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Abstract

The project studied the vibrations of the
structures of multiple degrees of freedom (MDOF)
under the extended Hamiltonian formalism. The
emphasis was placed on constructing a Lie group of
transformations with time being the parameter of the
group so as to preserve as many as possible
characteristic quantities as time elapses. The group
was then used for computation and real-time optimal
coinirol.

The project examined the difficulties
encountered by the lkinear quadratic (LQ) optimal
control algorithm and tock into consideration the
accumulating effect of external disturbances. We
established herein a control law based on a contractive
symplectic group, which is the direct product of a
contractive group and a symplectic group. The

symplectic group ensures optimality of the control law,

while the contractive group stabilizes the control law.
In other words, we have achieved a stabilized optimal
linear quadratic control law for MDOF structures
subjected to external disturbances.

Keywords '+ MDOF structures, vibration, stabilization,

symplectic group, contractive group, linear quadratic
control, optimal control, Hamiltonian system.
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Introduction

Recent decades wiimessed many  successful
applications of linear quadratic (LQ) optimal control
theory to active control of plants in various fields [1].
The theory provides the active control of plants with a
two-point  boundary value problem (TPBVF)
formulation over a time interval |4, #]. Hence, to
search for an optimal control, one has to solve the
TPBVP. However, when the plants are engineering
structures designed to withstand external disturbances
(see, for example, [2-10]), solving the TPBVP
encounters formidable obstacles since it has to be
solved backward from the terminal time £ , so that



external disturbances which do not yet occur must be
known in advance. Unless external disturbances are
entirely absent or they are white noise stochastic
processes or modeled as the output of a prescribed
linear filter subjected to a Gaussian white noise input,
the control laws currently being used do not achieve
the goal of optimalizing the performance index that is
set up [3, 4, 7, 11]. Unfortunately, most of external
disturbances acting on engineering structures do not
meet those restrictions. To overcome the obstacles we
must trace back to the origin of the difficulties
encountered, that is the TPBVP with the presence of
external disturbances. In the next subsection we will
show that with a correct construction we can obtain an
initial value problem (IVP} formulation for the
considered issue.

An Initial Value Problem Formulation

Consider a linear engineering structure with n
degrees of freedom subjected to the external
disturbance w(t) and the control force u(t). The
equation of motion of the structure may be written as

M §()+C a(#}+ K q(e) = B () + E_wi(/) {1
in its lifetime [#, ¢,] < R along with the values of
q(7y) and q(t,) prescribed at a certain time instant
&, Here 1 is (the current} time, # and ¢, are the birth
and death times, respectively, of the structure, and ¢, is
the initial time of a certain time interval [, ] in
which we are interested. A superposed dot indicates
time differentiation. q, q and § are the column
matrices of relative displacements, velocities and
accelerations, respectively. The symmetric matrices M,
C, K are respectively, the mass, damping, and
stiffness of the structure. To be an engineering
structure M and K are positive definite and C is
positive semidefinite.

This structural dynamical problem can be
transformed to the following state space description:
()= Ax(1)+ Bu(f) + EW(t) Vi e[t,,0,), x{(t,)=x, (2)
where

q(s) q(y)
= ’ =1. + 3
x) [q(rJ %0 [q(ra )} @

and

by ot it} ] ¢
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As usual the superscript ' denotes the inverse and 0
and I denote the zero and identity matrices,
respectively, of appropriate orders as implied in the
context. In (2), the state x € R™ , the control u € R*,
and the disturbance w € R™ are all functions of time;
the initial state x,¢ R is a constant column matrix;
and A € R™ B e R*™" | E ¢ R™ are constant
matrices.

For a crucial consideration which will be made
clear later let us introduce

x=e"x, w=e"u, w=e“w, x,;1=e"x, %)

so that {2) becomes

(1) = (A +al)x(¢) + Bu(f) + Ew(r)

Vi ety b5l X(20) =x,. ©
According to LQ optimal control theory, (6) is to be
controlled during the fixed, finite time interval [z, #]

€ [%. 23] © R such that the quadratic functional, called
the performance index,

J= 1l WO R 2 T @

is minimized, where the symmetric weighting

matrices

Q T (AN (2n+u)
[T’ r|R

and R € R""" are positive semidefinite and positive
definite, respectively. The superscript * stands for the
transpose.

To minimize the performance index J subjected
to the constraint (6}, we adjoin the weighted residue of
the IVP {(6) to J,

L=J+ [0l (DA +al)x(r)+ Bu(e) + Ew(r) - ()}

+H (1o Mx(ty) - %o, (8}
and then minimize L. The column matrix A € R™
contains 2n Lagrange multipliers. Note that since the
governing equation (6);, of the IVP (&) is valid
throughout the lifetime ([#,, #,] of the engineering
structure the constraint (6), should be imposed for all
the time ¢, 4, < ¢ < ¢, as we have done in the above;
this has led us to use the different time intervals [z, ]
and [4, ¢] in the two integrals in (8) and this concept
of nested intervals is crucial in obtaining an IVP
formulation. Among all admissible varied functions
X(e}+8x(¢), uie)+ Fule), M)+ FA1) Ve elty,1,]  which
are otherwise arbitrary except that £x{z) vanishes at
the two ends ¢, and ¢, and that u(t) and hence Su(s)
are zere outside the control interval [7, r], the
necessary conditions for the optimal functions x(t),
u(t), A(t) that extremize £ are found to be

A(f) = —(A +alY A1) Vi eft,.1,], 9
A1) = ~(A +al) A(#)- Qx(r) - Tu(?)

Ve elty,t,],A(1,) =0, (10)

Aty =—~(A+alY M(5) Vrelrs,1,), an
and

u(t)=-R'B'A-RTT' () Ve elt 1,1, (12)

as well as the IVP (6). All of these have resulted from
extremizing the ./ of equation (8). In this way, as a
result of the extremization, (8), is valid for r= [4, 4]
as it should be. If in constructing L the constraint (6),
is imposed only for [f,, ] as was conventional, then
through the extremization process (), will turn out to
hold only for [¢, #;], which is obviously absurd if we
recall that an active control may last as short as

t; —t; = 50 seconds, say, but an engineering
structure may stand for more than ¢, —¢, = 50 years,

say. Notice that both equations (10} and (12) are valid



only over the control interval [£,, £].
Let us now concentrate on the control intervalls,,
#]. Combining (6) and (10) and using (12}, we have

ool ] vewen ol

where the matrix H is defined as

Hi- [“* N } (14)
R A

in which

Aj=A+al-BR'T, N=~-BR'E, B=Q-TR'T . {15)

Therefore, when the control is regulated by the
optimal law (12), the optimal x(t) and A(t) are
governed by the IVP (13), It is easy to check that N
and P are symmetrical and thus H is a Hamiltonian
matrix, which is, by definition, a square matrix
satisfying

OB =JH J:=[_"l ;] (16)

It can be shown that N is negative semidefinite. As
such, the (13) is a constant coefficient linear
Hamiltonian system defined in & symplectic space
endowed with the canonical metric J defined in (16),.

g LI

Symplectic Group and Optimality

It is known that for any real Hamiltonian matrix H
R there exists a symplectic matrix ¥ e C*™* |
which is, by definition, a square matrix satisfying

¥Iv=1J, (17
or, equivalently
I = J, (18)

such that H is similar to a Hamiltonian matrix € ¢
C namely

HY = 4, (19)
Equation (19) is called the relation of symplectic
similarity, and equations (17) and (18) the relations of
symplectic orthogonality. In fact, the ¥ is the
fundamental solution of the IVP (13) and all ¥’s
constitutes a symplectic group which characterizes the
optimality of the active control.

Contractive Group and Stahilization

Although we have been able to get an [VP
formulation such as (13) rather than a TPBVP
formulation, the TVP (13) is still suffering from
instability. To see this, let us examine the system
matrix H of (13), which is a real Hamiltonian matrix.
Recall that the eigenvalues of a real Hamiltonian
matrix are of four types: (1) the quadruples of truly
complex eigenvalues +yx &4, - - -, £y£8:, (2) the
pairs of real eigenvalues+a, - - -+, (3) the pairs of
purely imaginary eigenvalues 0,4, - - -, £B,4, and (4)
the eigenvalue 0, Hence, for the more frequently
occurring types (1) and (2), half of eigenvalues have
positive real parts, leading to unstable selutions of
(13}

To stabilize the solutions let us now define

X
V= [ l]’ z2m
where, similar to {5),
A=e"A 2n

The » may be called the complete state [5],
consisting of the state x and the costate A. From (13)
together with (5) and (21), we find that the complete
state v of the controlled structure is governed by the
vp

Woy=(H-al WO +1(1) 9t ltot M1, )=V,
where

£(r):= [E‘;(r)], voi= [’;“],

the latter being the initial complete state. Now it is
very casy to choose a value of a4 such that all the

eigenvalues of H — @l have negative real parts so
as to stabilize the controlled structure. All the scalar
matrices al form a contractive group. The direct
product of the contractive group and the symplective
group characterizes the mathematical structure of the
IVP formulation (22) of the optimally controlled
engineering structure.

(22)

W R

It has been shown that, with both the concepts of
nested time intervals and exponentally weighted time
functtons, a stable nitial value problem formulation
(22) for the linear quadratic (LQ) optimal control of
engineering  structures  subjected to  external
disturbance can be obtained. The formulation is
markedly different from the conventional two-point
boundary value problem formulation. The proposed
new contrel theory has fully taken into account the
effects of external disturbances. No essential
restrictions are imposed on the nature of external
disturbances; it can be deterministic or random,
Gaussian or non-Gaussian. Although by itself
sufficing to describe the linear structure, the state x
must be supplemented by the costate A for a complete
state v description of the LQ system, which contains
the linear structure and the quadratic-form optimal
controller. The complete state control takes full
advantage of the information of external disturbances
but does not need to know the external disturbances in
advance. It has also been shown that through an
analysis of the eigenvalues of the Hamiltonian matrix
H, which contains the information of the parameters
of the controlled structures, one can easily choose an
appropriate value of a such as to stabilize the
optimally controlled structure.
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