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Analytic solutions are derived for a horizontal curved beam subjected to vertical and
horizontal moving loads. The horizontal moving loads may be regarded as the centrifugal
forces generated by vehicles moving along a curved path, which were rarely studied by
previous researchers. Both a single moving load and a series of equidistant moving loads are
considered. By superposition of the waves generated by consecutively moving loads on the
curved beam, the conditions for the resonance and cancellation phenomena to occur are
established. Compared with the numerical approaches, the present approach has the
advantage that it provides clear physical insights into the various vehicle-induced
phenomena on curved beams, while allowing us to identify the key parameters involved.
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1. INTRODUCTION

The vehicle-induced vibration on bridges has been a subject of interest for more than one
and half centuries. The pioneering works on this subject include those of Willis [1] and
Stokes [2] following the collapse of the Chaster Rail Bridge in England in 1847. The
problem of simple beams under moving vehicular loads was studied in 1922 by Timoshenko
neglecting the inertia e!ect of the vehicle [3]. In addition to the inertia of the beam, the
inertia of the vehicle was included by Je!cott in his study in 1929 [4], followed by the works
of Stanis\ icH and Hardin [5] and Ting et al. [6]. By taking into account the suspension
properties of the vehicle, the sprung mass model was adopted in the studies by Tan and
Shore [7], Veletsos and Huang [8], Blejwas et al. [9], etc. An early treatise on this subject
that covers vehicle models of various complexities is the book by FryH ba in 1972 [10]. In the
past two decades, research on the vehicle-induced vibrations of bridges continued to grow,
which was generally directed toward the use of more realistic vehicle modes [11, 12] and
bridge models [13, 14], the inclusion of surface roughness [12, 15], or the implementation of
e$cient solution schemes including the use of vehicle}bridge interaction (VBI) elements
[16, 17]. Some partial reviews of the research on vehicle-induced vibrations of the bridge are
0022-460X/01/180519#19 $35.00/0 ( 2001 Academic Press
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available in references [18}20]. In a recent book by FryH ba on the dynamics of railway
bridges, 231 references have been cited [21].

Previously, a great portion of the research on vehicle-induced vibrations has been
conducted for straight beams. While some research has been conducted for horizontally
curved beams under moving loads [7, 22, 23], concern was generally placed on the vertical
or out-of-plane vibration of the curved beam. To the knowledge of the writers, the radial or
in-plane vibration of curved beams under the action of centrifugal forces, which are
generated by masses moving along circular paths, has rarely been studied. Just as a vertical
moving load will cause some impact on the vertical oscillation of a straight beam, so too,
a centrifugal force generated by a mass moving over a horizontally curved beam will induce
certain impact on the radial response of the beam. The objective of this paper is to establish
a complete theory for treating the vibration of horizontally curved beams subjected to the
moving masses, each of which will be simulated as a pair of gravitational force and
centrifugal force. The conditions for superposition of the waves generated by consecutively
moving loads to result in the phenomena of resonance and cancellation on the curved beam
will be identi"ed. The capability and reliability of the present theory will be demonstrated in
the exemplary studies.

2. GOVERNING DIFFERENTIAL EQUATIONS

Consider the horizontally curved beam in Figure 1, in which u denotes the subtended
angle, R the radius of curvature, and ¸ the length of the beam. A right-handed coordinate
system is chosen, the y- and z-axis of which coincide with the principal axis of the
cross-section, and the x-axis is tangent to the centroidal axis of the beam. Let u

x
, u

y
and u

z
denote the displacements of the centroid of each cross-section of the curved beam along the
three axes, and h

x
, h

y
and h

z
the rotations about the three axes. All the deformations are

assumed to be small so that the linear theory applies. The curved beam is assumed to be
made of constant, bisymmetric cross-sections with negligible warping resistance. The
following are the linear di!erential equations for the curved beam [24, 25].

Axial displacement: EAAuAx#
u@
z

RB"0. (1)

Radial displacement: EI
yAuAAz #2

uA
z

R2
#

u
z

R4B#
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R Au@x#
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z

RB"0. (2)

<ertical displacement: EI
zAuAAy !

hA
x

RB!
GJ

R AhAx#
uA
y

RB"0. (3)

¹orsional rotation:
EI

z
R AuAy!

h
x

RB#GJAhAx#
uA
y

RB"0, (4)

where a prime denotes di!erentiation with respect to the axis x, E and G denote the moduli
of elasticity and rigidity, respectively, of the beam, A the cross-sectional area, I

y
and I

z
,

respectively, the moments of inertia about the y- and z-axis, and J the torsional constant.
From equations (1)}(4), one can observe that the di!erential equations for the in-plane
displacements, i.e., u

x
and u

z
, are independent of those for the out-of-plane displacement, i.e.,

u
y
and h

x
. Furthermore, the di!erential equation for the axial displacement u

x
and that for

the radial displacement u
z
are coupled, and the same is true for the vertical displacement u

y
and torsional rotation h

x
.



Figure 1. Co-ordinates of curved beam.
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3. CURVED BEAM SUBJECTED TO A SINGLE MOVING LOAD

The two ends of the curved beam are assumed to be simply supported, in the sense that
the #exural displacements and twisting rotation of the beam are restrained at the supports,
but their "rst derivatives are not zero. In general, the action of the moving vehicle can be
replaced by a vertical moving load, to simulate the gravitational e!ect, and a horizontal
moving load, to simulate the centrifugal e!ect, as shown in Figure 2(a).

3.1. CURVED BEAM SUBJECTED TO A VERTICAL MOVING LOAD

As the in-plane and out-of-plane behaviors of the curved beam are uncoupled, we shall
consider "rst the vertical vibration of the curved beam under the action of a vertical moving
load (Figure 2(c)). Let m

v
denote the mass of the vehicle moving at speed v. The load of the

vehicle is f
v
"!m

v
g, where g is the acceleration due to gravity. By taking into account the

e!ect of inertia, the equations of motion for the vertical vibration of the curved beam can be
modi"ed from equations (3) and (4) as follows:

muK
y
#EI

zAuAA
y
!

hA
x

RB!
GJ

R AhAx#
uA
y

RB"f
v
d (x!vt),

oJhG
x
#

EI
z

R AuAy!
h
x

RB#GJAhAAx #

uA
y

RB"0, (5a, b)

where m denotes the mass per unit length, o the density of the curved beam and d is Dirac's
delta function. The term on the right-hand side of equation (5a) represents the e!ect of the
vertical moving load f

v
, where f

v
"!m

v
g. For the present problem, the vertical

displacement u
y
can be expressed as the summation of a series of sine functions that satisfy

the boundary conditions

u
y
(x, t)"

=
+
i/1

q
yi
(t) sin

inx

¸

, (6)



Figure 2. Curved beam subjected to moving loads: (a) general; (b) horizontal; and (c) vertical.

522 Y.-B. YANG E¹ A¸.
where q
yi

denotes the generalized co-ordinate for the ith mode. The expression for the angle
of twist h

x
is not arbitrary, but must be determined from equation (4). Substituting equation

(6) into equation (4) and making use of boundary conditions for twisting, one obtains

h
x
(x, t)"

=
+
i/1

c
i
q
yi
(t) sin

inx

¸

, (7)

where c
i
"!R(in/¸)2(GJ#EI

z
)/[(in/¸)2GJR2#EI

z
], or equivalently,

h
x
(x, t)"

=
+
i/1

qhi (t) sin
inx

¸

, (8)

where qhi denotes the ith generalized coordinate for the angle of twist h
x
. For the present

purposes, let us consider only the contribution of the "rst modes, i.e.,

u
y
(x, t)"q

y1
(t) sin

nx

¸

, h
x
(x, t)"qh1 (t) sin

nx

¸

, (9a, b)

where q
y1

and qh1 denote the "rst generalized co-ordinates for u
y

and h
x
, respectively.

To solve the two di!erential equations in (5), Galerkin's method will be used. First, one
multiplies both sides of equation (5a) by the variation du

y
and those of equation (5b) by dh

x
.

Use the "rst-mode approximations for u
y

and h
x

in equations (9). Then integrate the two
di!erential equations each with respect to x from 0 to ¸. The result is

(qK
y1
#a

1
q
y1
#a

2
qh1)dq

y1
"

2 f
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m¸
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¸

dq
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,

(qK h1#b
1
qh1#b

2
q
y1

)dqh1"0, (10a, b)
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Since the variations dq
y1

and dqh1 are arbitrary, equations (10) reduce to

qK
y1
#a

1
q
y1
#a

2
qh1"

2 f
v

m¸

sin
nvt

¸

, qK h1#b
1
qh1#b

2
q
y1
"0. (12a, b)

The general solutions to equations (12) are composed of two parts, i.e., the homogenous
solutions and the particular solutions,

q
y1
"q

y1h
#q

y1p
, qh1"qh1h#qh1p , (13a, b)

where the subscripts h and p, respectively, denote the homogeneous and particular
solutions.

The homogeneous solutions can be given as follows:

q
y1h

"h
1
sin u

v1
t#h

2
cosu

v1
t, qh1h"k

1
sinu

v1
t#k

2
cosu

v1
t, (14a, b)

where u
v1

denotes the fundamental frequency of vibration for the vertical direction of the
curved beam and h

1
, h

2
, k

1
, k

2
are the coe$cients to be determined from the initial

conditions. By substituting equations (14) into equations (12) and dropping the term
containing f

v
, one obtains

C
a
1
!u2

v1
b
2

a
2

b
1
!u2

v1
D G

q
y1h

qh1hH"G
0

0H. (15)

By letting the determinant in equation (15) equal zero, the fundamental frequency u
v1

can
be solved as [26]

u
v1
"S

a
1
#b

1
#J(a

1
!b

1
)2#4a

2
b
2

2
. (16)

As for the particular solutions, the following may be assumed:

q
y1p

"p
y1

sin
nvt

¸

, qh1p"ph1 sin
nvt

¸

, (17a, b)

where p
y1

and ph1 denote the amplitudes of vibration. Substituting equations (17) into
equations (10) yields

C
a
1
!(nv/¸)2

b
2

a
2

b
1
!(nv/¸)2D G

p
y1

ph1H"G
2 f

v
m¸

0 H. (18)
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From the preceding equation, p
y1

can be solved:

p
y1
"

2 f
v

m¸

1

u2
v1

1

1!S2
v1

b , (19)

where

S
v1
"

nv

¸u
v1

, b"
b
1
!(nl/¸)2

b
1
#a

1
!u2

v1
!(nv/¸)2

. (20a, b)

Here, S
v1

denotes the speed parameter for the vertical vibration of the curved beam, which
represents the ratio of the driving frequency, nv/¸, implied by the moving load to the
fundamental frequency of the beam, u

v1
.

The initial displacement and velocity of the beam are zero before it is subjected to the
moving load. Such conditions should be obeyed by the general solution q

y1
given in

equation (13), or the sum of q
y1h

and q
y1p

given in equations (14a) and (17a), respectively. By
these conditions, the coe$cients of the homogeneous solution can be determined as
h
1
"!p

y1
S
v1

and h
2
"0. It follows that the general solution q

y1
is

q
y1

(t)"p
y1Asin

nvt

¸

!S
v1

sinu
v1

tB. (21)

By the relation f
v
"!m

v
g and equation (19), the preceding equation may be rewritten as

q
y1

(t)"!

2m
v
g

mL

1

u2
v1

1

1!S2
v1

bW
v1

(t), (22)

where the amplitude function W
v1

(t) is

W
v1

(t)"sin
nvt

¸

!S
v1

sinu
v1

t. (23)

Consequently, the vertical displacement of the curved beam is

u
y
(x, t)"!

2m
v
g

m¸

1

u2
v1

1

1!S2
v1

bW
v1

(t) sin
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¸

. (24)

For the midpoint of the curved beam, x"¸/2, the vertical displacement is

u
y
(¸/2, t)"

2m
v
g

mL

1

u2
v1

1

1!S2
v1

bW
v1

(t). (25)

The above solution has been obtained by considering only the "rst mode. More accurate
solutions can be obtained through consideration of more modes. In practice, however, the
acting time of the vehicles on the curved beam is so short that the moving load problem is
by nature a transient problem. As a result, only the "rst mode will be signi"cantly excited.
This is especially true when only the midpoint response of the curved beam is desired, and
when the beam is subjected to a series of moving loads, as encountered in high-speed
railways. The accuracy of the present solutions will be demonstrated in the numerical
example through comparison with the "nite element results.
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3.2. CURVED BEAM SUBJECTED TO A HORIZONTAL MOVING LOAD

The horizontal moving load f
h

considered herein is the centrifugal force generated by
a vehicle of mass m

v
moving at speed v along a horizontally curved beam of radius R. By

taking into account the e!ect of inertia, the equations of motion for the radial vibration of
a curved beam can be modi"ed from equations (1) and (2) as

muK
x
#EAAuAx#

u@
z

RB"0,

muK
2
#EI

yAuAAz #2
uAA
z

R2
#

u
z

R4B"f
h
d (x!vt), (26a, b)

where f
h
"m

v
v2/R. Similarly, the radial displacement u

z
can be expressed as the summation

of the sine functions that satisfy the boundary conditions

u
z
(x, t)"

=
+
i/1

q
zi
(t) sin

inx

¸

(27)

in which q
zi

denotes the ith generalized co-ordinate for the radial displacement. The relation
between the radial displacement u

z
and the axial displacement u

x
is not arbitrary. By

substituting equation (27) into equation (1), the axial displacement u
x

can be solved as

u
x
(x, t)"

=
+
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!
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¸H. (28)

If only the "rst modes are considered, the following may be assumed:

u
x
(x, t)"q
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(t)A1!cos

nx

¸

!

2x

¸ B, u
z
(x, t)"q

z1
(t) sin

nx

¸

, (29a, b)

where q
x1

and q
z1

, respectively, denote the "rst generalized co-ordinate for the axial and
radial displacements.

Again, Galerkin's method will be employed to solve the two equations in (26). Namely, by
multiplying both sides of equation (26a) by du

x
and those of equation (26b) by du

z
, making

use of the expressions in equations (29), integrating from 0 to ¸, and taking the arbitrary
nature of virtual displacements dq

x1
and dq

z1
, one obtains
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¸
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As was stated, the general solutions to equations (30) consist of two parts,

q
x1
"q

x1h
#q

x1p
, q

z1
"q

z1h
#q

z1p
. (32a, b)

The homogenous parts can be given as

q
x1h

"hM
1
sinu

h1
t#hM

2
cos u

h2
t, q

z1h
"kM

1
sinu

h1
t#kM

2
cosu

h2
t, (33a, b)

where u
h1

denotes the frequency of vibration of the beam on the horizontal plane and the
coe$cients hM

1
, hM

2
, kM

1
, kM

2
, are to be determined from the initial conditions. Substituting

equations (33) into equations (30) and dropping the term containing f
h

yields

C
aN
1
!u2

h1
bM
2

aN
2

bM
1
!u2

h1
D G

q
x1h

q
z1h
H"G

0

0H. (34)

By letting the determinant equal zero, the vibration frequency u
h1

can be solved as [26]

u
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"SaN

1
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1
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1
!bM

1
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2

2
. (35)

The particular solutions can be given as

q
x1p

"p
x1

sin
nvt

¸

, q
z1p

"p
z1
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nvt

¸

. (36a, b)

Substituting the preceding expressions for q
x1p

and q
z1p

into equations (30) yields
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from which the generalized co-ordinate p
z1

can be solved as

p
z1
"
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1

u2
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where

S
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"
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, a"
aN
1
!(nv/¸)2
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1
!u2

h1
!(nv/¸)2

. (39a, b)

Here, S
h1

denotes the speed parameter for the horizontal vibration of the curved beam,
which is de"ned as the ratio of the driving frequency, nv/¸, to the fundamental frequency
u

h1
of the beam.

By assumption, the zero initial conditions must be obeyed by the general solution q
z1

, or
the one given in equation (32b). From these conditions, the coe$cients of the homogeneous
solution q

z1h
can be determined as kM

1
"!p

z1
S
h1

and kM
2
"0. By the relation f

h
"m

v
v2/R

and using equation (38), the radial displacement q
z1

can be derived as

q
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(t)"
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v
u
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S2
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1!S2
h1

aW
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(t), (40)
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where u"¸/R for the curved beam and the amplitude function W
h1

(t) is

W
h1

(t)"sin
nvt

¸

!S
h1

sinu
h1

t. (41)

As a result, the radial displacement of the curved beam is

u
z
(x, t)"

2m
v
u

mn2

S2
h1

1!S2
h1

aW
h1

(t) sin
nx

¸

. (42)

Of interest is the fact that when the vehicle speed v approaches zero, S
h1

P0, the radial
displacement u

z
(x, t) of the curved beam also approaches zero. In contrast, the vertical

displacement u
y
(x, t) as given in equation (24) approaches a constant under the same

condition. This can be realized if one notes that as the vehicle speed v reduces to zero, so
does the horizontal moving load f

h
, as there is no centrifugal force. However, the vertical

moving load f
v

remains constant, regardless of the vehicle speed.

4. UNIFIED EXPRESSIONS FOR VERTICAL AND RADIAL VIBRATIONS

The solutions for the vertical and radial displacements, u
y
(x, t) and u

z
(x, t), in equations

(24) and (42) are similar in form. During the travel time ¸/v of the vehicle on the beam, the
two equations can be collectively expressed as

;(x, t)"PW(t)H (t) sin
nx

¸

for 0)t)¸/v, (43)

where H(t) is a unit step function, indicating that the function W(t) is on at t"0. For the
vertical vibration case, ;(x, t) should be interpreted as u

y
(x, t), P as !(2m

v
g/m¸)(1/u2

v1
)

[1/(1!S2
v1

)]b, and W(t) as W
v1

(t). For the horizontal vibration case, ; (x, t) should be
interpreted as u

z
(x, t), P as (2m

v
u/m¸)[S2

h1
/(1!S2

h1
)]a, and W (t) as W

h1
(t). For t'¸/v, the

beam reaches a state of free vibration, as the moving load already leaves the beam. By the
fact that ¸/v denotes half of the period of the moving load over the beam, the response of the
beam at this stage is

;(x, t)"P[W(t)H(t)#WAt!
¸

vBHAt!
¸

v BD sin
nx

¸

for t'
¸

v
. (44)

Here, the amplitude function W (t) is

W(t)"sin
nvt

¸

!S
1
sinu

1
t, (45)

where the frequency u
1
and speed parameter S

1
should be interpreted as u

v1
and S

v1
for the

vertical vibration, and as u
h1

and S
h1

for the horizontal vibration. By substitution of
equation (45) for W(t), noting that H(t)"H (t!¸/v) for t'¸/v, sin(nvt/¸)#
sin[nv(t!¸/v)/¸]"0 and sin a#sin b"2 sin[(a#b)/2]cos[(a!b)/2], one can
rearrange equation (44) as

; (x, t)"!2PS
1
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u
1
¸

2v
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1At!
¸

2vBHAt!
¸

2vB sin
nvt

¸

for t'
¸

v.
(46)



528 Y.-B. YANG E¹ A¸.
This is exactly the residual response of the beam after the moving load has left the beam,
based on the "rst-mode approximation.

By letting cos(u
1
¸/2v)"0 or u

1
¸/2v"(2i!1)n/2, with i"1, 2, 3,2, one observes

that the residual response of the beam reduces to zero. Such a condition is equivalent to

S
1
"

1

2i!1
for i"1, 2, 3,2. (47)

Theoretically speaking, if the condition (47) is met, the residual response of the beam simply
vanishes. For this reason, the condition (47) is referred to as the condition of cancellation.

5. SOLUTIONS FOR MULTI MOVING LOADS

Based on the assumption of small deformations, the vibration of a beam caused by
a series of moving loads can be obtained as the superposition of the vibration induced by
each of the moving loads. In such a process, care must be taken regarding the acting period
of each moving load on the beam and the time lag between any two consecutive loads.

Consider N identical masses of interval d moving at speed v. As shown in Figure 3, each
of the masses will induce a vertical load f

v
and a centrifugal force f

h
. Assuming that the "rst

moving load enters the beam at t"0, the time lag for the jth moving load is t
j
"( j!1)d/v.

Thus, the residual displacement of the midpoint of the beam caused by the jth moving load
is

;
j
(¸/2, t)"P[W(t!t

j
)H(t!t

j
)#W (t!t

j
!¸/v)H(t!t

j
!¸/v)]. (48)

The most critical condition for the beam occurs when the "rst N!1 masses have left and
only the Nth mass is acting on the beam. The time interval for such a case is
max(t

N
, t

N~1
#¸/v)(t(¸/v, as shown in Figure 4. For this case, the midpoint response

of the beam is composed of two parts. The "rst part relates to the forced vibration caused by
the Nth moving load, which can be obtained by letting x"¸/2 and replacing t by t!t

N
in

equation (43), i.e.,

;
1
(¸/2, t)"PW(t!t

N
)H (t!t

N
) for 0(t!t

N
(¸/v. (49)
Figure 3. Curved beam subjected to equi-spaced moving loads.



Figure 4. Critical loading case.
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The second part is simply the residual vibration caused by the N!1 moving loads that
passed the beam. This can be obtained by letting x"¸/2 and replacing t by t!t

j
in

equation (46), and then summing the responses induced by the moving loads from j"1 to
N!1. Note that when H(t!t

N~1
!¸/v)"1, it can be ascertained that H(t!t

j
!¸/v)"

1 for j"1, 2,2, N!1. Thus, H (t!t
j
!¸/v) for j"1, 2,2, N!1 can be replaced by

H(t!t
N~1

!¸/v). The following is the result for part two:

;
2A

¸

2
, tB"

N~1
+
j/1
G!2PS

1
cos

u
1
¸

2v
sinu

1C(t!t
j
)!

¸

2vDHHAt!t
N~1

!

¸

vB
for t!t

N~1
*¸/v (50)

which can be manipulated to remove the sign of summation as [27]

;
2A

¸

2
, tB"!2PS

1
cos

u
1
¸

2v Csinu
1At!

¸

2vB#sinu
1A

N!2

2

d

vB
]sinu

1At!
¸

2v
!

N!1

2

d

vB sin~1
u

1
d

2v DHAt!t
N~1

!

¸

vB
for t!t

N~1
'¸/v. (51)

Consequently, the midpoint response of the beam under the action of the Nth moving load
can be computed as the summation of ;

1
and ;

2
given in equations (49) and (51),

respectively.

6. CONDITIONS OF RESONANCE AND CANCELLATION

The phenomena of resonance and cancellation relate to the free vibration response ;
2

caused by the N!1 moving loads that have passed the beam. From equation (51), one
observes that the response of the beam reaches a maximum when the denominator of some
terms vanishes, i.e., when sin(u

1
d/2v)"0 or when u

1
d/2v"in, with i"1, 2, 3,2, or

equivalently,

S
1
"

1

2i

d

¸

for i"1, 2, 3,2. (52)
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This is exactly the condition for resonance of the beam to occur. For the case with
sin(u

1
d/2v)"0, expression (51) becomes indeterminate. By the condition sin(u

1
d/2v)"0

and L 'Hospital's rule, equation (51) can be manipulated to yield

;
2A

¸

2
, tB"!2P(N!1)cos

u
1
¸

2v
sinu

1At!
¸

2vBHAt!t
N~1

!

¸

vB. (53)

Here, it is interesting to note that the midpoint response of the beam increases as there are
more moving loads passing the beam.

On the other hand, one observes from equation (51) that whenever cos(u
1
¸/2v)"0, or

u
1
¸/2v"(2i!1)n/2, with i"1, 2, 3,2, or equivalently the one given in equation (47), the

free vibration response ;
2
(¸/2, t) reduces to zero, which means that no residual response

will be generated by the moving loads having passed the beam. Such a condition has been
referred to as the condition of cancellation. The conditions of resonance and cancellation, as
given in equations (52) and (47), are identical in form for both the vertical and horizontal
oscillations in terms of the speed parameter S

1
. However, because the vertical and

horizontal vibration frequencies, u
v1

and u
h1

, are generally di!erent for the beam, the
resonance or cancellation phenomena for the two directions do not occur at the same speed v.

7. NUMERICAL EXAMPLES

The curved beam considered herein is simply supported, of length ¸"24 m and
subtended angle u"303. The following properties are assumed for the cross-section:
A"9 m2, I

y
"18)75 m4, I

z
"2)43 m4, J"21)18 m4, E"32)2 GPa, l (the Poisson

ratio)"0)2, and o"2)4 t/m3. Each vehicle has a mass of m
v
"29)9 t and the distance

between two adjacent vehicles is d"25 m. Unless noted otherwise, all the data assumed
here will be used throughout this section. For comparison, "nite element solutions obtained
by approximating the curved beam by 10 piecewise straight beam elements will also be
presented. As the straight beam element was derived from the straight beam theory, the
results obtained from the "nite element analysis are totally independent of the present
analytical results based on the curved beam theory, as represented by equation (1)}(4).
Figure 5. Midpoint static vertical response of curved beam (one moving mass): ==, analytical; f, FEM.
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7.1. COMPARISON OF ANALYTIC WITH FINITE ELEMENT SOLUTIONS

Consider a single moving mass with speed v"40 m/s, which will generate a gravitational
force and a centrifugal force. The frequencies of vibration computed for the two directions
of the beam using equations (16) and (35) are u

v1
"32)10 rad/s and u

h1
"115)4 rad/s,

compared with the "nite element results of u
v1
"32)24 rad/s and u

h1
"116)61 rad/s.

The static vertical response, dynamic vertical response and dynamic horizontal res-
ponse of the midpoint of the curved beam have been plotted in Figures 5}7, along with
the "nite element solutions. As can be seen, the present solutions agree very well with
the numerical ones, which is a demonstration of the accuracy of the present solutions
considering only the "rst mode. Noting that the acting time of the mass is ¸/v"0)6 s, one
can easily distinguish between the forced vibration of the beam and the residual response in
Figures 5}7; the latter does not decay since the damping e!ect was ignored. On the other
hand, it is observed that the vertical response is much larger than that of the horizontal one,
indicating that the vertical response can be more easily excited by the load moving at
v"40 m/s.

7.2. PHENOMENON OF CANCELLATION UNDER SINGLE OR MULTI MOVING MASSES

As an illustration, we shall let i"2 in equation (47) and compute the speed of
cancellation as S

1
"0)333. By the de"nition for S

1
in equations (20a) and (39a), along with

u
v1
"32)24 rad/s and u

h1
"116)61 rad/s, the speed of cancellation can be computed for the

two directions as v
v
"82 m/s and v

h
"297 m/s. Considering a single mass moving at these

speeds, each for one direction, the time-history midpoint response computed for the two
directions is plotted in Figures 8 and 9. As can be seen, the residual response induced by the
moving mass after it leaves the beam, i.e., after 0)29 and 0)08 s, respectively, for the vertical
and horizontal directions, deviates slightly from the theoretical value of zero, due to neglect
of the higher modes. The close agreement of the present solutions with the "nite element
ones indicates that the e!ect of higher modes is generally small.

Consider next the case of eight moving masses and use the same speeds of cancellation,
i.e., v

v
"82 m/s and v

h
"297 m/s, for the two directions. The time-history response

computed for the midpoint response for the two directions has been plotted in Figures 10
Figure 6. Midpoint dynamic vertical response of curved beam (one moving mass): ==, analytical; f, FEM.



Figure 7. Midpoint dynamic horizontal response of curved beam (one moving mass): ==, analytical; f, FEM.

Figure 8. Phenomenon of cancellation for vertical direction (one moving mass): ==, analytical; f, FEM.

Figure 9. Phenomenon of cancellation for horizontal direction (one moving mass): ==, analytical; f, FEM.
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Figure 10. Phenomenon of cancellation for vertical direction (eight moving masses): ==, analytical; f, FEM.

Figure 11. Phenomenon of cancellation for horizontal direction (eight moving masses):==, analytical; f, FEM.
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and 11. The time durations for all the moving loads to depart from the beam are 2)43 and
0)67 s for the vertical and horizontal directions, respectively. In the two "gures, it is
observed that there is a total of eight peaks, each of which corresponds to one moving load.
Moreover, the residual responses for both directions remain negligibly small, as was
expected. Finally, the e!ect of higher modes appear to be generally small, as the present
solutions agree very well with the "nite element ones.

7.3. PHENOMENON OF RESONANCE UNDER MULTI MOVING MASSES

Consider also the case of eight moving masses. Using d"25 m and ¸"24 m, the
resonance speed computed from equation (52) for i"1 is S

1
"0)521. By the use of

equations (20a) and (39a), along with u
v1
"32)24 rad/s and u

h1
"116)61 rad/s, the

corresponding speeds computed of the moving masses for two directions are v
v
"128 m/s
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and v
h
"464 m/s. In Figures 12 and 13, the time-history response obtained for the vehicles

travelling at the resonance speed for each direction has been plotted. The fact that the
response increases for the two directions as there are more masses passing the beam is
typical of the resonance phenomenon. After all the masses pass the beam, i.e., after 1)55 and
0)43 s for the vertical and horizontal directions, respectively, the beam tends to oscillate
with the largest amplitude that has been excited, as no damping is assumed. Again, the
present solutions match very well the "nite element solutions.

7.4. I}S PLOT*IMPACT EFFECT CAUSED BY MOVING LOADS

By letting R
d
(x) and R

s
(x), respectively, denote the maximum dynamic and static

de#ection of the beam at position x due to the action of the moving loads, the impact factor
I for the de#ection of a beam subjected to the moving loads can be de"ned as

I"
R

d
(x)!R

s
(x)

R
s
(x)

. (54)
Figure 13. Phenomenon of resonance for horizontal direction (eight moving masses): ==, analytical; f, FEM.

Figure 12. Phenomenon of resonance for vertical direction (eight moving masses): ==, analytical; f, FEM.
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For simple beams, both the maximum static and dynamic de#ections will occur at the
midpoint. Consider the case of eight equally spaced moving masses. The impact response of
the vertical de#ection of the beam versus the speed parameter of the moving masses has
been plotted in Figure 14, along with the "nite element solutions. The impact response of
the horizontal de#ection can hardly be plotted, because of the lack of a static centrifugal
force. However, if the centrifugal force f

h
computed as m

v
v2/R can be treated as if it were

a static force, the impact response of the horizontal de#ection can be computed as well (not
shown), which appears to be quite similar to that presented in Figure 14 for the vertical
vibration [26]. In Figure 14, it is con"rmed that the present solutions agree very well with
the "nite element results. By substituting d"25 m and ¸"24 m into equation (52), the
resonance speeds computed for the two directions are S

1
"0)521, 0)260, 0)174, 0)130,2,

which are close to the points where the peaks occur in Figure 14. On the other hand, from
equation (47) the speeds of cancellation can be computed as S

1
"1)000, 0)333, 0)2000,

0)143,2, which are also close to the points where the minimum values occur in Figure 14.
As was noted, the impact response for the horizontal vibration of the curved beam is

unreal, since there is no static centrifugal force. In Figure 15, the maximum horizontal
de#ection for the midpoint of the curved beam has been plotted. As can be seen, the speeds
Figure 15. Maximum response for midpoint horizontal de#ection (eight moving masses):==, analytical; f, FEM.

Figure 14. Impact factor for midpoint vertical de#ection (eight moving masses): ==, analytical; f, FEM.
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for the maximum and minimum values to occur are generally consistent with those of
Figure 14, although they are much less clear.

8. CONCLUDING REMARKS

In this paper, a general theory has been presented for treating the vibration of
a horizontally curved beam subjected to moving masses, each of which is simulated as
a gravitational force and a centrifugal force. The problem has been solved in an analytical
but approximate manner considering the contribution of the "rst mode of vibration. The
accuracy of the present approach has been con"rmed by an independent "nite element
analysis that, by nature, considers all modes of vibration. The advantage of the present
approach is that it provides clear physical insights into the various vibration phenomena
induced by vehicles, in particular, the phenomena of resonance and cancellation, and allows
us to identify the key parameters involved. The solution established herein for the
horizontal vibration of curved beams subjected to the centrifugal force is believed to be new
in the literature.
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