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Abstract

The project examined the difficulties encountered
by the linear quadratic (LQ) optimal control theories
such as the so catled LQR and LQG when they are
applied to the wibration control of engineering

structures against external loads, e.g., earthquake and
wind forces, whose histories are unknown a priori. We
established a control law based on a contractive
symplectic group, which is the direct product of a
contractive group and a symplectic group, the
symplectic group ensuring optimality of the control
law while the contractive group stabilizing the control
algorithm.

In other words, under the extended Hamiltonian
formalism, the project has achieved a stabilized
optimal linear quadratic law for controlling the
vibrations of structures of multiple degrees of freedom
{MDOF} subjected to external disturbances of general
nature. On the basis of Lie group of transformations
with time being the parameter of the group, we
developed group preserving schemes and algorithms,
which preserve characteristic quantities of the
contractive symplectic group as time elapses. Thus the
schemes have long time computational stability and
the LQ optimal control algorithms can be stabilized.

For oscillators of single degree of freedom, we
have obtained exact solutions to all relevant quantities
including solutions to the equations of metion and
control force.

Note that obtained in the project was an initial
value problem (IVP) formulation rather than a two-
point boundary value problem (TPBVP) formulation.
The significance of the IVP is that the developed
control law can be used in real time because although
taking into consideration the accumulating effect of
external loads, it needs the external loads only up to
the current time and does not need the not vet known
future loads as conventional LQ algorithms being
TPBVP do.

We studied symplectic eigenvalues, symplectic
modes, symplectic  orthogonality,  symplectic
similarity and symplectic group, and found that the
expressions of symplectic orthogonality and
symplectic similarity can summarize almost all
important identities and properties in LQ optimal
control theories.

For the problem of modeling vibration damping
for oscillators of single degree of freedom, referring to
the theory of viscoelasticity, dynamical system theory
and fractional calculus, we wrote damping models of
various types, including integral, differential,
fractional derivative, relaxation spectrum, retardation
spectrum, and clarified their relationship. For MDOF



damping models, we found three approaches; one may
refer to MDOF dynamical systems, or apply modal
analysis and add damping and synthesize the modes,
or apply symplectic modal analysis and add damping
and synthesize the symplectic modes.

Keywords : MDOF structures, vibration, damping,
stabilization, linear quadratic control, optimal control,
Hamiltonian formalism, symplectic group, contractive
group, group-preserving scheme.
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Introduction

Recent decades witnessed many  successful
applications of linear quadratic (LQ) eptimal control
theory to active control of plants in various fields. The
theory provides the active control of plants with a
two-point  boundary value problem (TPBVP)
formulation over a time interval {z,,¢ 1. Hence, to
search for an optimal control, one has to solve the
TPBVP. However, when the plants are engineering
structures designed to withstand external disturbances
(for example, buildings against earthquakes), solving
the TPBVP encounters formidable obstacles since it
has to be solved backward from the terminal time fes
so that external disturbances which do not yet occur
must be known in advance. Unless external
disturbances are entirely absent or they are white
noise stochastic processes or modeled as the output of
a prescribed linear filter subjected to a (Gaussian white
noise input, the control laws currently being used do
not achieve the goal of optimalizing the performance
index that is set up. Unfortunately, most of external
disturbances acting on engineering structures do not
meet those restrictions.

Tracing back to the origin of the difficulties
encountered---the TPBVP with the presence of
external disturbances and the stability of the
controlled structures, Hong [2,3] was able to obtain a
stable initial value problem {1VP) formulation for the
considered issue. In the current report we restrict the
controlled engineering structure to be of single degree
of freedom and examine further its behavior and
properties in details and in exact form.,

An Initial Value Problem Formulation

Consider a linear oscitlator of single degree of
freedom subjected to an external disturbance w(f) and
a control force #(f). The equation of motion of the
oscillator may be written as

Mg(e) + Cq(t) + K (1) = w(t) + u(r) O
in its lifetime [#,,¢;] < R along with the values of
g{#y) and g(1,) prescribed at a certain time instant
. Heref is (the current) time, ¢, and?, are the
birth and death times, respectively, of the oscillator,
and 2, is the initial time of a certain time interval
[f5-f,] in which we are interested. A superposed dot
indicates time differentiation. ¢, ¢ and § are the
displacement refative to the base, the velocity and the



acceleration, respectively. M,C,K are respectively
the mass, damping, and stiffness of the oscillator. To
be an engineering structure M and X are positive
and C is nonnegative.

This dynamical problem (an equation of motion
together with the initial conditions on the
displacement and velocity) can be transformed to the
following state space description:

(1) = Ax()+ Bu() +Ew() Vi e[t} x()=x, (2}
where

_ g{t) _ gt}
"(”_L'-(r)]’ Yo L‘*(ro)}’ &

and

Aol ) 1)

in whichw = (kM and &=c/@VKM) are the
natural frequency and damping ratio, respectively, of
the oscillator, In the state IVP (2), the state X € R?, the
conttol # € R, and the disturbance weR are all
functions of time; the initial state x, €R* is a constant
column  matrix; I 2

4)

and AeR , BeR s
E eR™' are constant matrices.
For a crucial consideration which will be made
clear later let us introduce
x=e"x, w=e"y, wi=e"w, x;;=e™x, (5)
so that (2) becomes
(1) = (A +al)x(2) + Bu(s) + Ew(¢)

vt elt,.1,], x(6H) =1,
The a is a positive real number to be determined
later on. As usual I and ¢ denote the identity and zero
matrices, respectively, of appropriate orders as
implied in the context,

According to LQ optimal control theory, (6) is to
be controlled during the fixed, finite time interval[#, ]
C [4. t;] < R such that the quadratic functional, called
the performance index,

J=%j;f [X Q)+ RO+ 26 OTud]d (D

is minimized, where the symmetric weighting matrix

Q I 3
eR™
lr R

is positive semidefinite and the weight R is a positive
real number. The superscript t stands for the
transpose.

To minimize the performance index J subjected
to the constraint (8), we adjoin the weighted residue of
the IVP (6) 10 J,

L=J+ngt'(r)[(A+ai)x(r)+By(r)+Ex_~(r)—;x(r)]¢

+&r(to () -%,) (8
and then minimize L. The column matrix A &€ R®
centains two Lagrange multipliers.

Note that since the governing equation (6), of the
IVP (6) is valid throughout the lifetime [Ib,td] of the

- (6)

oscillator the constraint{6), should be imposed for all
the time ¢, ¢, =¢</f,, as we have done in the
above; this has led us to use the different time
intervals {f,,,] and [¢,,,] in the two integrals
in (8) and this concept of nested intervals is crucial in
obtaining an IVP formulation. Among all admissible
varied functions  x(¢) + dx(¢), u(f) + dulr),
A(t)+ A() Vi e[r,,1,], which are otherwise
arbitrary except that 5x(¢) vanishes at the two ends
t, and £, and that u(t}) and hence Su(t) are zero
outside the control interval [£,.f,]. the necessary
conditions for the optimal functions x(¢), u(s), A(¢} that
extremize L are found to be

Aty = ~(A +al) A1) Vi elt,. 4], &)
A(1) = —(A +aly 2(1)-Qx{() - Tu(r)

Ve elt,.t,] Al)=0, (10}
MO =—(A+aly A1) Vi elt,,1), (11)
and
u()=-T'x(/}/ R-B' AR Ve et 1], (12)

as well as the IVP (6). All of these have resulted from
extremizing the J of equation (8).

In this way, as a result of the extremization, (6),
is valid V¢ €{t,.,¢,] as it should be. If in constructing
L the constraint (6), is imposed only for[f,,¢ f]as
was conventional, then through the extremization
process {6), will turn out to hold only for [ro,r_,},
which is obviously absurd if we recall that an active
control of, say, a building against an earthquake may
last as short as f ~f, = 50 seconds, but the
building itself may stand on the site for more than
t; —t, =50 years, say.

Notice that both equations (10} and (12} are valid
only over the control interval[Z;,¢, ]. Let us now
concentrate on the control interval [f;,7,].
Combining (6) and (10) and using (12}, we have

d{xn]_ [x0] [Ewe) ][] (13)
d‘[im]_ﬂ[ﬂ'}H 0 ] wretintsh [&(m]'[o]

where the matrix H is defined as

L [A N
S O

in which

A;=A+al-BT' /R N:=-BB'/R, P:=Q-TT /R, (I5)
Therefore, when the control is regulated by the
optimal law (12), the optimal x{¢) and M# are
governed by the IVP (13).

It is easy to check that N and P are symmetrical

and thus H is a Hamiltonian matrix, which is, by
definition, a square matrix satisfying

UH' =JH, J:=[" '} y=gt=oyg, yr=mg, (16

(14}

-1 9

It can be shown that N is negative semidefinite. As
such, the 1VP (13) is a constant coefficient linear
Hamiltonian system defined in a symplectic space
endowed with the canonical metric J defined in (16),.



Stabilization

Although we have been able to get an IVP
formulation such as (13} rather than a TPBVP, the
IVP (13) is still suffering from instability. To see this,
let us examine the system matrix H of (13), which is a
real Hamiltonian matrix. Recall that the eigenvalues
of a real Hamiltonian 4x4 matrix are of four types: (i}
a quadruple of truly complex sigenvalues § = 1,2, (ii)
two pairs of real eigenvalues o, *ea,, (iii) two
pairs of purely imaginary eigenvalves 5, t5,,,
and (iv) the eigenvalue 0 of multiplicity 4. Hence, for
the more frequently occurring types (i) and (ii), two of
four eigenvalues have positive real parts, leading to
unstable solutions of (13).

To stabilize the solutions let us now define

X 17
z=] .0 (17

where, similar to {5),
A=A (18)

The z may be called the complete state[1], consisting
of the state x and the costate A . From (13) together
with (5) and (18), we find that the complete state z of
the controlled oscillator is governed by the IVP

)= (H-aDz()+ f(1) Ve elt,.1, ) 2(r,) = 2,
where

Ew{t) X,
f(f)-=[0 } z,= L' :|

the latter being the initial complete state.

Now it is very easy to choose a value of a such
that all the eigenvalues of H—al have negative real
parts so as to stabilize the controlled oscillator.

(19)

Symplectic Eigenvalues and Eigenvectors
To solve the [VP (19) and to explore its properties, we
will now in this section find the eigenvalues and
eigenvectors of the system matrix H ~ al of (19) and
then in the next section perform a “modal” analysis of
(197. It is recalled that H is a real Hamiltonian matrix
and contains most of remarkable properties of the
controlled oscillator; it is thus desirable that our
eigenanalysis of H and the “modal” analysis of (19)
are able to preserve those properties (see (21) below).
Accordingly, we first attempt to make a
symplectic eigenanalysis of H; that is, given H, we
find £ and W, where

E=diag[e),00,05,0,]; ¥=[y.v.v,0.]:

such that both

H¥ = ¥Z 20
and

Y =, 2n
Equation {20) often written Hy, = o, is typical of
eigenvalue problems and equation (21) requires that
the eigenvectors I, be symplectically orthonormal,
namely

t 1 for j=i+2,
wdy, = o
O fori< j=i+2,

which taken together are equivalent to equation (21).
Similar to (vet to be contrasted with} the relation of
orthogonality ¥'T¥ = T in Euclidean space, equation
{21) is the relation of symplectic orthogomality in a
symplectic space. It is indeed the definition for a
square matrix ¥ to be symplectic. It can be seen in (21)
that J, the canonical metric of the symplectic space,
replaces I, the canonical metric of Euclidean space.

For definiteness the weighting matrix is
explicitly written
0 ¢
o 1)|% o ¢
T R| L
¢ 0 R

in which Q ;20,Q,20,R>0 are the weights for
displacement, velocity and control force, respectively,
and all cross-term weights are here assumed to be zero
for the sake of simplicity. Thus the matrix H becomes

a 1 0 0
e @ 2Ewia 0 -1AMR)
-0, 0 a o |
0 -2, -1 2w-a

With the above H substituted into {20) the eigenvalues
are found to be

o =vs+1,

oy =—ys-T,

gy ==vs+T =-a,

0-4 = S"‘F =_dz.

where _

S:= _Qr,_+[a2 -2aw.§+w2(2§1-1)],
2ZM*R

SRS ﬁR{w[mf(g-l)%]}l’Z ,

After lengthy manupulations of (20} and (21) the
corresponding {symplectically normalized)
eigenvectors are found to be

of +{ a+a) O+ 0-2a5)
(J;ﬂ){afﬁmm)[mw—lw:)]
|| dast- o @at o
| i

==

&
I
£ E

£ &
o
5
£
re)
H

(22)
for i=1,2734, where ‘I—’ﬂ. is the ji-th entry of the
4 x4 matrix ¥ and also the j-th entry of the column
matrix ¥, .

Once o and ¥, of H have been found, we
then proceed to the gigenanalysis of H—al . Tt is easy
to show that



(H-al)¥ = ¥ (Z2-al), (23)
so that H—alhas eigenvalueo; —aand eigenvectors
v, As stated in the last section, we must choose g >
max {Re o; } yieling all Re o, —a <050 as to
stabilize the controlled osciilator.

Symplectic “Modal” Analysis and Superposition
By eigenvector expansions in the symplectic space we
have

LOEDWAGEN

i=1

FO=2F0 v,

where, due to the symplectic orthogonality relation
{21),
Z()y=—w, Jz(t), Z, ()=y Jz(t), (26)

F() = ). F()=y I, @n
for i=12734, Multiplying the IVP {19) on the left
by ¥'J, using equations (23)-(27), and noting
o,, = ~o,, we gbtain four uncoupled scalar 1VPs for

240

the “modal”responses;

Z.(t) = (o, —a)Z, (1) + F(r),

Z{t) =W, 5, (t)+ ¥, g(4,).

zl2+j ()= (-0, ~a)Z, () + F,_;(2).

Z, gy = =¥y, gy} — Wy, gD, 28)
for i=12, in which the “modal” excitations are
computed by

Fty ="y, Wit} M, Fy,_{f) =, w(r}/ M.(29)
The “modal” TVPs (28) can be solved as follows:

Z(0) = ¥, 5, {8}

1
+ 'P-t,zw' {em—am-z,)é(r“) +~R}Jr:, e(o’rrr)(l—rlw(r)d,r},

(24)

(25)

Zy(0= _\ij{e(-djﬁj{rirulq(tu )}

¥, {e""““"“’“’@-(r,, ¥+ 1 [ ey ‘r)dr},

VAL
(30
for i=12.

Once the “modal” responses (30) and
eigenvectors {22) are obtained, “modal™superposition
according to (24) will vield the complete state z(t),
which includes the statex{t) {(containing the relative
displacement g(¢) and velocity 4{¢) and the
costate A(f) (containing the internal force and
momentum). With x(#) and A(¢} in hands the control
u(f) can be caleulated via the optimal control law;
w(t) = -T'x()/ R-B' AN/ R Vi elg,t,], (31)
which is derived from equations (12}, (5) and (18).

Controlled Responses to Earthquakes

It is noted that the integrals in equations (30} may be
evaluated either in closed form for those external
disturbances w(t) that are described in some simple
analytical forms, or with the aids of quadratures for

those that are defined numerically or in complicated
analytical forms. In the case of active control against
earthquakes the earthquake excitations w(t) are
measured in real time at consecutive time instants and
the variation in each time increment is usvally
assumed to be constant; as such, analytical forms of
the complete state z{¥) and the control #(f) can be
found and then tailored to time stepping algorithms.
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