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Abstract

This paper is aimed at developing a mathematical model for the deformation behavior of a rock joint that explicitly

accounts for the effects of joint surface topography. The present work is focused on rock joints with triangle-shaped

regular asperities. Specimens of artificial rock joint with triangle-shaped asperities were made of simulated rock material

and tested in the laboratory. Experimental results are examined to identify three mechanisms that influence the de-

formation of a rock joint: sliding, separation of asperity contact-faces, and shear fracture of asperities. A modeling

methodology is then described and the behaviors of an asperity contact-face, including separation, sliding and shear

fracture are discussed. The stress–deformation relationship of a rock joint is subsequently derived and the model

performance is evaluated by comparing the predicted results from the derived model and the measured results from

experiments.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mechanical behavior of rock joints is complex and influenced by a great variety of factors, such as
rock elastic properties, mineral friction, surface adhesion, surface roughness (i.e. topography), and presence
of fluids and debris at the interface. In this paper, we focus on the influence of surface roughness of a rock
joint on its mechanical behavior. A number of empirical equations have been developed to correlate the
roughness coefficient to the shear strength of a rock joint (e.g., [1–3]). However, it is desirable to model the
joint behavior directly from mechanics point of view considering the effects of surface topography. Along
this line, one of the earlier attempts is by Greenwood and Williamson [4], who derived a model for the
interface behavior between a rough surface and a rigid smooth plane, considering the elastic deformation of
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asperity contact-faces. The concept was later extended to study the interface behavior of two rough surfaces
under normal loads (see [5–8], among others). Further, the shear behavior of an interface of two rough
surfaces was studied considering only the elastic deformation of asperity contacts [9–11]. More recent studies
have considered the sliding at asperity contact with the aim of obtaining shear strength of contacting rough
surfaces [12–15]. Yoshioka [16] provides a review of some of the recent micromechanical methods.
For all abovementioned models, the plasticity of asperity contacts has been considered in the context of

sliding; the fracture of asperities is not considered. However, for a brittle and highly fractured rock mass, it
is often found that the fracture of asperities has significant effects on its shear strength and dilatancy be-
havior. The present work aims to develop a mathematical model that explicitly accounts for the influence of
joint surface topography on the deformation and strength behavior of rock joints. Specifically, this in-
vestigation is focused on rock joints with a simple surface topography so that failure mechanisms and their
effect on deformation and strength can be clearly identified. The simple surface topography of rock joints is
useful to verify the developed methodology before it is extended to more complicated and realistic situa-
tions. For this purpose, instead of using natural rock joints, we manufactured artificial rock joint using
simulated rock material with triangular shaped asperities as shown in Fig. 1. Based on the experimental
results, observations are made to identify mechanisms that have important effects on the deformation
behavior of a rock joint. We then derived the force–deformation relationships of a rock joint, which
considers the observed mechanisms. The model performance is evaluated by comparing the model pre-
dictions and the experimental results.

2. Experiments for joint with regular asperities

In order to have a rock joint with well-defined triangular asperities, the rock joints are simulated in
laboratory. The material is a mix of chalk, sand and water with the ratios 1:0.25:0.85 so that joint surface
topology can be easily controlled and repeated. The mix is filled in a mold. When the specimen is hardened,

Fig. 1. Schematic plot for a specimen with regular asperities.
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it is stored in a room with temperature between 10 and 25 �C and relative humidity between 45% and 50%.
The specimen is ready to use after 6–7 days when its density becomes a constant of 1.07 g/cm3.
According to the results of uniaxial compression tests on cylindrical specimens with 54 mm in diameter

and 150 mm in height, the unconfined compressive strength of the simulated material is 8:45� 0:16 MPa,
the average Young’s modulus is 6500 MPa, and the average Poisson’s ratio is 0.24. The failure envelope
obtained from triaxial tests is shown in Fig. 2. The ratio of compressive to tensile strength rc=rt ¼ 7:9, and
the ratio E=rc ¼ 770. According to the classification method suggested by Deere [17], the simulated ma-
terial is in the category of low strength brittle rock.
Using the simulated material, specimens of three types of interface topography have been made: (1)

h ¼ 0� asperity (smooth interface), (2) h ¼ 15� asperity, and (3) h ¼ 30� asperity, where the base angle h is
the side inclination of the triangle-shaped asperity as shown in Fig. 1b. For each type of specimen, direct
shear tests are performed under five different vertical stresses: 0.1, 0.3, 0.5, 1.0, and 1.5 MPa (see [18]).

2.1. Test results

For rock joints with 0� asperities, the shear stress–displacement curves are shown in Fig. 3. The normal
compression curve is shown in Fig. 4. For rock joints with 15� asperities, the base length of each triangular
tooth is 20 mm and the height is 0.258 mm. Total length of the joint specimen is 100 mm. For h ¼ 15�
specimens, the shear stress–displacement curve are shown in Fig. 5, and the dilation curves are shown in
Fig. 6. For rock joints with 30� asperities, the base length of each triangular tooth is 20 mm and the height
is 0.577 mm. Total length of the specimen is 100 mm. For h ¼ 30� specimens, the shear stress–displacement
curves and dilation curves are shown respectively in Figs. 7 and 8.

2.2. Mechanism observed

2.2.1. Failure mode
Typical failure modes observed from the specimens of the direct shear experiments are shown in Fig. 9.

Four types of failure modes have been observed from these experiments, namely sliding, cut-off, separation
and crushing. The occurrence of the four types of failure mode depends upon the magnitude of applied
vertical stress. Under a lower vertical stress level, sliding occurs accompanied abrasion and wearing during
shear friction between two surfaces. Under a higher vertical stress level, the asperities can be fractured by
shear, which is termed ‘cut-off’ in the subsequent text. After shear fracture of the asperity, sliding takes

Fig. 2. Failure envelope for the simulated rock material.
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place on the cut-off plane. The mechanism of cut-off of asperity provides a major source for shear strength
of interface [1]. As observed by Handanyan [19] and Pereira and de Freitas [20] from their experiments,
asperity breakage could be caused by shear stress as well as tensile stress. Due to tight interlocking of
asperities, tensile cracks may be developed at the base of asperities during shear deformation. As shown in
the case of h ¼ 30� in Fig. 9, small tensile fractures in the direction nearly perpendicular to the surface were
also observed at the base comer of the asperity. However, in our specimens, the surface topology does not
provide a tight interlocking. Therefore, although mixed with small tensile fractures, the asperity breakages
are primarily due to shear fractures.

Fig. 3. Shear stress–displacement curves for joint with 0� asperities.

Fig. 4. Normal compression curves for joint with 0� asperities.
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For cases with low applied vertical stresses (0.1 MPa), specimens failed in frictional sliding (with
abrasion and wearing). For cases with higher applied vertical stress (0.3–1.5 MPa), the asperities of

Fig. 5. Shear stress–displacement curves for joint with 15� asperities.

Fig. 6. Shear dilation curves for joint with 15� asperities.
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specimens were cut-off. The orientation of a cut-off plane a, defined as the angle between the fractured plane
and the horizontal plane, depends greatly on the magnitude of vertical stress. For h ¼ 15� and h ¼ 30�,

Fig. 7. Shear stress–displacement curves for joint with 30� asperities.

Fig. 8. Shear dilation curves for joint with 30� asperities.
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Fig. 9. Failure modes observed in experiments.
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under both ry ¼ 1 and 1.5 MPa, the observed cut-off planes are nearly horizontal. For other magnitudes of
applied vertical stresses, the cut-off planes have different angles. A summary of failure mechanisms and the
angle of asperity contact planes are given in Table 1.
It is observed that the orientation of cut-off plane is nearly horizontal under a higher vertical stress

regardless of the joint topography. Separations were observed at down-slope side of the asperity contacts in
both low and high vertical stresses. Crushing is occasionally found on the tips of asperities.

2.2.2. Shear stress–displacement curve
The shear stress–displacement curve can be characteristically divided into four stages: (1) constant

stiffness, (2) pre-peak softening, (3) peak stress, and (4) post-peak softening. The magnitude of shear-
induced dilation is measured by the dilation angle defined as:

tanw ¼ Dun
Dus

ð1Þ

where Dun and Dus are respectively the normal displacement and the shear displacement in the dilation
curves. The dilation angle w is negative in compression and positive in dilation. Dilation angle is very
small before peak stress. At the post-peak range, the angle of dilation increases rapidly and eventually
becomes a steady-state constant. The steady-state dilation angles are given in Table 2 for various testing
conditions.
The dilation angle, for the case of low vertical stress (0.1 MPa), is equal to the inclination angle of

the asperity because sliding of the two matching asperities causes the dilation. However, for the case of
higher applied vertical stress (0.3–1.5 MPa), the asperity has been cut-off and the dilation angle is equal
to the inclination angle of the cut-off plane of the asperity. It is clear that, the dilation after peak stress in
this case is a result of sliding along the cut-off plane. Therefore the magnitude of dilation angle decreases
with the applied vertical stress on the specimen, following the same trend as the orientation of cut-off
plane. When the applied vertical stress is high (1.0 or 1.5 MPa), the dilation angle is repressed to nearly
zero.

Table 1

Observed failure mechanism and orientations of asperity planes after tests

ry (MPa) h ¼ 15� a (mechanism) h ¼ 30� a (mechanism)

0.1 15� (sliding) 30� (sliding)
0.3 12� (cut-off) 12.4� (cut-off)
0.5 9.7� (cut-off) 8.5� (cut-off)
1.0 ffi0� (cut-off) ffi0� (cut-off)
1.5 ffi0� (cut-off) ffi0� (cut-off)

Table 2

Post-peak steady-state dilation angles obtained from experimental results

ry (MPa) h ¼ 15� dilation angle h ¼ 30� dilation angle
0.1 14.57� (sliding) 30.13� (sliding)
0.3 12.41� (cut-off) 12.40� (cut-off)
0.5 7.1� (cut-off) 8.53� (cut-off)
1.0 Flat (cut-off) Flat (cut-off)

1.5 Flat (cut-off) Flat (cut-off)
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3. Model of an asperity

The surface topography of joints consists of triangle-shaped asperities as shown in Fig. 10. Each triangle
tooth with two side-faces is termed as an asperity in this paper. Each side-face of the asperity is in contact
with a side-face of the matching asperity. Thus two scales of interface are identified: the macroscale in-
terface of joint, and the microscale contact-face of asperity.
In this section, we describe a mathematical model for the behavior of asperity contact-face. At the as-

perity scale, the contact-face model is phenomenological which will be used in a later section to derive the
behavior of joint. For clarity, we define the variables used for the two levels as follows:

(1) Macroscale interface of joint: relative displacements (ux; uy), and surface traction (sx; sy). The subscripts
x and y refer to the global coordinate system.

(2) Microscale contact-face of asperities: relative displacements (uðcÞs ; uðcÞn ), and surface traction (s
ðcÞ
s ; sðcÞn ).

The subscripts s and n refer to the local coordinate system. The superscript c refers to the contact-face
number.

3.1. Asperity contact-face behavior

3.1.1. Normal compression
For the closure of an asperity contact-face due to a compressive stress in the normal direction, we use the

following hyperbolic stress–displacement relationship proposed by Bandis et al. [2]:

uðcÞn ¼ rðcÞ
n V ðcÞ

m

AðcÞkðcÞni V
ðcÞ
m þ rðcÞ

n

ð2Þ

where uðcÞn is the normal compressive displacement for the contact-face, rðcÞ
n is the normal compressive stress,

V ðcÞ
m is the maximum closure of the joint, AðcÞ is the area of asperity contact-face, and kðcÞni is the initial normal
stiffness for the contact-face, which is of the Winkler type with a unit of F/L3. The contact force f ðcÞ

n is equal
to AðcÞrðcÞ

n . The superscript c refers to the particular asperity contact-face.
Written in an incremental form, the normal tangential stiffness kðcÞn of the asperity contact-face defined

in

Df ðcÞ
n ¼ AðcÞkðcÞn DuðcÞn ð3Þ

Fig. 10. Schematic plot for triangle-shaped asperities.
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can be derived from Eq. (2) as a function of the contact-face displacement uðcÞn given by

kðcÞn ¼ kðcÞni V
ðcÞ
m

V ðcÞ
m � uðcÞn

ð4Þ

It can be seen from Eq. (3) that initially when uðcÞn ¼ 0, the value of the normal tangential stiffness kðcÞn ¼ kðcÞni .
When the displacement uðcÞn approaches to the maximum closure of the joint V ðcÞ

m the value of kðcÞn approaches
to infinity.

3.1.2. Tangential shear
The shear stiffness kðcÞs of an asperity contact-face is defined in the following expression:

Df ðcÞ
s ¼ AðcÞkðcÞs DuðcÞs ð5Þ

where DuðcÞs is the tangential displacement for the contact-face. The shear stiffness is a function of normal
stress of the contact-face, given by

kðcÞs ¼ kðcÞsi

rðcÞ
n

Pa

� �b

ð6Þ

where kðcÞsi is the reference shear stiffness defined as the shear stiffness of the contact-face under the condition
that the normal compressive stress rðcÞ

n is equal to the atmospheric pressure Pa. The exponent b is a constant.
Frictional sliding is governed by the surface frictional angle of the contact-face /s, given by

sðcÞs

rðcÞ
n

6 tan/s

When the ratio of the interfacial stress exceeds the frictional resistance, sliding occurs and the tangential
shear stiffness kðcÞs ¼ 0.
When a contact-face is in compression (rðcÞ

n P 0), both the normal and shear stiffness can be evaluated as
described above. After separation of an asperity contact-face, the compressive stress rðcÞ

n is null and both the
normal and shear stiffness become zero.

3.2. Sliding of asperities

Three types of failure modes for matching asperities are considered: frictional sliding, contact separa-
tion, and asperity cut-off. The modes of asperity crush or compressive yielding are found only occasionally
on the tips of asperities, thus are neglected for the rock joint modeling in this paper.
Sliding occurs between two matching asperities when the shear force exceeds the frictional resistance on

the contact-face. At the event of sliding on the up-slope face together with a separation of the down-slope
face, the shear strength of the asperity can be determined by

sx ¼ ry tanð/s þ nÞ ð7Þ

where /s is the surface friction angle of the contact-face, n is the up-slope angle. In the case of triangle-
shaped asperities as shown in Fig. 10, n ¼ h before cut-off, and n ¼ a after cut-off. Therefore base angle of
asperities is an important factor of the shear strength.

3.3. Cut-off of asperities

Cut-offs of asperities are frequently observed, which have significant effects on the strength and therefore
is considered in the present model.
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3.3.1. Determination of cut-off plane
In order to determine the orientation of cut-off plane, we adopt the method of limit equilibrium, which has

been traditionally used in soil mechanics for the determination of sliding surface of an unstable slope. The
process is to select the most critical cut-off plane from a number of trial planes. The hypothesis is that the
most critical plane corresponds to the one that satisfies the cut-off criterion. The procedure is given below.
Consider, for example, an asperity with a base angle h as shown in Fig. 10. The up-slope area Að1Þ is equal

to the down-slope area Að2Þ and the base area A ¼ ðAð1Þ þ Að2ÞÞ cos h. After the occurrence of a cut-off plane
with angle a, surface topography of the asperity is altered. The new up-slope contact-face is and the new
down-slope contact-face is B (see Fig. 10), given by

L ¼ A sin h
sinðh þ aÞ ð8Þ

B ¼ A sin a
sinðh þ aÞ ð9Þ

Let ðf ð1Þ
n ; f ð1Þ

s Þ and ðf ð2Þ
n ; f ð2Þ

s Þ respectively be the normal and shear forces on the up-slope (left side) and
down-slope contact-face (right side) of the triangle-shaped asperity. The forces can be transformed into
ðf ð1Þ

x ; f ð1Þ
y Þ and ðf ð2Þ

x ; f ð2Þ
y Þ, which respectively are the forces on the left side and right side-faces of the tri-

angle-shaped asperity. The total forces for this asperity ðfx; fyÞ are

fx ¼ f ð1Þ
x þ f ð2Þ

x ; fy ¼ f ð1Þ
y þ f ð2Þ

y ð10Þ

It is noted that, for the joint with regular asperities, the tractions on the joint surface sx ¼ fx=A and
ry ¼ fy=A. After cut-off, the down-slope contact-face area has reduced from Að2Þ to B (see Fig. 10), thus the
force on the down-slope face is reduced to ðf ð2Þ

x ; f ð2Þ
y ÞB=Að2Þ. Based on force equilibrium, the force vector on

the cut-off plane, f ða1Þ
x , f ða2Þ

y can be obtained by subtracting the down-slope force from the total force

f ða1Þ
x ¼ sxA� f ð2Þ

x B=Að2Þ

f ða1Þ
y ¼ ryA� f ð2Þ

y B=Að2Þ ð11Þ

The forces ðf ða1Þ
x ; f ða1Þ

y Þ can then be transformed to the local coordinate system to obtain the normal and
shear forces, ðf ða1Þ

n ; f ða1Þ
s Þ, on the cut-off plane. Assuming the shear strength of the material against cut-off is

determined by a Mohr–Coulomb criterion with cohesion c and frictional angle / the shear force permissible
on the cut-off plane, Ts, is given by

T ða1Þ
s ¼ sða1Þs L ¼ ðcþ rða1Þ

n tan/ÞL ð12Þ

When the shear force reaches the permissible limit on a potential cut-off plane, (i.e. f ða1Þ
s ¼ T ða1Þ

s ), the cut-off
is assumed to occur.
In Eq. (11), the magnitudes of forces on down-slope face, f ð2Þ

x and f ð2Þ
y depend upon the relative contact

stiffness of up-slope and down-slope faces. Since the contact stiffness is non-linear and stress-dependent as
described in Section 3.1, the magnitudes of f ð2Þ

x and f ð2Þ
y are generally different for each loading case and

impossible to determine without detailed analyses. However, if separation of the down-slope face has al-
ready occurred, the values of f ð2Þ

x and f ð2Þ
y are zero. In this situation, the critical cut-off plane and the shear

force required for cut-off can be solved without detailed analyses. The separation of down-slope face
usually occurs under a large shearing deformation, thus the shear strength determined in this condition
corresponds to the residual shear strength, which may be different from the peak strength.
For the case of separation of the down-slope face, f ð2Þ

x and f ð2Þ
y are zero in Eq. (11), thus the force vector

on the cut-off plane are
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f ða1Þ
x ¼ sxA; f ða1Þ

y ¼ ryA ð13Þ

which can be converted to obtain the shear and normal forces, f ða1Þ
s and f ða1Þ

n , in the local coordinate system
on the cut-off plane

f ða1Þ
s ¼ ðsx cos a � ry sin aÞA
f ða1Þ
n ¼ ðsx sin a þ ry cos aÞA

ð14Þ

where the vertical stress ry is positive in compression.
Using Eqs. (12) and (14), the ratio of the applied shear force over the allowable shear force F ¼ f ða1Þ

s =T ða1Þ
s

on the cut-off plane is

F ¼ ð�sx cos a � ry sin aÞA
sða1Þs L

ð15Þ

Substituting the ratio of A=L in Eq. (8), the following equation can be obtained:

F ¼ ð�sx cos a � ry sin aÞ
sða1Þs L

sinðh þ aÞ
sin h

ð16Þ

If the value of shear strength is expressed in the form of Mohr–Coulomb criterion, sða1Þs ¼ cþ rða1Þ
n tan/,

note that rða1Þ
n ¼ f ða1Þ

n =L, then

F ¼
sx
c
cos a � ry

c
sin a

sin h
sinðh þ aÞ þ

sx
c
sin a � ry

c
cos a

� �
tan/

ð17Þ

As an example, we consider a rock joint with regular asperities similar to that in Fig. 10 with base angle
h ¼ 30� and friction angle / ¼ 10�. The rock joint is under a constant vertical stress ry ¼ 0:2c and an
increased shear stress sx. Assuming the trial cut-off angle is a ¼ 8�, the computed value of F increases
with sx=c in Eq. (18). When the shear stress ratio sx ¼ 0:914c, F ¼ 1 and the cut-off occurs. If we repeat the
same process for several trials of cut-off angle a, the results are shown in Fig. 11. Among all trial cut-off
angles, the minimum value of sx ¼ 0:854c corresponding to a ¼ 18�, therefore a a ¼ 18� is the critical cut-
off angle.

Fig. 11. Trial cut-off angles and correspondent shear stresses.
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If the same rock joint is under a higher applied vertical stress ry ¼ 1:0c, the computed minimum value of
sx ¼ 1:15c corresponding to the critical cut-off angle a ¼ 5�. The cut-off angle and shear strength are clearly
influenced by the vertical stress. For this particular example, assuming the value of c ¼ 0:5 MPa, the shear
strength against cut-off for different applied vertical stress is computed and plotted in Fig. 12. The shear
strength against sliding failure determined from Eq. (7) is also plotted in Fig. 12 (with surface frictional
angle /s ¼ 40�). It can be seen from Fig. 12 that the sliding mechanism controls failure when the vertical
stress is less than 0.2 MPa, and the cut-off mechanism controls failure when the vertical stress is greater than
0.2 MPa. It is noted that based on this simple analysis of limit equilibrium, the residual shear strength of a
rock joint is influenced significantly by vertical stress and joint topography, which have been recognized
from experimental and field investigations [3,21].

4. Joint behavior model

In order to model the deformation behavior before and after peak stress, a more elaborated constitutive
model is needed. For this purpose, we adopt a microstructural approach used in granular mechanics [15,22–
26]. This approach has the ability to model the overall behavior of a system based on the properties of
individual constituent elements. In the present case, we aim to derive the behavior of a rock joint based on
the properties of each asperity contact-face.
Let Dui be the displacement of the joint where the lowercase subscript, i, represents (x, y) of the global

coordinate system. The joint topography is assumed to consist of many asperity contact-faces. An auxiliary
local coordinate system (n, s) is defined for each asperity contact-face. The value of DuðcÞI is the displacement
at the asperity contact-face c, where the subscript I in upper case represents (n, s) of the auxiliary local
coordinate. We adopt the kinematic assumption [14,23,24] that the value DuðcÞI of the contact-face c can be
obtained from the displacement Dui of the joint, given by

DuðcÞI ¼ T ðcÞ
Ii Dui ð18Þ

where T ðcÞ
Ii is the transformation matrix that transform a vector from the global coordinate system to the

local coordinate system of the cth contact-face. The transpose of this transformation matrix T ðcÞ
iI is used to

transform a vector from the local coordinate system to the global coordinate system. It is noted that T c
iI is

also the inverse of T c
Ii , or

Fig. 12. Shear strength envelope controlled by sliding and cut-off mechanisms.
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T c
iIT

c
Ij ¼ dij ð19Þ

where dij is the Kronecker delta. The forces at the contact-face in the local coordinate system ðDf ðcÞ
s ;Df ðcÞ

n Þ
can be transformed to be in terms of global coordinate ðDf ðcÞ

x ;Df ðcÞ
y Þ by

Df ðcÞ
i ¼ T ðcÞ

iI Df ðcÞ
I ð20Þ

For an asperity contact-face, the displacement can be related to force by

Df ðcÞ
I ¼ AðcÞkðcÞIJ DuðcÞJ ð21Þ

where kðcÞIJ is the stiffness tensor for the cth contact-face, in a matrix form

kðcÞIJ ¼ kðcÞn 0
0 kðcÞs

� �
ð22Þ

where kðcÞn is the stiffness in normal direction given in Eq. (4), and kðcÞs is the stiffness in tangential direction
given in Eq. (6). The force on the rock joint is the summation of forces over all contact-faces, and the
traction on the rock joint is given by

Dsi ¼
1

A

X
c

Df c
i ð23Þ

where A is the total area of the rock joint. Substitute Eqs. (18), (20) and (21) into (23), we obtain the
expression of constitutive relationship for the rock joint

Dsi ¼ DijDuj ð24Þ

where the stiffness tensor

Dij ¼
1

A

X
c

T ðcÞ
iI kðcÞIJ T

ðcÞ
Jj A

ðcÞ ð25Þ

The method described above is valid for a joint surface that consists of irregular asperities. In our case of
triangle-shaped asperities as shown in Fig. 10, the surface roughness can be characterized by only two
distinctive contact-faces: the up-slope face and the down-slope face. Therefore the total number of contact-
face to be considered is two.
Eq. (24) can be written in matrix form, given by

Dsx
Dry

� 	
¼ Dxx Dxy

Dyx Dyy

� �
Dux
Duy

� 	
ð26Þ

For the rock joint test, two stages of loading are applied. The first stage is the application of vertical
stress (Dsx ¼ 0); the second stage is shearing of joint under the constant vertical stress (Dry ¼ 0). The loads
are applied incrementally. At each increment, the stiffness tensors Dij are computed based on the asperity
configuration and the stiffness of each contact-face. The asperity configuration is changed after cut-off; and
the contact stiffness is dependent on many factors, such as the magnitude of surface tractions, the failure
state of the contact-face, e.g. sliding, separation or asperity cut-off. Thus the model is highly non-linear, and
an iterative procedure is required. In a load step, the stiffness of each contact-face is initially updated based
on the condition before the load. Then, with the computed new condition, the stiffness is re-updated and
used to recalculate the same load increment. The iterative process is carried out until the convergence is
obtained before the application of the next load increment.
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5. Model performance

5.1. Parameters of asperity contact-face

In the analyses of joint behavior, the following six parameters are used:

(1) Compressive behavior of an asperity contact-face: Vmax ¼ 0:8 mm and kni ¼ 1:4 MPa/mm, determined
from the experiments of normal compression tests on joint with 0� asperities (see Fig. 4) and Eq. (4).

(2) Shear behavior of an asperity contact-face: /s ¼ 39�, ksi ¼ 0:8 MPa/mm, b ¼ 0:45, determined from the
experiments of direct shear tests on joint with 0� asperities (see Fig. 3) and Eq. (6).

(3) Cut-off shear strength: Mohr–Coulomb criterion does not fit the shear strength of the material. The
shear strength determined from triaxial tests on rock mass (see Fig. 2) is used in the analysis, given by

ss ¼ 0:42þ 0:1246rn þ 0:269r2n þ 0:0047r3n ðMPaÞ:

5.2. Comparisons and discussion

5.2.1. Deformation mechanism
Using the six parameters given above, predictions are made for rock joint specimens under direct shear

tests. In a direct shear test, there are two loading stages: (1) initially a vertical compression stress ry , and (2)
a shear movement ux. The prediction shows that, due to the vertical load in stage 1, the shear stresses act
downward and are equal on both sides of an asperity. In stage 2, due to the shear movement, the shear
stress decreases at the up-slope side while increases at the down-slope side. As the shear movement con-
tinues, the following events will occur:

(1) slide of the down-slope side,
(2) separation of the down-slope side,
(3) slide of the up-slope side, or cut-off of the asperity.

Among the events, slide of the down-slope side occurs first. Due to the sliding, the overall shear stiffness
of rock joint decreases and the shear-induced vertical displacement is downward (i.e., dilation is negative).
Separation of the down-slope side usually occurs next. At this point, the overall shear stiffness of rock joint
further decreases and the shear-induced vertical displacement starts to reverse its tendency from downward
to upward (i.e., dilation is positive).
The next event is either ‘slide of the up-slope side’ or ‘shear cut-off of the asperity’. If ‘separation of the

down-slope side’ has not occurred yet, it will take place concurrently or shortly after. This is the last event
in the test. Between sliding and cut-off, which of the two occurs first depends on factors such as the
magnitude of vertical stress applied to the rock joint specimen, the material strength, and the surface to-
pography of joint. As a result of the final event, the overall shear stiffness is completely lost and the
specimen is in the post-peak softening stage. At the same time, the shear-induced vertical movement
continues to be upward (positive dilation). The dilation angle is either same as the up-slope angle or the
angle of cut-off plane.

5.2.2. Cut-off plane orientation
The predicted failure modes are in good agreement with the observed failure modes from experiments as

shown in Table 3. The predicted cut-off plane orientation is a function of applied vertical stress. For ry ¼ 1
and 1.5 MPa, the predicted shear cut-off planes are nearly horizontal, which are same as what observed in
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experiments. For other applied vertical stresses, the comparisons between the predicted and measured cut-
off planes are given in Table 3.
In general, under a higher applied vertical stress, the cut-off plane tends to be more close to horizontal.

The comparisons show good agreement between predicted and measured cut-off plane orientations.

5.2.3. Stress–displacement curves
Using the present model, the predicted stress–displacement curves are compared with experimental re-

sults for three conditions h ¼ 0�, 15� and 30�. The comparisons of predicted and measured curves are
summarized in Figs. 13–17. Fig. 13 shows the shear stress–displacement curves for joint with 0� asperities. It
is noted that for the case of h ¼ 0� the shear stiffness determined from Eq. (5) is constant, independent of
shear stress. Using a surface frictional angle /s ¼ 39�, the stress–displacement curves fit reasonably well the
frictional strength. The only failure mode of the joint is frictional sliding. Before sliding, the joint behave
elastically without any change of normal stress at contact-face, thus the curves exhibit bilinear shape.
Fig. 14 shows the shear stress–displacement curves for specimens with 15� asperities. The predicted

curves for 15� asperities show non-linear rather than bilinear characteristics. During the loading process,

Fig. 13. Comparison of predicted and measured shear stress–displacement curves for joint with 0� asperities.

Table 3

Predicted and measured orientations of asperity planes after tests

ry (MPa) Predicted/measured a (for h ¼ 15�) Predicted/measured a (for h ¼ 30�)
0.1 15�=15� (sliding) 30�=30� (sliding)
0.3 13:5�=12� (cut-off) 14:3�=12:4� (cut-off)
0.5 11:3�=9:7� (cut-off) 8:3�=8:5� (cut-off)
1.0 Flat/�0� (cut-off) Flat/�0� (cut-off)
1.5 Flat/�0� (cut-off) Flat/�0� (cut-off)
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the specimen has experienced down-slope sliding, down-slope separation, and cut-off of the asperities. At
each event, the specimen has a sudden reduction in stiffness. Furthermore, during the loading process, the

Fig. 14. Comparison of predicted and measured shear stress–displacement curves for joint with 15� asperities.

Fig. 15. Comparison of predicted and measured shear dilation curves for joint with 15� asperities.
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stiffness of specimen is under a continuous change due to its non-linear dependency with normal stress at
contact-faces. Therefore, the predicted curves are rather smooth.

Fig. 16. Comparison of predicted and measured shear stress–displacement curves for joint with 30� asperities.

Fig. 17. Comparison of predicted and measured shear dilation curves for joint with 30� asperities.
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Fig. 15 shows the shear dilation curves for specimens with 15� asperities. Fig. 16 shows the shear stress–
displacement curves and Fig. 17 shows the shear dilation curves for specimens with 30� asperities. The
overall comparison is reasonable between the predicted and measured results.

5.2.4. Dilation angle
The predicted dilation angle is compared with the measured values in Table 4.

5.2.5. Shear strength
Since the predicted failure modes are in good agreement with that observed from experiments, it is

expected that the model give good predictions on shear strength of rock joints. The predicted peak strengths
versus vertical stress for the two asperity configurations are plotted in Fig. 18, which verifies the good
agreement between the predicted and measured results. Although the peak strength for the rock joint
specimens is somewhat different from the residual strength, the method described in Section 3.3 offers a
simple and conservative way to estimate shear strength of rock joint.

Table 4

Predicted and measured steady-state dilation angle

ry (MPa) Predicted/measured (h ¼ 15�) Predicted/measured (h ¼ 30�)
0.1 16:69�=14:57� 30:11�=30:13�
0.3 13:49�=12:41� 14:30�=12:40�
0.5 11:31�=7:1� 8:25�=8:53�
1.0 Flat/�0� Flat/�0�
1.5 Flat/�0� Flat/�0�

Fig. 18. Comparison of predicted and measured shear strength.
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6. Summary and conclusion

A micromechanics model is developed for the stress–displacement behavior of a rock joint which has
triangle-shaped asperities on the joint surface. The model explicitly accounts for the influence of asperity
shape on the deformation and strength of rock joints. Three mechanisms are considered: sliding of contact-
face, separation of contact-face, and cut-off of an asperity, which are essential to be included in order to
model the salient features of joint behavior. The agreement between the predicted and measured experi-
mental results shows that the microstructural approach has advantages in simulating the complex behavior.
The future work is to extend the present constitutive model to natural rock joints with irregular rough
surfaces, which can be used in conjunction with mechanistic models for highly fractured rock masses.
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