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Abstract: The analytic solutions of inviscid and viscous water waves passing over a submerged rectangular dike are investigated. Owing
to the fact that the orthogonality of eigenfunctions is invalid for viscous wave problem, two newly developed orthogonal inner products
are applied to reduce the mathematical difficulty of viscous wave problem. Both inviscid and viscous water wave solutions are obtainec
under the assumption of linear water wave without separation. It shows that two solutions have no significant kinematic difference but the
viscous contribution of dynamic effect is not negligible. Beside giving a better theoretical approach, which reduces the error of the
conventional minimal squares method, the result of the present analytical solution can be used to quantitatively evaluate the correctne:
of experiments and also provides helpful information such as near wall boundary layer thickness and oscillating free surface for compu:
tational use.
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Introduction to deal with this kind of problem; however, although their ap-
proach is convenient to use, the error cannot be explained clearly.
The problems of propagation of water waves over a submerged In the present study, new orthogonal inner products are devel-
obstacle have been studied theoretically by many investigatorsoped to overcome the nonorthogonal eigenfunction problem. The
within the framework of linearized potential theory. Since the Present orthogonal inner product is the extension of the inner
submerged structures are usually used to reduce the transmissiofroduct of Rhodes-Robinsoi1979, which dealt with capillary
wave, these former studies are mainly concerned with determin-gravity waves in finite water depth. This concept was also
ing the reflection and transmission properties for a given incident adopted by Sahoo et al2000 to study the problem of a zero
wave. Examples of the well-known investigations are Newman thickness floating elastic plate acted by some external forces.
(1965, Miles (1967, and Mei and Black1969.
The above researches have good performances under the as-
sumption that the fluid is ideal. However, the nature of the flow Potential Flow Solution
around the submerged obstacle is expected to have a viscous ef-
fect. According to the constitutive law of Newtonian fluid, the Because there are many former studies of potential flow solution,
viscous stress is caused since the velocity gradient occurs by theve hence only give a brief summary.
sudden change of the vertical cross section of water due to the The fluid domain of the present analysis is divided into three
submerged obstacle. Therefore, dynamic effects can no longer b&€gions by interfaces= *b/2 as shown in Fig. 1. With the usual
predicted accurately by potential theory. It would be interesting to assumptions of a perfect fluid and small amplitude waves, the
investigate the wave characteristics over the submerged obstacle
by using the viscous flow approach, but this kind of analytical
solution, to the authors’ knowledge, is seldom found due to math-
ematical difficulties. The orthogonal solutions of potential flow no
longer existed because of complex wave numbers caused by vis:
cous effect. Lo and Le€000 adopt the minimal squares method
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Fig. 1. Water wave passing over submerged dike
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Fig. 2. Horizontal boundary layer only

Fig. 4. Real boundary layer

velocity potential,®(x,y,t)=d(x,y)-e ! is necessary to sat-
isfy Laplace’s equation, the linearized free-surface condition of

water wave, and the no-flux bottom boundary condition. Using Governing Equations
the eigenfunction expansion similar to that in Ou Yang et al.

(1997, we find that the spatial velocity potentiall), after ap- The fluid occupies the same regions as above. Getting rid of the
plying free surface and bottom boundary conditions, can be ex-time dependence fact@ ', with  as the angular frequency,

pressed as the time-independent perturbed velocity of the water wave can be

Viscous Flow Analysis

. divided into an irrotational part and a rotational part by Helm-
. ) holtz’s theorem as follows:
S0y = TR et 3 b, () e |
n=0 vih=veh+vxyd (7
2 ~ ' Thus, the continuity equation becomes
OP0Y)= 2, [6nCOSBrX) + A SINBrX) [Fn () T2)=0 @
o and the linearized momentum equation turns into
(3) - o . .
¢(x,y) nzo ene'“nf, 3 —ipwdi+Pi)=0 9)
where —ipa(VXUD)=pv2(VxUul)) (10)
costia,(y+h)) Since we consider the two-dimensional Cartesian coordinate
N coshann) (4) problem, the vector potentia){)) can be written ag))=¢We,
" (see Morse and Feshbach 1978, p. )78&erefore, Eq(10) can
cosiBn(y+H)) be in the form
T CosBH) ©) Do
m V2‘P(J)+kiq}(1>:0 (11)
with m being the incident wave amplitude. The propagating and

- where the constant is
evanescent wave numbersg(Bo) and a,=(Bm=) satisfy the
usual dispersion relations

w?=ga,tantayh),
w?=gBmtanhBy,H) Nn.m=0,1,2... 300

D Polential ( positive)
It can be readily shown that the wave numbers above are either
real or pure imaginary, hence the corresponding eigenfunctions
are orthogonal and the solution forms are complete. When bound-
ary conditions of the continuity of normal velocity and pressure
on x=*Db/2 are used, and the orthogonal conditions are applied,

the coefficientd,,, c,,, d,,, ande, can be expressed as a matrix
problem to be solved.

(6)

[m] Viscous ( posilive)
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Fig. 5. Relationships of wave numbers between two modald(
Fig. 3. Vertical boundary layer only =2,b/H=2,h=0.28", 1,=3.2™ T=1.5)
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Fig. 6. Reflection coefficient of potential mod&) Mei and Black(1969; (b) present study

ko=~ (12)

Boundary Conditions

The dynamic boundary conditions on the free surface(, are
the continuities of normal and tangential stresgeg., see Aris
1962

—iwdpD+2v(dY)—ed)+gn=0 (13)

203~ e toyy=0 (14)

The conventional kinematic boundary condition on the free sur-

face,y=0, is

o) —¢=—ion (15)

Regarding the bottom boundary conditions, the no-slip condi-
tion should be satisfied, thus we get

o +¢})=0 (16)
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Fig. 7. Approach by Mei and Black1969

¢y —oy)=0 (17)

for y=—h at regions(1) and(3) and fory=—H at region(2).

At two regional interfacesx= *=b/2, the continuities of(a)
normal fluid stress(b) normal fluid velocity, andc) the no-flux
condition on the two vertical walls are considered. All of them are
listed sequentially as follows:

At interfacex= —b/2

—i0d M+ 204~ 0lg) = —iwd@+2v(byT) - 0l)

—H=<sy=<0 (18)
Ol +e =bP+e?, —H=y=0 (19)
o +eV=0, —h<y<-H (20)

At interfacex="hb/2

—i0b@+20(6) =~ ¢i)) = —i0d@+2v(¢ ) - ¢l)

~H=<y=<0 (21)

b +eP=¢P+e?, —H<y=<0 (22)

b +eP=0, —h<y<-H (23)

Method of Solution

Solution Forms

To solve Eqs(8) and(11) with the conditiong14), (16), and(17),

once again, the eigenfunction expansion method is used. These
spatial potentials in each region can be found as

dB(x,y) =Age'** cosiagy) + Py sinagy)]
+> Bpe @[ cosiayy)+ P, sinh(ayy)] (24)
n=0

eD(x,y)=Age! X[ Qoetoy TN + Rye~ oy +M]

©

+E Bne_i“nX[Qne&n(y+h)+Rne_&n(y+h)] (25)
n=0
b (X,y)= >, (CpnCOLByX)+ Dy SiN(B X))
m=0
X [coSHBmy) + P sinh B ny)] (26)
¢ 2(x,y)= >, (CpCOZ B rX)+ Dy Sin(B X))
m=0
><[Qmeém(y+H)+~Rme*ém(y+H)] (27)

OO0xy)= 2 Enel[costiany)+ Py siniey)]  (28)

0.18 — Potential
R — — — -~ Viscous

0.]5 Ll I t ' 1 I 1 l )
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Fig. 8. Difference of reflection coefficient between two modeig€3.2™, T=1.5, v=1.17x10"© "
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Fig. 9. Surface elevation and velocity field of potential model =2, b/H=2, h=0.28", 1,=3.2", T=1.5)

” , . ) S,=R2cosh®,+ 2F2Q A, sinhQ,— 4F2020,,sinh®, (34)
I(xY)= 3, Epei [ Queiny M+ Rye M) (29) T
n=0 whz
where R=—" (35)
&2=a2-k2, Rea,) <0 (30)
wh
P,=F?A[2Q2coshQ,— A, cosh® 1}/{Q,S.} (31) F:ﬁ (36)
g
Q=€ {—R2Q, coshQ,—F?A2sinhQ,, Q h (37)
n=— ®n
+2F20,0 ,[e%A,— 202 coshQ),]}/{—2i®nS,} & =4.h (39)
n— %n
(32) ,
A,=202-iR (39)

R,=e%{R2Q), coshQ,+ F2AZsinhQ,,
) 5 o ) and wave numbers,,, solved by the combination of Eq&lL3)
+2F0,0,[A,—2Q7 coshQe™]}{-2i0,S,}  (33) and (15), are the roots of the following equations:

_ ) tanh(a,h)  F?
F2 coshl{aph) — (aph)sinh aph) + (e sh)[ (o) cosia,h) — F2 smk(anh)]T 4= (ayh)? cost{aph)

_F? s N tanh(aph)  F? hya N F? S o tanh(aph)  F? e L
—8i ﬁ(an ) Slnr((xn )T_S@(an ) COSI’((Xn )+8@(0‘n ) SInI’(OLn )THh_4I ﬁ(an ) m
8 - h 471 =0 0
T8 gz () Cosra ) = (40)
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Fig. 10. Surface elevation and velocity field of viscous model{=2, b/H=2, h=0.29", 1,=3.2", T=15, v=1.17x10° /S)

For the shallow region, regiof?), the quantityB,, Bm, Pm., Referring to Rhodes-Robinson’s treatment, the sets of func-

Q... andR,, are defined similarly by replacing and«,, with H tIOI’IS,. whlph express the dependence on depth in the separated

and,, in Egs. (30)—(40). functions in region(1) and (3), can_be ertte_n as the following
Paying attention to the terms involving the coefficiént ap- boundary-value problems. Governing E§) with boundary con-

pear in the first term of the right hand side of E¢&4) and(25), ditions (17) and the combination of Eq¢13) and (15) gives

they actually stand for the given incident wave. The incident yg,aﬁynzo (42)

wave can be solved by Eq&) and (11) with boundary condi- A

tions (13)—(17). A, can be obtained as Y (—h)=ia,Y,(—h) (43)

_whng R o(—io+2va?)Y,(0)+igY/(0)

Ag=— . 41
7 iF?2 R+2i02+20,0,[e®Q,—e Ry] (41)

by substituting the solution forrfthe first term of the right hand = =9 Yn(0) +2ivea,Yy(0) (44)

side of Eqgs.(24) and(25)] into Eq. (15). The constany is the While governing Eq(11) with boundary condition$16) and(14)
incident wave amplitude a¢=0 and the propagating wave num- gives

ber a is one of the roots of Eq40) whose real part is domi- ?ﬁ_(aﬁ_ki)\?n:o (45)
nated.

The unknown coefficient8,, C,,, D,,, andE, now will be \A(r’](—h): —iapYn(=h) (46)
solved by interface conditiond8)—(23). One can notice that the ) - .
orthogonality of the eigenfunctions no longer exists because of (ki —2a7)Yn(0)=2ia,Y)(0) (47)

wave numbers being complex. where

Y,=cos +P,sin 48
Orthogonal Inner Products " Hetny) P sinfiec,y) (48)

To investigate the surface tension effect of water waves, Rhodes-stand for the irrotational parts, and

Robinson (1979 rewrote the governing ordinary differential ¢ = Qe LR e~y +h) (49)
equation and its corresponding boundary conditions, in water noen n
depth direction, as the form of a typical Sturm—Liouville problem are the solutions of rotational potential. From the above modified
with modification then developed a so-called orthogonal inner Sturm—Liouville problems, Eq$42)—(44) and(45)—(47), we can
product to overcome the predicament resulting from the nonor- define the orthogonal inner product of irrotational potentials for
thogonality of the eigenfunctions. region (1) and, similarly, for region3) as
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(Ym,Yn) (Y. ¥n)
0
f ny)Ya(y)dy, m=n J Y Sy Vu(y)dy, m=n
- —H
0 4y ) 0 _ ~ 4y
f Ym(Y)Yn(y)dy+ 5(—“») f Ym(y)Yn(y)dy+E(—iw)
{7 —-H
- ola,—ala -
_ nmoTmIN Gy — BBmBmBn~
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2 g vr—py— SRy —h 2l | Pme Bor
+0Lr2nfaﬁ ;m m n(i )70tin n m(i ){, m#n B B [B R, Y (_H) ER Ym( H) m=£n
(50) (51)

Of course, by the same procedures we can obtain the orthogonal
inner product of irrotational potential for regid@) as with
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Fig. 12. Velocity profile within boundary layer of viscous modél/H=2, b/H=2, h=0.28", 1,=3.2™, T=15, v=1.17x10"° ")
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%1076
Y= +Ppsi 52 Oy &
m=COSHBrmy) + Pro SinA( B ry) (52) f Y () Vly) dy
Then, it is easy to find that fan#n h
(Ym,Yn)=0 (53) (?m,Yn>, m=n
(Y, Yn)=0 (54) b
which indicate that the set of functiod¥,;n=0,1,2, ...} and -5 (i)

{Vm;m=0,1,2, ...} appear in Eqs(24)—(29), are orthogonal
with respect to the inner product defined by E(0) and (51).
Egs.(50) and(51) can also be written as

0
fﬁhYm(y)Yn(y) dy

[ (Ym,Yn), m=n
4v( i)
——(-iw
g
:< a?a,—ala
n-m m-n
Y (—h)Y.(—h
(e ed—a) MYl
2 &"‘R Y'(—h &nRY’ h +
\ (erni(xﬁ am m n( ) o n m( ) ’ m+n

(50)
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- Bﬁé’m_Bann ~

* BupeZ—p?) Yn(~HYR(-H)
5 (B o B,
*m mRmYn( H) ERnYm( H) , m#n
(51)

From Eqs.(50') and(51’), we find that we need to perform inte-
gration only whenm=n, while whenm=n, although it is not
zero as the minimal squares method usually assumed, the integra-
tion is still easy to obtain by applying the present orthogonal inner
product method. By looking into the inner products above, we can
realize that terms beside the integrals in EG®) and (51) are
errors of the minimal squares method applied by Lo and Lee
(2000. This indicates that the present orthogonal inner product
approach can reduce the error of the minimal squares method.

At interfacex= —b/2, applying Eqs(51’) to Eq.(18) and Eq.
(50") to Egs.(19) and(20), we have
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©

0 R _ ~ . .
A { —iagy: J hYnYﬁdy+&n'Anﬁ] elan'blan_F EO {Bmtar(BmX)’th_Bm'Hmﬁ}COlez' Bm)Cnm
n= — =

+ E {_BmCOt(BmX)'fmh_ém'ﬁmh}Sim_b/Z' Bm)Dm
m=0

(56)

0
[—iao-f hYoYﬁdy—&o-Aoa]e‘“O‘b’ZAo, n=012...

At interfacex=Db/2, applying Eq.51') to Eq.(21) and Eq.(50") to Egs.(22) and(23), we have
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[
» . o plete viscous wave solution, which well approximates the real
2 {=Bmtanb/2-B) - I'mia— Bm: U matcogb/2- B)Cpy viscous boundary layer shown in Fig. 4 schematically Ras
m=0

>1.
The modificationsp™ and ) which still satisfy Eq.(11),

R o _ I " _h
+mE:0 (=B cot(0/2- Br) - it B i SIN(0/2- B 1) Dy are used to fulfill no-slip conditions at= *b/2

oM-6M=0, —hsy<-H (66)
- 0 - (3 _s@_p — _
-2 (_i‘*n' f YnYﬁdy—&n-Anﬁ] el P2E, =0 ¢y $7=0, ~h=y=-H (67)
n=0 h Hence, the solution form concerning the modification of vertical
A=012... (58) wall boundary layer is suggested to be
where " - b
. Sy, = 2, Foe S0 Lsin(qy) + Py coshany)]
an:J YnYmdy (59)
- —h<y<-H (68)
~ A = )
Aom= f W a W ©0 600y.0=3 G PR sinhay) + Py costiany)],
n=
_ o ¥V —h=<y=-H (69)
1_[nm_J‘ —dy (61) ~2 2.2 . .
-H B, wherea;=a,+k;, Ref,)>0. The solutions are easily found as
0 L i :
o= J YoYmdy (62) i &—:(Ane( en)/24 Belben?), n=0
—H Fn= (70)
. S0 o a2
oy, |5, Beem T n=1
Anm:f " a dy (63)
- 03 .
B Gp=i a—“ E,elben/2 (71)
. 0 Yo Ym "
= = dy (64) from Eqgs.(66) and (67).
—h o As we may see, the vertical wall modification certainly brings
and an extra constraint dR>1 to Eqs.(24)—(29). However, this con-
- - _ . straint is satisfied most of the time because the value of water
Ym=QuefnV*H + R e Bnly+H) (65)  viscosity usually is very small.
By applying Egs.(55-(58), B,, C,,, D,,, andE, can be ob-
tained.

Aspects of Numerical Computation

Vertical Wall Modification

. . oo Wave Numbers
Although viscous effect on the vertical walls of the dike is not so

important in considering the dynamic result for structure design Looking back on the dispersion relati¢40), we can see that it
such as the drag force acting on the dike, in order to describe thereveals that the first line of the equation is the same as the con-
flow kinematics near the vertical walls correctly, viscous flow ventional dispersion relatiof6), the second line is small due to
modifications near the vertical walls are proposed. that|&,h|<1, and the remaining is also not significantRs 1.

It is easy to understand that under the conditiorRef1 [see Thus the other terms beside the first line could be regarded as the
Eg. (35)] the above viscous wave solution can be treated as perturbation owing to the viscous effect and the roots of (E6)
equivalent to Fig. 2 sketchmatically. Therefore, by adding a ver- can be obtained by using the Newton—Raphson method with
tical wall modification indicated as Fig. 3, we may have a com- wave numbers of the potential analysis as the initial guesses when
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Fig. 15. Shear stress distribution on top of dike/H=2, b/H=2, h=0.29", n,=3.2" T=15, v=1.17x10"° /5)

R>1. The relationship of wave numbers between two theories, U,<1.0 (74)

for the case ofh/H=2, b/H=4, n,=3.2", and T=1.5, is , i

shown in Fig. 5. whereU, is the well-known Ursell parameter, defined as
oMo

Terms of Infinite Series Ut agh)? (7%)

Truncating the summation of an infinite series of each expressionfFurthermore, althougR>1 is required for vertical wall modifi-
for the solution form is needed in numerical works. We adopt the cation, the motion is considered as laminar flow on|y and the

upper bound relation suggested by Mei and BI&t869 as occurrence of separation is not allowed in the present study.
The reflection coefficientC,=|m, /mo|, is most interesting to
N=M q (72) previous studies of potential waves. Fig. 6 shows the oscillatory
nature of the reflection coefficient resulting from the interaction
in which N andM represent the maximum indices wfand m of between the two ends of the obstacle. Our potential model’s result
the series in Eqs.24)—(29) and in potential solutions Eq$l)— agrees with that of Mei and Bladld969. Note that in Mei and

(3). Numerical tests were made to check the convergence of theBlack (1969, variational method is applied, and the original in-
results by varying the number &f and M, where we obtain an  cident wave is split into a couple of symmetric and antisymmetric
accuracy within 0.01% whilé&=20. waves as illustrated by Fig. 7.
The difference ofC, between potential analysis and viscous
one is presented in Fig. 8. It is clear tlt of the viscous model
Results and Discussion is a little smaller but very close to the one of the potential model.

The reason for the potential model being overestimated is due to
Since the present study is based on small-amplitude water wavethe influence of the viscous effect.

theory, some important restrictions such as deep-water condition The entire velocity field and surface elevatiorcall Eqs.(7)

and linear wave assumption must be held. That is and (15)] of potential and viscous models are shown in Figs. 9
<10 (73) and 10. There seems to be no significant kinematic difference
oMo~ between the two analyses. However, viscous effects are obviously

and pronounced while focusing on the scopes within the boundary
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Fig. 18. Minimum drag force at fixedh/H (h=0.28", mq

Fig. 16. Variation of drag force within period WH=2, b/H ey
=3.2" T=15 »=117x10°"")

=2, h=0.28", 1,=3.2" T=1F5 v=117x10 ")

time, which performs push-and-pull action on the obstacle. Un-
like kinematics, the pressure indeed shows deviation between po-
tential and viscous models.

Fig. 15 shows the shear stressry,=w(2dyy— @xx
+¢yy)ly— -1, above the dike. Therefore there is no doubt that this
kind of force vanished in the potential model while it is propor-

[ v tional to the increase of the dike width in viscous analysis. Refer-
whmg (76) ring to Fig. 12, we can see clearly how the shear stress changes
sign corresponding to different flow direction.

Finally, drag force, which is the resultant of the above forces,
is presented in Fig. 16. For potential flow

layer as shown in Figs. 11-13. These figures indicate velocity
profiles of both potential and viscous modelxat0 and at mid-
points of vertical walls within the boundary layers. Note that the
reference boundary layer thickness here is defined as

The velocity profiles of the viscous model behave as symmetric
curves, which agree with Lamil945 and the boundary layer
effects are clarified.

Determination of wave forces on the dike plays an important Fo— j
role in structure design of the submerged dike. The distributions D™
of pressures on vertical walls, shear stresses on the top of the .
dike, and drag forces acting on the dike are investigated. The drag”hilé for the viscous model
force acting on the dike is contributed mainly by pressure on ~H b/2 —H
vertical walls and shear stress on the top of the dike. Fig. 14 FD:f _0§<Lx)dy+f Tyxdx+f —oRdy (78)
indicates pressure distributidmecall Eq.(9)] on vertical walls bl h
according to both potential and viscous models. It can be seenwhere f,=pressure distribution on the vertical walky,
from Fig. 14 that pressure distribution is a periodic function of =normal stress on the vertical wall; amgl= shear stress on the

top of the dike.(Positive Fp points to the right hand sideWe

—-H

f-dy+ f fRdy (77)
—h

—-H

—h
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Fig. 17. Maximum drag force at fixedh/H (h=0.28", 1, Fig. 19. Ratio of drag force at fixedh/H (h=0.28", g
m2 IT]2
=3.2M T=15 »=117x10"°"") =3.2" T=15 »=117x10°"")
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Conclusions
may see from Fig. 16 that the potential model holds higher values
compared to the viscous model for the maximitne peak, In the present study, not only the potential model is solved by the
while it reveals contradictory values for the minimufthe conventional method but also the viscous model is handled by
trough. _ _ _ _ applying newly derived orthogonal inner products. The concept of
By varying dike widthb or water depth above the dik¢, the the orthogonal inner product, which reduces the error of the mini-

behaviors of extreme drag forcésg., the peak and the trough of mal squares method, is valid in viscous flow. It can be further
Fig. 16 are delivered in Figs. 17—22. From Figs. 17 and 18 we extended to become a useful mathematical tool.

find that wherh/H =2, the potential model always overestimates The result of this study shows that using potential theory to
maxFp, while it usually underestimates . Whenb/H~5 calculate flow kinematics such as reflection coefficients, overall
h/H=2, the ratio between the two models is the biggest as shownvelocity field, etc., are good enough. However, to understand flow
in Fig. 19. Asb/h=1, Figs. 20 and 21 reveal that the potential dynamics, the viscous effect is not negligible.

model in general underestimates it up to about 80% ak/H The present investigation may provide useful results for ex-
becomes larger, while it always overestimates fgx When perimental comparison. It also gives helpful information in deal-
h/H~12 b/h=1, the potential model even overestimates 90 ing with computation difficulties such as oscillating free surface
times max~y. This is because ma, of the viscous model al-  and near wall grid size.

most vanishes at the same time. Figs. 17—-22 explain clearly that

the viscous effect is not negligible when considering the dynam-

ics of the problem. Acknowledgment
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] b/h=1.0
0.0 - Notation

Potential
— — — - Viscous

The following symbols are used in this paper:
-~ A, = coefficient for incident wave;
B,, b, = coefficient in general solution for regiqd);
b = width of submerged dike;
Cm. Cm = coefficient in general solution for regidR);
C, = reflection coefficient;
D, d, = coefficient in general solution for regiaR);
E,, e, = coefficient in general solution for regidi);
F = Froude number;
Fp = drag force;

-0.3

Mini. F, / [0.5 x v (b’ -H")]
(=
N
1

<0.3

0.4 L . N U F, = coefficient of vertical wall modification for
1 4 7 10 13 16 . )
h/H region (1);
f, = pressure distribution on vertical wall;
Fig. 21. Minimum of drag force at fixedb/h (h=0.25", m, G, = Coe_fﬂC'(Z;‘t of vertical wall modification for
region(3);

—gom T - —6m/
=3.2" T=15, v=117x10 *") H = water depth in regior2);
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h = water depth in region&l) and (3);
P = perturbed pressure;
R = Reynolds number;
T = time period;
U, = Ursell parameter;
o = irrotational wave numbers in regiori$) and
(3);
& = horizontal boundary layer thickness factor in
regions(1) and(3);
a = boundary layer thickness factor of vertical wall

modification;
= irrotational wave numbers in regiq®);

B

B = boundary layer thickness factor in regi®;
8 = boundary layer thickness;

m = free surface displacement;

no = amplitude of incident water wave;
n, = reflection wave amplitude in regiaf);
v = kinematic viscosity;

p = density of fluid;
oj; = perturbed stress;

7 = shear stress;

¢ = irrotational potential;

¢ = rotational potential; and

o = angular frequency.
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