 0-09
k 25 26 27 28 29 30 31 32 33 34 35 36
o —0-09 0-11 —0-07 0-10 0-17 0-04 0-06 0-07 —0-15 0-00 —0-01 0-01
SE 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10 0-10

The residual ACFs for this modified model are shown in Table VII: they are all small and exhibit no patterns.
Therefore, the fitted ARIMA(1, 0, 0) x (0, 1, 1)1, model in Equation (18) is adequate for the time series.
That is, one can use the following equation to forecast the future groundwater head time series:

Zi1=068Z 1 +Ziy1—12—068Z, ;13 + aryy — 091as4 ;12 — 0-03 (20)

The proposed RBFN

In this study, an RBFN model is developed to predict the 1 month ahead forecast of groundwater head.
According to the above results, the past 13, 12, and 1 month average groundwater heads are used as inputs
for the proposed RBFN. The functional form of the RBFN is

Ziv1 = fZiyi—13, Zipi—12, Zipi—1) (21)

Therefore, there are three neurons in the input layer and one neuron in the output layer. The number of
neurons in the hidden layer is determined after the SOM is constructed in the development process of the
proposed RBFN. After a total of 98000 iterations, the SOM has been constructed. Figure 4 presents the
two-dimensional feature map obtained on a network of 14 x 14 cells. As shown in Figure 4, the feature map
can be divided into 15 regions. Therefore, the 192 training data can be grouped into 15 clusters. That is, the
RBFN has 15 neurons in the hidden layer. After the 3—15—1 RBFN is constructed, it can be applied to the
analysis of groundwater head time series.

Results and discussions

The comparisons of observed groundwater heads with values forecast using the seasonal ARIMA model
and the proposed RBFN are given in Figures 5 and 6 respectively. According to Figures 5 and 6, the shape
and the tendency of the groundwater head can be reasonably forecast using the proposed RBFN. Moreover,
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Figure 4. Two-dimensional feature map obtained on a network of 14 x 14 cells. The feature map is divided into 15 regions
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Figure 5. Comparison of observed groundwater heads with values forecast using the ARIMA model

the performances of the seasonal ARIMA model and the proposed RBFN during training and testing are
summarized in Table VIII in terms of MSE and MdAPE. For training data, one can see that the values of
MSE and MdAPE for the proposed RBFN are 0-06 and 0-38 respectively. Both are better than those of the
seasonal ARIMA model, which are 1-15 and 2-39 respectively. The greater accuracy of the proposed RBFN
is also evident in testing data, as indicated by MSE = 0-26 and MdAPE = 0-91 versus MSE = 0-42 and
MAAPE = 1-46 for the seasonal ARIMA model. Therefore, the proposed RBFN has better performance than
the seasonal ARIMA model based on the performance indices in this study. When the number of data is large,
the SOM can reduce the number of centres and avoid too many centres for the RBFN. Another advantage of
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Figure 6. Comparison of observed groundwater heads with values forecast using the proposed RBFN

Table VIII. Comparative performance of the ARIMA model and the proposed
RBFN for monthly average groundwater head data at Hsiu-Lin Station

Method Training data Testing data
MSE MdAPE MSE AdAPE

ARIMA model 1-15 2-39 0-42 1-46

RBFN 0-06 0-38 0-26 0-91

the proposed model is that it has a clear principle and a simple structure. The proposed learning algorithm
provides an alternative to the determination of the radial basis centres and it can save on computation time
compared with the trial-and-error method.

SUMMARY AND CONCLUSIONS

In this paper, a time-series forecasting model is developed. The model is based on the combination of an
RBFN and an SOM. The SOM is used to construct a two-dimensional feature map from which the number
of clusters (i.e. the number of hidden units in the RBFN) can be figured out directly by eye, and then the
radial basis centres can be determined easily. In such a manner, the crucial problem for the RBFN, i.e. the
positioning of the radial basis centres, can be solved. Time series generated from three types of Box—Jenkins
model are used to test the forecasting performance of the proposed model. The results show that the proposed
model is more competent in modelling and forecasting time series than the ARIMA model. Application of
the proposed model to actual groundwater head data of a well in southern Taiwan indicates that the proposed
model can forecast more precisely than the ARIMA model.
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