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Analysis of Water Waves Passing Over a Submerged
Rectangular Dike

I-Chi Chan1; Liang-Hsiung Huang2; and Ping-Cheng Hsieh3

Abstract: The analytic solutions of inviscid and viscous water waves passing over a submerged rectangular dike are investigated
to the fact that the orthogonality of eigenfunctions is invalid for viscous wave problem, two newly developed orthogonal inner pr
are applied to reduce the mathematical difficulty of viscous wave problem. Both inviscid and viscous water wave solutions are o
under the assumption of linear water wave without separation. It shows that two solutions have no significant kinematic difference
viscous contribution of dynamic effect is not negligible. Beside giving a better theoretical approach, which reduces the error
conventional minimal squares method, the result of the present analytical solution can be used to quantitatively evaluate the co
of experiments and also provides helpful information such as near wall boundary layer thickness and oscillating free surface for
tational use.
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to deal with this kind of problem; however, although their a
proach is convenient to use, the error cannot be explained cle

In the present study, new orthogonal inner products are de
oped to overcome the nonorthogonal eigenfunction problem.
present orthogonal inner product is the extension of the in
product of Rhodes-Robinson~1979!, which dealt with capillary
gravity waves in finite water depth. This concept was a
adopted by Sahoo et al.~2000! to study the problem of a zero
thickness floating elastic plate acted by some external forces

Potential Flow Solution

Because there are many former studies of potential flow solut
we hence only give a brief summary.

The fluid domain of the present analysis is divided into th
regions by interfacesx56b/2 as shown in Fig. 1. With the usua
assumptions of a perfect fluid and small amplitude waves,

l
t

Fig. 1. Water wave passing over submerged dike
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Introduction

The problems of propagation of water waves over a submer
obstacle have been studied theoretically by many investiga
within the framework of linearized potential theory. Since th
submerged structures are usually used to reduce the transmi
wave, these former studies are mainly concerned with determ
ing the reflection and transmission properties for a given incid
wave. Examples of the well-known investigations are Newm
~1965!, Miles ~1967!, and Mei and Black~1969!.

The above researches have good performances under th
sumption that the fluid is ideal. However, the nature of the flo
around the submerged obstacle is expected to have a viscou
fect. According to the constitutive law of Newtonian fluid, th
viscous stress is caused since the velocity gradient occurs by
sudden change of the vertical cross section of water due to
submerged obstacle. Therefore, dynamic effects can no longe
predicted accurately by potential theory. It would be interesting
investigate the wave characteristics over the submerged obs
by using the viscous flow approach, but this kind of analytic
solution, to the authors’ knowledge, is seldom found due to ma
ematical difficulties. The orthogonal solutions of potential flow n
longer existed because of complex wave numbers caused by
cous effect. Lo and Lee~2000! adopt the minimal squares metho



Fig. 2. Horizontal boundary layer only
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Viscous Flow Analysis

Governing Equations

The fluid occupies the same regions as above. Getting rid o
time dependence factore2 ivt, with v as the angular frequenc
the time-independent perturbed velocity of the water wave ca
divided into an irrotational part and a rotational part by Hel
holtz’s theorem as follows:

V~ j !5¹f~ j !1¹3U~ j ! (7)

Thus, the continuity equation becomes

¹2f~ j !50 (8)

and the linearized momentum equation turns into

2 irvf~ j !1P~ j !50 (9)

2 irv~¹3U~ j !!5m¹2~¹3U~ j !! (10)

Since we consider the two-dimensional Cartesian coordi
problem, the vector potentialU( j ) can be written asU( j )5w ( j )ez
~see Morse and Feshbach 1978, p. 1766!. Therefore, Eq.~10! can
be in the form

¹2w~ j !1kv
2 w~ j !50 (11)

where the constant is

Fig. 4. Real boundary layer
velocity potential,F(x,y,t)5f(x,y)•e2 ivt is necessary to sa
isfy Laplace’s equation, the linearized free-surface conditio
water wave, and the no-flux bottom boundary condition. Us
the eigenfunction expansion similar to that in Ou Yang e
~1997!, we find that the spatial velocity potentialf ( j ), after ap-
plying free surface and bottom boundary conditions, can be
pressed as

f~1!~x,y!5
gh0

iv
eia0xf 01 (

n50

`

bne2 ianxf n (1)

f~2!~x,y!5 (
m50

`

@cm cos~bmx!1dm sin~bmx!#Fm (2)

f~3!~x,y!5 (
n50

`

eneianxf n (3)

where

f n5
cosh~an~y1h!!

cosh~anh!
(4)

Fm5
cosh~bm~y1H !!

cosh~bmH !
(5)

with h0 being the incident wave amplitude. The propagating
evanescent wave numbers,a0(b0) and an> l(bm> l) satisfy the
usual dispersion relations

v25gan tanh~anh!,
(6)

v25gbm tanh~bmH ! n,m50,1,2, . . .

It can be readily shown that the wave numbers above are e
real or pure imaginary, hence the corresponding eigenfunc
are orthogonal and the solution forms are complete. When bo
ary conditions of the continuity of normal velocity and press
on x56b/2 are used, and the orthogonal conditions are app
the coefficientsbn , cm , dm , anden can be expressed as a mat
problem to be solved.
r
s
-

,

Fig. 5. Relationships of wave numbers between two models (h/H
52, b/H52, h50.25m, h053.2cm, T51.5s)
Fig. 3. Vertical boundary layer only



Fig. 6. Reflection coefficient of potential model~a! Mei and Black~1969!; ~b! present study
sur-

ndi-

J

2fxy
~ j !2wxx

~ j !1wyy
~ j !50 (14)

The conventional kinematic boundary condition on the free
face,y50, is

fy
~ j !2wx

~ j !52 ivh (15)

Regarding the bottom boundary conditions, the no-slip co
tion should be satisfied, thus we get

fx
~ j !1wy

~ j !50 (16)
kv
2 5

iv

n
(12)

Boundary Conditions

The dynamic boundary conditions on the free surface,y50, are
the continuities of normal and tangential stresses~e.g., see Aris
1962!

2 ivf~ j !12n~fyy
~ j !2wxy

~ j !!1gh50 (13)
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hese
Fig. 7. Approach by Mei and Black~1969!
e
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fx
~3!1wy

~3!50, 2h<y<2H (23)

Method of Solution

Solution Forms
To solve Eqs.~8! and~11! with the conditions~14!, ~16!, and~17!,
once again, the eigenfunction expansion method is used. T
spatial potentials in each region can be found as

f~1!~x,y!5A0eia0x@cosh~a0y!1P0 sinh~a0y!#

1 (
n50

`

Bne2 ianx@cosh~any!1Pn sinh~any!# (24)

w~1!~x,y!5A0eia0x@Q0eâ0~y1h!1R0e2â0~y1h!#

1 (
n50

`

Bne2 ianx@Qneân~y1h!1Rne2ân~y1h!# (25)

f~2!~x,y!5 (
m50

`

~Cm cos~bmx!1Dm sin~bmx!!

3@cosh~bmy!1 P̃m sinh~bmy!# (26)

w~2!~x,y!5 (
m50

`

~Cm cos~bmx!1Dm sin~bmx!!

3@Q̃meb̂m~y1H !1R̃me2b̂m~y1H !# (27)

f~3!~x,y!5 (
n50

`

Eneianx@cosh~any!1Pn sinh~any!# (28)
Fig. 8. Difference of reflection coefficient between two models (h053.2cm, T51.5s, n51.1731026 m2/s)
fy
~ j !2wx

~ j !50 (17)

for y52h at regions~1! and ~3! and fory52H at region~2!.
At two regional interfaces,x56b/2, the continuities of~a!

normal fluid stress,~b! normal fluid velocity, and~c! the no-flux
condition on the two vertical walls are considered. All of them ar
listed sequentially as follows:
At interfacex52b/2

2 ivf~1!12n~fyy
~1!2wxy

~1!!52 ivf~2!12n~fyy
~2!2wxy

~2!!

2H<y<0 (18)

fx
~1!1wy

~1!5fx
~2!1wy

~2! , 2H<y<0 (19)

fx
~1!1wy

~1!50, 2h<y<2H (20)

At interfacex5b/2

2 ivf~3!12n~fyy
~3!2wxy

~3!!52 ivf~2!12n~fyy
~2!2wxy

~2!!

2H<y<0 (21)

fx
~3!1wy

~3!5fx
~2!1wy

~2! , 2H<y<0 (22)



Fig. 9. Surface elevation and velocity field of potential model (h/H52, b/H52, h50.25m, h053.2cm, T51.5s)
JO
Sn5R2 coshQn12F2VnDn sinhVn24F2Vn
2Qn sinhQn (34)

R5
vh2

n
(35)

F5
vh

Agh
(36)

Vn5anh (37)

Qn5ânh (38)

Dn52Vn
22 iR (39)

and wave numbersan , solved by the combination of Eqs.~13!
and ~15!, are the roots of the following equations:
F2 cosh~anh!2~anh!sinh~anh!1~anh!@~anh!cosh~anh!2F2 sinh~anh!#
tanh~ ânh!

ânh
14i

F2

R
~anh!2 cosh~anh!

28i
F2

R
~anh!3 sinh~anh!

tanh~ ânh!

ânh
28

F2

R2 ~anh!4 cosh~anh!18
F2

R2 ~anh!5 sinh~anh!
tanh~ ânh!

ânh
24i

F2

R
~anh!2

1

cosh~ ânh!

18
F2

R2 ~anh!4
1

cosh~ ânh!
50 (40)
w~3!~x,y!5 (
n50

`

Eneianx@Qneân~y1h!1Rne2ân~y1h!# (29)

where
ân

25an
22kv

2 , Re~ ân!<0 (30)

Pn5F2$Dn@2Vn
2 coshVn2Dn coshQn#%/$VnSn% (31)

Qn5e2Qn$2R2Vn coshVn2F2Dn
2 sinhVn

12F2VnQn@eQnDn22Vn
2 coshVn#%/$22iQnSn%

(32)

Rn5eQn$R2Vn coshVn1F2Dn
2 sinhVn

12F2VnQn@Dn22Vn
2 coshVneQn#%/$22iQnSn% (33)
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Fig. 10. Surface elevation and velocity field of viscous model (h/H52, b/H52, h50.25m, h053.2cm, T51.5s, n51.1731026m2/s
)
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Referring to Rhodes-Robinson’s treatment, the sets of fu
tions, which express the dependence on depth in the sepa
functions in region~1! and ~3!, can be written as the following
boundary-value problems. Governing Eq.~8! with boundary con-
ditions ~17! and the combination of Eqs.~13! and ~15! gives

Yn92an
2Yn50 (42)

Yn8~2h!5 ianŶn~2h! (43)

v~2 iv12nan
2!Yn~0!1 igYn8~0!

52ganŶn~0!12invanŶn8~0! (44)

While governing Eq.~11! with boundary conditions~16! and~14!
gives

Ŷn92~an
22kv

2 !Ŷn50 (45)

Ŷn8~2h!52 ianYn~2h! (46)

~kv
2 22an

2!Ŷn~0!52ianYn8~0! (47)

where
Yn5cosh~any!1Pn sinh~any! (48)

stand for the irrotational parts, and

Ŷn5Qneân~y1h!1Rne2ân~y1h! (49)

are the solutions of rotational potential. From the above modi
Sturm–Liouville problems, Eqs.~42!–~44! and~45!–~47!, we can
define the orthogonal inner product of irrotational potentials
region ~1! and, similarly, for region~3! as
For the shallow region, region~2!, the quantitybm , b̂m , P̃m ,
Q̃m , andR̃m are defined similarly by replacingh andan with H
andbm in Eqs.~30!–~40!.

Paying attention to the terms involving the coefficientA0 ap-
pear in the first term of the right hand side of Eqs.~24! and~25!,
they actually stand for the given incident wave. The incid
wave can be solved by Eqs.~8! and ~11! with boundary condi-
tions ~13!–~17!. A0 can be obtained as

A05
vhh0

iF2

R

R12iV0
212V0Q0@eQ0Q02e2Q0R0#

(41)

by substituting the solution form@the first term of the right hand
side of Eqs.~24! and ~25!# into Eq. ~15!. The constanth0 is the
incident wave amplitude atx50 and the propagating wave num
ber a0 is one of the roots of Eq.~40! whose real part is domi
nated.

The unknown coefficientsBn , Cm , Dm , andEn now will be
solved by interface conditions~18!–~23!. One can notice that th
orthogonality of the eigenfunctions no longer exists becaus
wave numbers being complex.

Orthogonal Inner Products
To investigate the surface tension effect of water waves, Rho
Robinson ~1979! rewrote the governing ordinary differenti
equation and its corresponding boundary conditions, in w
depth direction, as the form of a typical Sturm–Liouville proble
with modification then developed a so-called orthogonal in
product to overcome the predicament resulting from the no
thogonality of the eigenfunctions.



Fig. 11. Velocity profile within presumed boundary layer of potential model (h/H52, b/H52, h50.25m, h053.2cm, T51.5s)
on

J

al
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Ỹm~y!Ỹn~y!dy, m5n

E
2H

0

Ỹm~y!Ỹn~y!dy1
4n

g
~2 iv!

2
bn

2b& m2bm
2 b& n

~bmbn!2~bm
2 2bn

2!
Ỹm8 ~2H !Ỹn8~2H !

1
2i

bm
2 2bn

2 H b& m

bm
R̃mỸn8~2H !2

b& n

bn
R̃nỸm8 ~2H !J , mÞn

(51)

with
Fig. 12. Velocity profile within boundary layer of viscous model (h/H52, b/H52, h50.25m, h053.2cm, T51.5s, n51.1731026m2/s
)

^Ym ,Yn&

5

¦

E
2h

0

Ym~y!Yn~y!dy, m5n

E
2h

0

Ym~y!Yn~y!dy1
4n

g
~2 iv!

2
an

2a& m2am
2 a& n

~aman!2~am
2 2an

2!
Ym8 ~2h!Yn8~2h!

1
2i

am
2 2an

2 H a& m

am
RmYn8~2h!2

a& n

an
RnYm8 ~2h!J , mÞn

(50)

Of course, by the same procedures we can obtain the orthog
inner product of irrotational potential for region~2! as
OURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 619



Fig. 13. Velocity profile at midpoint of vertical wall within boundary layer (h/H52, b/H52, h50.25m, h053.2cm, T51.5s, n51.17

31026m2/s
)
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E
2h

0

Ỹm~y!Ỹn~y! dy

5

¦

^Ỹm ,Ỹn&, m5n

2
4n

g
~2 iv!

1
bn

2b& m2bm
2 b& n

~bmbn!2~bm
2 2bn

2!
Ỹm8 ~2H !Ỹn8~2H !

2
2i

bm
2 2bn

2 H b& m

bm
R̃mỸn8~2H !2

b& n

bn
R̃nỸm8 ~2H !J , mÞn

(518)

From Eqs.~508! and~518!, we find that we need to perform inte-
gration only whenm5n, while whenmÞn, although it is not
zero as the minimal squares method usually assumed, the integr
tion is still easy to obtain by applying the present orthogonal inner
product method. By looking into the inner products above, we can
realize that terms beside the integrals in Eqs.~50! and ~51! are
errors of the minimal squares method applied by Lo and Lee
~2000!. This indicates that the present orthogonal inner product
approach can reduce the error of the minimal squares method.

At interfacex52b/2, applying Eqs.~518! to Eq.~18! and Eq.
~508! to Eqs.~19! and ~20!, we have
Ỹm5cosh~bmy!1 P̃m sinh~bmy! (52)

Then, it is easy to find that formÞn

^Ym ,Yn&50 (53)

^Ỹm ,Ỹn&50 (54)

which indicate that the set of functions$Yn ;n50,1,2, . . .% and

$Ỹm ;m50,1,2, . . .% appear in Eqs.~24!–~29!, are orthogonal
with respect to the inner product defined by Eqs.~50! and ~51!.
Eqs.~50! and ~51! can also be written as

E
2h

0

Ym~y!Yn~y! dy

55
^Ym ,Yn&, m5n

2
4n

g
~2 iv!

1
an

2a& m2am
2 a& n

~aman!2~am
2 2an

2!
Ym8 ~2h!Yn8~2h!

2
2i

am
2 2an

2 H a& m

am
RmYn8~2h!2

a& n

an
RnYm8 ~2h!J , mÞn

(508)



(
n50

` H S 112i
n

v
an

2D •G̃nm̂22
n

v
anân•L̃nm̂J eian•b/2Bn

1 (
m50

` H 2S 112i
n

v
bm

2 D •E
2H

0

ỸmỸm̂dy12i
n

v
bmb̂m tan~b/2•bm!•)̃mm̂J cos~b/2•bm!Cm

1 (
m50

` H 2S 112i
n

v
bm

2 D •E
2H

0

ỸmỸm̂dy22i
n

v
bmb̂m cot~b/2•bm!•)̃mm̂J sin~2b/2•bm!Dm

5 H 2S 112i
n

v
a0

2D •G̃0m̂22
n

v
a0â0•L̃0m̂J e2 ia0•b/2A0, m̂50,1,2, . . . (55)

(
n50

` H 2 ian•E
2h

0

YnYn̂dy1ân•L̂nn̂J eian•b/2Bn1 (
m50

`

$bmtan~bmx!•Ĝmn̂2b̂m•)̂mn̂%cos~b/2•bm!Cm

1 (
m50

`

$2bm cot~bmx!•Ĝmn̂2b̂m•)̂mn̂%sin~2b/2•bm!Dm

5H 2 ia0•E
2h

0

Y0Yn̂dy2â0•L̂0n̂J e2 ia0•b/2A0, n̂50,1,2, . . . (56)

At interfacex5b/2, applying Eq.~518! to Eq. ~21! and Eq.~508! to Eqs.~22! and ~23!, we have

Fig. 14. Pressure distribution on vertical wall (h/H52, b/H52, h50.25m, h053.2cm, T51.5s, n51.1731026m2/s
)
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v
bmb̂m tan~b/2•bm!•)̃mm̂J cos~b/2•bm!Cm

1 (
m50

` H 2S 112i
n

v
bm

2 D •E
2H

0

ỸmỸm̂dy12i
n

v
bmb̂m cot~b/2•bm!•)̃mm̂J sin~b/2•bm!Dm
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v
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e

plete viscous wave solution, which well approximates the r
viscous boundary layer shown in Fig. 4 schematically asR
@1.

The modificationsŵ (1) and ŵ (3) which still satisfy Eq.~11!,
are used to fulfill no-slip conditions atx56b/2

fy
~1!2ŵx

~1!50, 2h<y<2H (66)

fy
~3!2ŵx

~3!50, 2h<y<2H (67)

Hence, the solution form concerning the modification of verti
wall boundary layer is suggested to be

ŵ~1!~x,y,t !5 (
n50

`

Fne2 i ãn~x1b/2!@sinh~any!1Pn cosh~any!#,

2h<y<2H (68)

ŵ~3!~x,y,t !5 (
n50

`

Gnei ãn~x2b/2!@sinh~any!1Pn cosh~any!#,

2h<y<2H (69)

whereãn
25an

21kv
2 , Re(ãn).0. The solutions are easily found a

Fn5H i
an

ãn
~Ane~2 iban!/21Bneiban/2!, n50

i
an

ãn
Bneiban/2, n>1

(70)

Gn5 i
an

ãn
Eneiban/2 (71)

from Eqs.~66! and ~67!.
As we may see, the vertical wall modification certainly brin

an extra constraint ofR@1 to Eqs.~24!–~29!. However, this con-
straint is satisfied most of the time because the value of w
viscosity usually is very small.

Aspects of Numerical Computation

Wave Numbers

Looking back on the dispersion relation~40!, we can see that it
reveals that the first line of the equation is the same as the
ventional dispersion relation~6!, the second line is small due t
that uânhu!1, and the remaining is also not significant asR@1.
Thus the other terms beside the first line could be regarded a
perturbation owing to the viscous effect and the roots of Eq.~40!
can be obtained by using the Newton–Raphson method
wave numbers of the potential analysis as the initial guesses w
(
m50

`

$2bm tan~b/2•bm!•Ĝmn̂2b̂m•)̂mn̂%cos~b/2•bm!Cm

1 (
m50

`

$2bm cot~b/2•bm!•Ĝmn̂1b̂m•)̂mn̂%sin~b/2•bm!Dm

2 (
n50

` H 2 ian•E
2h

0

YnYn̂dy2ân•L̂nn̂J eian•b/2En50

n̂50,1,2, . . . (58)

where

G̃nm5E
2H

0

YnỸm dy (59)

L̃nm5E
2H

0 Ŷn8Ỹm

ân
dy (60)

)̃nm5E
2H

0 Ỹ̂n8Ỹm

b̂n

dy (61)

Ĝnm5E
2H

0

ỸnYm dy (62)

L̂nm5E
2h

0 Ỹ̂n8Ym

b̂n

dy (63)

)̂nm5E
2h

0 ŶnYm

ân
dy (64)

and

Ỹ̂m5Q̃meb̂m~y1H !1R̃me2b̂m~y1H ! (65)

By applying Eqs.~55!–~58!, Bn , Cm , Dm , and En can be ob-
tained.

Vertical Wall Modification

Although viscous effect on the vertical walls of the dike is not
important in considering the dynamic result for structure des
such as the drag force acting on the dike, in order to describe
flow kinematics near the vertical walls correctly, viscous flo
modifications near the vertical walls are proposed.

It is easy to understand that under the condition ofR@1 @see
Eq. ~35!# the above viscous wave solution can be treated
equivalent to Fig. 2 sketchmatically. Therefore, by adding a v
tical wall modification indicated as Fig. 3, we may have a co



Fig. 15. Shear stress distribution on top of dike (h/H52, b/H52, h50.25m, h053.2cm, T51.5s, n51.1731026m2/s
)
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Ur!1.0 (74)

whereUr is the well-known Ursell parameter, defined as

Ur5
a0h0

~a0h!3 (75)

Furthermore, althoughR@1 is required for vertical wall modifi-
cation, the motion is considered as laminar flow only and th
occurrence of separation is not allowed in the present study.

The reflection coefficient,Cr5uh r /h0u, is most interesting to
previous studies of potential waves. Fig. 6 shows the oscillato
nature of the reflection coefficient resulting from the interactio
between the two ends of the obstacle. Our potential model’s res
agrees with that of Mei and Black~1969!. Note that in Mei and
Black ~1969!, variational method is applied, and the original in
cident wave is split into a couple of symmetric and antisymmetr
waves as illustrated by Fig. 7.

The difference ofCr between potential analysis and viscou
one is presented in Fig. 8. It is clear thatCr of the viscous model
is a little smaller but very close to the one of the potential mode
The reason for the potential model being overestimated is due
the influence of the viscous effect.

The entire velocity field and surface elevation@recall Eqs.~7!
and ~15!# of potential and viscous models are shown in Figs.
and 10. There seems to be no significant kinematic differen
between the two analyses. However, viscous effects are obviou
pronounced while focusing on the scopes within the bounda
R@1. The relationship of wave numbers between two theories
for the case ofh/H52, b/H54, h053.2cm, and T51.5s, is
shown in Fig. 5.

Terms of Infinite Series

Truncating the summation of an infinite series of each expressio
for the solution form is needed in numerical works. We adopt th
upper bound relation suggested by Mei and Black~1969! as

N>M
h

H
(72)

in which N andM represent the maximum indices ofn andm of
the series in Eqs.~24!–~29! and in potential solutions Eqs.~1!–
~3!. Numerical tests were made to check the convergence of th
results by varying the number ofN and M, where we obtain an
accuracy within 0.01% whileN>20.

Results and Discussion

Since the present study is based on small-amplitude water wa
theory, some important restrictions such as deep-water conditio
and linear wave assumption must be held. That is

a0h0!1.0 (73)

and
URNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 623



Fig. 16. Variation of drag force within period (h/H52, b/H

52, h50.25m, h053.2cm, T51.5s, n51.1731026m2/s
)
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Fig. 18. Minimum drag force at fixedh/H (h50.25m, h0

53.2cm, T51.5s, n51.1731026m2/s
)
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layer as shown in Figs. 11–13. These figures indicate veloc
profiles of both potential and viscous models atx50 and at mid-
points of vertical walls within the boundary layers. Note that th
reference boundary layer thickness here is defined as

d5A n

vhh0
(76)

The velocity profiles of the viscous model behave as symme
curves, which agree with Lamb~1945! and the boundary layer
effects are clarified.

Determination of wave forces on the dike plays an importa
role in structure design of the submerged dike. The distributio
of pressures on vertical walls, shear stresses on the top of
dike, and drag forces acting on the dike are investigated. The d
force acting on the dike is contributed mainly by pressure
vertical walls and shear stress on the top of the dike. Fig.
indicates pressure distribution@recall Eq. ~9!# on vertical walls
according to both potential and viscous models. It can be s
from Fig. 14 that pressure distribution is a periodic function
Fig. 19. Ratio of drag force at fixedh/H (h50.25m, h0

53.2cm, T51.5s, n51.1731026m2/s
)

ty

ic

t
s
he
ag
n
4

en
f

time, which performs push-and-pull action on the obstacle. U
like kinematics, the pressure indeed shows deviation between
tential and viscous models.

Fig. 15 shows the shear stress,tyx5m(2fxy2wxx

1wyy)uy52H , above the dike. Therefore there is no doubt that th
kind of force vanished in the potential model while it is propo
tional to the increase of the dike width in viscous analysis. Ref
ring to Fig. 12, we can see clearly how the shear stress chan
sign corresponding to different flow direction.

Finally, drag force, which is the resultant of the above force
is presented in Fig. 16. For potential flow

FD5E
2h

2H

f p
~L !dy1E

2h

2H

f p
~R!dy (77)

while for the viscous model

FD5E
2h

2H

2sxx
~L !dy1E

2b/2

b/2

tyxdx1E
2h

2H

2sxx
~R!dy (78)

where f p5pressure distribution on the vertical wall;sxx

5normal stress on the vertical wall; andtyx5shear stress on the
top of the dike.~PositiveFD points to the right hand side.! We
Fig. 17. Maximum drag force at fixedh/H (h50.25m, h0

53.2cm, T51.5s, n51.1731026m2/s
)



Fig. 20. Maximum drag force at fixedb/h (h50.25m, h0

53.2cm, T51.5s, n51.1731026m2/s
)

lue

f
w
es

ow
ial

90

th
m

Fig. 22. Ratio of drag force at fixedb/h (h50.25m, h0

53.2cm, T51.5s, n51.1731026m2/s
)
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may see from Fig. 16 that the potential model holds higher va
compared to the viscous model for the maximum~the peak!,
while it reveals contradictory values for the minimum~the
trough!.

By varying dike widthb or water depth above the dikeH, the
behaviors of extreme drag forces~e.g., the peak and the trough o
Fig. 16! are delivered in Figs. 17–22. From Figs. 17 and 18
find that whenh/H52, the potential model always overestimat
maxFD , while it usually underestimates minFD . Whenb/H'5
h/H52, the ratio between the two models is the biggest as sh
in Fig. 19. Asb/h51, Figs. 20 and 21 reveal that the potent
model in general underestimates minFD up to about 80% ash/H
becomes larger, while it always overestimates maxFD . When
h/H'12 b/h51, the potential model even overestimates
times maxFD . This is because maxFD of the viscous model al-
most vanishes at the same time. Figs. 17–22 explain clearly
the viscous effect is not negligible when considering the dyna
ics of the problem.
the
Fig. 21. Minimum of drag force at fixedb/h (h50.25m, h0

53.2cm, T51.5s, n51.1731026m2/s
)
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Conclusions

In the present study, not only the potential model is solved by t
conventional method but also the viscous model is handled
applying newly derived orthogonal inner products. The concept
the orthogonal inner product, which reduces the error of the mi
mal squares method, is valid in viscous flow. It can be furth
extended to become a useful mathematical tool.

The result of this study shows that using potential theory
calculate flow kinematics such as reflection coefficients, over
velocity field, etc., are good enough. However, to understand fl
dynamics, the viscous effect is not negligible.

The present investigation may provide useful results for e
perimental comparison. It also gives helpful information in dea
ing with computation difficulties such as oscillating free surfac
and near wall grid size.
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Notation

The following symbols are used in this paper:
A0 5 coefficient for incident wave;

Bn , bn 5 coefficient in general solution for region~1!;
b 5 width of submerged dike;

Cm , cm 5 coefficient in general solution for region~2!;
Cr 5 reflection coefficient;

Dm , dm 5 coefficient in general solution for region~2!;
En , en 5 coefficient in general solution for region~3!;

F 5 Froude number;
FD 5 drag force;
Fn 5 coefficient of vertical wall modification for

region ~1!;
f p 5 pressure distribution on vertical wall;

Gn 5 coefficient of vertical wall modification for
region ~3!;

H 5 water depth in region~2!;
OURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2003 / 625



an-

s,

e

s

o-

of
h 5 water depth in regions~1! and ~3!;
P 5 perturbed pressure;
R 5 Reynolds number;
T 5 time period;

Ur 5 Ursell parameter;
a 5 irrotational wave numbers in regions~1! and

~3!;
â 5 horizontal boundary layer thickness factor in

regions~1! and ~3!;
ã 5 boundary layer thickness factor of vertical wall

modification;
b 5 irrotational wave numbers in region~2!;
b̂ 5 boundary layer thickness factor in region~2!;
d 5 boundary layer thickness;
h 5 free surface displacement;

h0 5 amplitude of incident water wave;
h r 5 reflection wave amplitude in region~1!;
n 5 kinematic viscosity;
r 5 density of fluid;

s i j 5 perturbed stress;
t i j 5 shear stress;
f 5 irrotational potential;
w 5 rotational potential; and
v 5 angular frequency.
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