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Natural convection in a differentially heated cubic enclosure is studied by solving the

velocity–vorticity form of the Navier–Stokes equations by a generalized differential quad-

rature (GDQ) method. The governing equations in the form of velocity Poisson equations,

vorticity transport equations, and energy equation are solved using a coupled numerical

scheme via a single global matrix for velocities, vorticities, and temperature. Vorticity

and velocity coupling at the solid boundaries is enforced through a higher-order approxi-

mation by the GDQ method, thus assuring accurate satisfaction of the continuity equation.

Nusselt numbers computed for Ra ¼ 103, 104, 105, and 106 show good agreement with the

benchmark results. A mesh independence study indicates that the present numerical

procedure requires much coarse mesh compared to other numerical schemes to produce

the benchmark solutions of the flow and heat transfer problems.

1. INTRODUCTION

Vortex-dominant flow is an important characteristic of natural convection in
differentially heated cavities. In situations where the main concern is heat transfer
rather than the pressure field, the velocity–vorticity form of the momentum equa-
tions is a better choice compared to the primitive-variable form to achieve the
divergence-free velocity field constraint for the incompressible Navier–Stokes equa-
tions in three dimensions. In addition, the vortex flow-dominated natural-convection
flow field can be simulated directly by the velocity–vorticity formulation, without the
need to handle the pressure term. For the case of incompressible fluid flows, if the
incompressibility condition imposed by the continuity equation is satisfied by some
means, then a divergence-free flow field can be computed by solving the velocity–
vorticity equations [1–5]. Mallinson and de Vahl Davis [6] were the first to propose
the vorticity–stream function formulation without the pressure term, to study natu-
ral convection in a rectangular box. Though this formulation is easy to implement
for the case of two-dimensional problems, an extension to three-dimensional pro-
blems is not straightforward. Further, the velocity, which is required for computing
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the Nusselt number, has to be computed as a derived variable. Wong and Baker [5]
used the velocity–vorticity equations to study natural convection in a cubic enclos-
ure. However, the two main issues encountered with the velocity–vorticity formu-
lation are (1) that the number of variables is increased from four to six as
compared to the primitive-variable form for three-dimensional problems, and (2)
enforcing the vorticity definition at the solid boundaries to satisfy the continuity
equation [7]. As a solution to the first problem, Davis and Carpenter [4] solved only
three governing equations by considering two velocities and one vorticity as the
primitive variables and computed the remaining three field variables as secondary
variables. However, they handled the convective part of the governing equations
using a predictor–corrector scheme, thus deviating not much from the existing algo-
rithms for treating the pressure term.

With regard to the second problem, enforcing the vorticity definition at the
wall, a higher-order scheme is essential to compute the boundary vorticity values
in terms of the velocity gradients. Wong and Baker [5] used a second-order-
accurate Taylor’s series expansion to compute the vorticity values at the bound-
aries. Davis and Carpenter [4] used an integral approach for vorticity definition
at the boundary, as followed by Guevremont et al. [10]. Such low-order schemes
have been commonly employed with the finite-element methods [4, 5, 8, 9] and the
finite-difference methods [2, 3] in the solution of velocity–vorticity equations. Since
the finite-difference method and the finite-element method use only low-order
approximations for spatial discretization of the differential operators, a large
number of grid points have to be used to achieve benchmark solutions. Though
higher-order elements can be used in the case of the finite-element method, the
implementation becomes unwieldy for the case of three-dimensional flow problems.
One way to overcome both the problems discussed above is to use a higher-order
approximating scheme such as the generalized differential quadrature (GDQ)
method.

The GDQ method approximates a partial differential equation with a higher-
order polynomial by using all the grid points in the coordinate direction [11]. Hence,
even with a coarse mesh, the vorticity boundary values can be evaluated with

NOMENCLATURE

g acceleration due to gravity

L length

Numean mean Nusselt number throughout the

cavity

Nuoverall overall Nusselt number on the

boundary at x ¼ �0.5 or x ¼ 0.5

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

T temperature

Ta reference temperature

u; v;w dimensionless velocity in the x; y; z

directions

x; y; z dimensionless Cartesian coordinate

directions

a diffusion coefficient

b thermal expansion coefficient

C boundary of the closed domain

m dynamic viscosity

t kinematic viscosity

q mass density

n;g; f dimensionless vorticity in the x; y; z

directions

X computational domain
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higher-order accuracy naturally, without the need for a separate approximation
scheme. Though the GDQ method has been used to solve the Navier–Stokes equa-
tions in two and three dimensions, works are available only for the stream function–
vorticity and primitive-variable forms of the Navier–Stokes equations [12–14].
Further, most of the works on 3-D natural convection, except Mallinson and
de Vahl Davis [6] and Wong and Baker [5], used the primitive-variable form of
the Navier–Stokes equations. Numerical solutions for natural convection in a cubic
cavity have also been reported using numerical schemes based on a pseudo-spectral
Chebyshev algorithm [15], the lattice Boltzmann model [16], the finite-difference
method [17], the finite-element method [5], etc. Wakashima and Saitoh [18] used a
vorticity–vector potential formulation to produce benchmark solutions for natural
convection in a cubic cavity using uniform grids of size 1203. All the above numerical
procedures employed finer meshes of the order of 513 and above in order to achieve
benchmark solutions for 103 � Ra � 106. Wong and Baker [5] used a mesh of size
483 to solve the velocity–vorticity equations by the finite-element method using a
parallel computational algorithm. Recently, Lo et al. [19] reported results for natural
convection in a square cavity using a simple numerical algorithm based on the
velocity–vorticity formulation and the GDQ method for Ra ¼ 103–106. They
demonstrated that the use of theGDQmethod in combinationwith the velocity–vorticity
formulation requires only a much coarser mesh compared to other numerical
schemes to achieve the benchmark solutions. In the present work, a numerical
scheme based on the GDQ method is proposed to solve the velocity–vorticity form
of the Navier–Stokes equations with the aim of offseting the increased computa-
tional effort by the increased number of field variables for three-dimensional
problems in the velocity–vorticity formulation. The methodology underlying the
2-D model of the velocity–vorticity formulation using the GDQ method developed
by Lo et al. [19] is now extended to 3-D work.

All the flow variables and the temperature scalar are coupled together through
their coefficient matrices resulting from the approximation of the governing equa-
tions by the GDQ method. The time derivatives in the governing equations are
discretized using a second-order-accurate, implicit, three-time-level scheme. The final
simultaneous equations are solved using a BiCG iterative scheme by storing only the
nonzero entries of the coefficient matrix. The efficiency of the proposed numerical
scheme is demonstrated by computing flow and heat transfer results for natural
convection in a cubic cavity for the Rayleigh number range of 103–106, as discussed
in the following sections.

2. GENERALIZED DIFFERENTIAL QUADRATURE METHOD

The method of GDQ replaces a given partial space derivative of a function
f(x) by a linear weighted sum of the function values at the discrete sample points
considered along a coordinate direction, resulting in a set of algebraic equations.
Hence the GDQ method can be used to obtain numerical solution of partial differ-
ential equations with higher-order accuracy. The details about this method can be
obtained elsewhere [12, 20]. For a function of three variables f(x,y,z), the pth-order
derivatives, qth-order derivatives, and rth-order derivatives of the function with
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respect to x, y, and z can be obtained as

f ðpÞx ðxi; yj; zkÞ ¼
XL
l¼1

A
ðpÞ
i;l f ðxl ; yj; zkÞ p ¼ 1; 2; . . . ;L� 1 ð1aÞ

f ðqÞx ðxi; yj; zkÞ ¼
XM
m¼1

B
ðqÞ
j;m f ðxl ; ym; zkÞ q ¼ 1; 2; . . . ;M � 1 ð1bÞ

f ðrÞx ðxi; yj; zkÞ ¼
XN
n¼1

C
ðrÞ
k;nf ðxi; yj; znÞ r ¼ 1; 2; . . . ;N � 1

for i ¼ 1; 2; . . . ;L; j ¼ 1; 2; . . . ;M; k ¼ 1; 2; . . . ;N

ð1cÞ

where l, m, n represent the indices for the grid points in the x, y, and z coordinates,
respectively; L, M, N are the number of grid points in the x, y, z directions, respect-
ively; and A

ðpÞ
i;l ; B

ðqÞ
j;m; C

ðrÞ
k;n are the weighting coefficients. The first-order weighting

coefficients A
ð1Þ
i;l ; B

ð1Þ
j;m; C

ð1Þ
k;n can be determined as follows:

A
ð1Þ
i; j ¼

Lð1ÞðxiÞ
ðxi � xjÞLð1ÞðxjÞ

i; j ¼ 1; 2; . . . ;L; but j 6¼ i ð2aÞ

B
ð1Þ
i; j ¼ Mð1ÞðyiÞ

ðyi � yjÞMð1ÞðyjÞ
i; j ¼ 1; 2; . . . ;M; but j 6¼ i ð2bÞ

C
ð1Þ
i; j ¼ Nð1ÞðziÞ

ðzi � zjÞNð1ÞðzjÞ
i; j ¼ 1; 2; . . . ;N; but j 6¼ i ð2cÞ

in which

Lð1ÞðxiÞ ¼
YL

j¼1; j 6¼i

ðxi � xjÞ Mð1ÞðyiÞ ¼
YM

j¼1; j 6¼i

ðyi � yjÞ

Nð1ÞðziÞ ¼
YN

j¼1; j 6¼i

ðzi � zjÞ ð3Þ

Similarly, the weighting coefficients for the second- and higher-order derivatives can
be obtained as

A
ðpÞ
i; j ¼ p A

ðp�1Þ
i;i A

ð1Þ
i; j �

A
ðp�1Þ
i; j

xi � xj

 !
for i; j ¼ 1; 2; . . . ;L; but j 6¼ i; l ¼ 2; 3; . . . ;L� 1

ð4aÞ
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B
ðqÞ
i; j ¼ q B

ðq�1Þ
i;i B

ð1Þ
i; j �

B
ðq�1Þ
i; j

yi � yj

 !
for i; j ¼ 1;2; . . . ;M; but j 6¼ i; m¼ 2;3; . . . ;M � 1

ð4bÞ

C
ðrÞ
i; j ¼ r C

ðr�1Þ
i;i C

ð1Þ
i; j �

C
ðr�1Þ
i; j

zi � zj

 !
for i; j ¼ 1; 2; . . . ;N; but j 6¼ i; n ¼ 2; 3; . . . ;N � 1

ð4cÞ

When j ¼ i, the weighting coefficients are written as

A
ðpÞ
i;i ¼ �

XL
j¼1; j 6¼i

A
ðpÞ
i; j i ¼ 1; 2; . . . ;L; p ¼ 1; 2; . . . ;L� 1 ð5aÞ

B
ðqÞ
i;i ¼ �

XM
j¼1; j 6¼i

B
ðqÞ
i; j i ¼ 1; 2; . . . ;M; q ¼ 1; 2; . . . ;M � 1 ð5bÞ

C
ðrÞ
i;i ¼ �

XN
j¼1; j 6¼i

C
ðrÞ
i; j i ¼ 1; 2; . . . ;N; r ¼ 1; 2; . . . ;N � 1 ð5cÞ

It should be noted from the above equations that the weighting coefficients of the
second- and higher-order derivatives can be computed from the first-order deriva-
tives themselves.

3. GOVERNING EQUATIONS

The governing equations for natural convection can be described by the
incompressible Navier–Stokes equations and the energy equation. Assuming the
Boussinesq approximation, the primitive-variable forms of these equations can be
written in dimensional form as follows.
Continuity equation:

r �~uu� ¼ 0 ð6Þ

Momentum equations:

q~uu�

qt�
þ ð~uu� � rÞ~uu� ¼ � 1

q
rP� þ tðr2~uu�Þ þ gbðT� � TaÞ~kk ð7Þ

Energy equation:

qT�

qt�
þ~uu� � ðrT�Þ ¼ ar2 T� ð8Þ

on a Cartesian coordinate frame in which x–y represents the horizontal plane and z
refers to the vertical direction. In the velocity–vorticity form of the Navier–Stokes
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equations, the vorticity vector is defined as

~xx� ¼ r �~uu� ð9Þ

By taking the curl on both sides of Eq. (7) and using the vorticity definition, the
momentum conservation equation (7) can be rewritten as

q~xx�

qt�
þ~uu� � r~xx� ¼ ~xx� � r~uu� þ tr2~xx� þ r� ½gbðT� � TaÞ�~kk ð10Þ

where~uu� ¼ ðu�; v�;w�Þ and ~xx� ¼ ðn�;g�; 1�Þ are the velocity and the vorticity vectors
in dimensional form representing the components in the x, y, and z directions,
respectively; ~kk is the unit vector in the z direction; T�¼ dimensional form of
temperature; and Ta is the reference temperature. The vorticity transport equation
(10) is a single vector equation with two unknown vectors, ~uu� and ~xx�. A second
vector equation can be obtained by taking curl of the vorticity definition given by
Eq. (9). After using the vorticity definition and the continuity equation, the second
vector equation is obtained as

r2~uu� ¼ �r�~xx� ð11Þ

The above equation is the velocity Poisson equation, which expresses the kinematic
relationship between the velocity vector and the vorticity vector. By standard nondi-
mensionalization of Eq. (10), the vorticity transport equation in nondimensional
form can be written as

q~xx
qt

þ~uu � r~xx ¼ ~xx � r~uuþ Prr2~xxþRaPrr�ðTÞ~kk ð12Þ

The nondimensional parameters are defined as Prandtl number Pr ¼ t=a and
Rayleigh number Ra ¼ gbDT L3=at.

Similarly the nondimensional form of the velocity Poisson equation (11) can be
rewritten as

r2~uu ¼ �r�~xx ð13Þ

Then the energy equation (8) can be written in nondimensional form as

qT
qt

þ~uu � ðrTÞ ¼ r2T ð14Þ

Equations (12)–(14) are the final form of the governing equations that characterize
the flow and heat transfer during a natural-convection process. These equations have
to be solved in a computational domain X which is enclosed by a solid boundary C.
For the case of natural convection in a differentially heated cubic cavity, no-slip
velocity boundary conditions are assumed on all the boundary walls. The Dirichlet
boundary conditions for velocity on all the walls can be imposed as

~uu ¼~uub ¼ 0 ð15Þ
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The boundary conditions for the vorticity transport equations are computed from its
definition given by Eq. (9). The energy equation is solved by assuming Dirichlet
temperature boundary conditions equal to 0.5 and �0.5, respectively, on the
left and the right walls of the cavity. Other walls of the cavity are assumed to be adia-
batic for heat transport. The Dirichlet and Neumann boundary conditions for the
energy equation can be written as

T ¼ Tb ð16aÞ

qT
qy

¼ 0
qT
qz

¼ 0 ð16bÞ

4. NUMERICAL SOLUTION

In the classical numerical solution algorithms [5, 10], an iterative solution pro-
cedure is adopted to resolve the coupling between Eqs. (12)–(14). This will result in
huge computational effort in terms of computer memory and computational time for
3-D problems. In order to achieve a significant saving in computational effort, a
coupled solution scheme via a single global matrix for all the field variables is
adopted in the present work. Since all the field variables are solved using a coupled
algorithm, the boundary vorticity values are computed implicitly, without the need
to compute the boundary vorticity values externally using a separate scheme such as
the Taylor’s series expansion scheme used by Wong and Baker [5]. The coupled
algorithm has also enabled the implicit enforcement of the kinematic Poisson equa-
tion as well as the coupling of the velocity and the vorticity at the wall. In addition to
this, the use of the GDQ method enables the approximation of the vorticity defi-
nition at the boundaries with higher-order accuracy. Hence the continuity constraint
and the conservation of the solenoidality of vorticity field are easily satisfied. The
time derivatives of the vorticity transport equations and energy equation are discre-
tized using a second-order-accurate, three-time-level implicit scheme. For example,
the time derivative of a variable u can be approximated as

qu
qt

¼ 3utþ1 � 4ut þ ut�1

2Dt

4.1. Approximation of the Governing Equations Using the
GDQ Method

Application of the GDQ method to spatial discretization of the governing
equations results in a set of algebraic equations. The GDQ form of the governing
equations can be expressed as follows.

Velocity–Poisson equations in the three coordinate directions:

XL
l¼1

A
ð2Þ
i;l ul; j;k þ

XM
m¼1

B
ð2Þ
j;mui;m;k þ

XN
n¼1

C
ð2Þ
k;nui; j;n þ

XM
m¼1

B
ð1Þ
j;mfi;m;k �

XN
n¼1

C
ð1Þ
k;ngi; j;n ¼ 0

ð17aÞ
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XL
l¼1

A
ð2Þ
i;l vl; j;k þ

XM
m¼1

B
ð2Þ
j;mvi;m;k þ

XN
n¼1

C
ð2Þ
k;nvi; j;n �

XL
l¼1

A
ð1Þ
i;l fl; j;k þ

XN
n¼1

C
ð1Þ
k;nni; j;n ¼ 0 ð17bÞ

XL
l¼1

A
ð2Þ
i;l wl; j;k þ

XM
m¼1

B
ð2Þ
j;mwi;m;k þ

XN
n¼1

C
ð2Þ
k;nwi; j;n þ

XL
l¼1

A
ð1Þ
i;l gl; j;k �

XM
m¼1

B
ð1Þ
j;mni;m;k ¼ 0

ð17cÞ

Vorticity transport equations in the three coordinate directions:

3

2Dt

� �
ðni; j;kÞtþ1 þ uqi; j;k

XL
l¼1

A
ð1Þ
i;l nl; j;k þ vqi; j;k

XM
m¼1

B
ð1Þ
j;mni;m;k þ wq

i; j;k

XN
n¼1

C
ð1Þ
k;nni; j;n

 !tþ1

� nqi; j;k
XL
l¼1

A
ð1Þ
i;l ul; j;k þ gq

i; j;k

XM
m¼1

B
ð1Þ
j;mui;m;k þ fqi; j;k

XN
n¼1

C
ð1Þ
k;nui; j;n

 !tþ1

� Pr
XL
l¼1

A
ð2Þ
i;l nl; j;k þ

XM
m¼1

B
ð2Þ
j;mni;m;k þ

XN
n¼1

C
ð2Þ
k;nni; j;n

 !tþ1

�RaPr
XM
m¼1

B
ð1Þ
j;mTi;m;k

 !tþ1

¼ 4

2Dt

� �
nt

ijk
þ �1

2Dt

� �
nt�1

ijk
ð18aÞ

3

2Dt

� �
ðgi; j;kÞtþ1 þ uqi; j;k

XL
l¼1

A
ð1Þ
i;l gl; j;k þ vqi; j;k

XM
m¼1

B
ð1Þ
j;mgi;m;k þ wq

i; j;k

XN
n¼1

C
ð1Þ
k;ngi; j;n

 !tþ1

� nqi; j;k
XL
l¼1

A
ð1Þ
i;l vl; j;k þ gq

i; j;k

XM
m¼1

B
ð1Þ
j;mvi;m;k þ fqi; j;k

XN
n¼1

C
ð1Þ
k;nvi; j;n

 !tþ1

� Pr
XL
l¼1

A
ð2Þ
i;l gl; j;k þ

XM
m¼1

B
ð2Þ
j;mgi;m;k þ

XN
n¼1

C
ð2Þ
k;ngi; j;n

 !tþ1

þRaPr
XL
l¼1

A
ð1Þ
i;l Tl; j;k

 !tþ1

¼ 4

2Dt

� �
gt

ijk
þ �1

2Dt

� �
gt�1

ijk
ð18bÞ

3

2Dt

� �
ðfi; j;kÞ

tþ1 þ u
q
i; j;k

XL
l¼1

A
ð1Þ
i;l fl; j;k þ v

q
i; j;k

XM
m¼1

B
ð1Þ
j;mfi;m;k þ w

q
i; j;k

XN
n¼1

C
ð1Þ
k;nfi; j;n

 !tþ1

� nqi; j;k
XL
l¼1

A
ð1Þ
i;l wl; j;k þ gq

i; j;k

XM
m¼1

B
ð1Þ
j;mwi;m;k þ fqi; j;k

XN
n¼1

C
ð1Þ
k;nwi; j;n

 !tþ1

� Pr
XL
l¼1

A
ð2Þ
i;l fl; j;k þ

XM
m¼1

B
ð2Þ
j;mfi;m;k þ

XN
n¼1

C
ð2Þ
k;nfi; j;n

 !tþ1

¼ 4

2Dt

� �
ft
ijk
þ �1

2Dt

� �
ft�1
ijk

ð18cÞ
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Energy equation:

3

2Dt

� �
ðTi; j;kÞtþ1 þ uqi; j;k

XL
l¼1

A
ð1Þ
i;l Tl; j;k þ vqi; j;k

XM
m¼1

B
ð1Þ
j;mTi;m;k þ wq

i; j;k

XN
n¼1

C
ð1Þ
k;nTi; j;n

 !tþ1

�
XL
l¼1

A
ð2Þ
i;l Tl; j;k þ

XM
m¼1

B
ð2Þ
j;mTi;m;k þ

XN
n¼1

C
ð2Þ
k;nTi; j;n

 !tþ1

¼ 4

2Dt

� �
Tt

ijk
þ �1

2Dt

� �
Tt�1

ijk

ð19Þ

Combining Eqs. (17)–(19), all the seven field variables can be represented by means
of a single global matrix as

A 0 0 0 �D C 0
0 A 0 D 0 �B 0
0 0 A �C B 0 0
E 0 0 F 0 0 G
0 E 0 0 F 0 H
0 0 E 0 0 F 0
0 0 0 0 0 0 I

2
666666664

3
777777775

u
v
w
n
g
f
T

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

fu
fv
fw
fn
fg
ff
fT

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð20Þ

where A, B, C, D, E, F, G, and H are the influence matrices which represent the vari-
ous differential operators that appear in the GDQ approximation of Eqs. (17)–(19),
u, v, w, n; g; f, and T are the vectors representing the unknown field variables, and
fu; fv; fw; fn; fg; ff; fT are the load vectors. The influence matrices and the load vec-
tors are computed as

½A� ¼
XL
l¼1

A
ð2Þ
i;l þ

XM
m¼1

B
ð2Þ
j;m þ

XN
n¼1

C
ð2Þ
k;n

½B� ¼
XL
l¼1

A
ð1Þ
i;l ½C� ¼

XM
m¼1

B
ð1Þ
j;m ½D� ¼

XN
n¼1

C
ð1Þ
k;n

½E� ¼ � nqi; j;k
XL
l¼1

A
ð1Þ
i;l þ gq

i; j;k

XM
m¼1

B
ð1Þ
j;m þ fqi; j;k

XN
n¼1

C
ð1Þ
k;n

 !

½F � ¼ 3

2Dt
þ uqi; j;k

XL
l¼1

A
ð1Þ
i;l þ vqi; j;k

XM
m¼1

B
ð1Þ
j;m þ wq

i; j;k

XN
n¼1

C
ð1Þ
k;n

 !

� Pr
XL
l¼1

A
ð2Þ
i;l þ

XM
m¼1

B
ð2Þ
j;m þ

XN
n¼1

C
ð2Þ
k;n

 !

½G� ¼ �RaPr
XM
m¼1

B
ð1Þ
j;m ½H� ¼ RaPr

XL
l¼1

A
ð1Þ
i;l

½I � ¼ 3

2Dt
þ uqi; j;k

XL
l¼1

A
ð1Þ
i;l þ vqi; j;k

XM
m¼1

B
ð1Þ
j;m þ wq

i; j;k

XN
n¼1

C
ð1Þ
k;n

 !

�
XL
l¼1

A
ð2Þ
i;l þ

XM
m¼1

B
ð2Þ
j;m þ

XN
n¼1

C
ð2Þ
k;n

 !
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½ fu� ¼ 0 ½fv� ¼ 0 ½fw� ¼ 0

½ fn� ¼
4

2Dt
nt þ �1

2Dt
nt�1 ½fg� ¼

4

2Dt
gt þ �1

2Dt
gt�1

½ ff� ¼
4

2Dt
ft þ �1

2Dt
ft�1 ½ fT � ¼

4

2Dt
ðTÞt þ �1

2Dt
ðTÞt�1

where q is the iterative number index and t is the time-level index.

4.2. Determination of Vorticity Boundary Conditions

The vorticity boundary conditions for all the three vorticity transport equa-
tions in the principal coordinate directions are computed using the vorticity defi-
nition given by Eq. (9). The velocity gradients used in this definition can be
computed with a higher-order accuracy using the first-order weighting coefficients
A

ð1Þ
i;l ; B

ð1Þ
j;m; C

ð1Þ
k;n. By applying the GDQ approximation to the vorticity definition

given by Eq. (9), the three vorticity components on a boundary can be expressed as

ni; j;k �
XM
m¼1

B
ð1Þ
j;mwi;m;k þ

XN
n¼1

C
ð1Þ
k;nvi; j;n ¼ 0 ð21aÞ

gi; j;k þ
XL
l¼1

A
ð1Þ
i;l wl; j;k �

XN
n¼1

C
ð1Þ
k;nui; j;n ¼ 0 ð21bÞ

fi; j;k �
XL
l¼1

A
ð1Þ
i;l vl; j;k þ

XM
m¼1

B
ð1Þ
j;mui;m;k ¼ 0 ð21cÞ

The Dirichlet boundary conditions for the temperature are expressed as

TL; j;k ¼ 0:5 j ¼ 1; . . . ;M; k ¼ 1; . . . ;N

T1; j;k ¼ �0:5 j ¼ 1; . . . ;M; k ¼ 1; . . . ;N
ð22Þ

The adiabatic boundary conditions can be achieved by computing the normal
derivatives of the temperature at the adiabatic walls and equating them to zero.
Hence the GDQ forms of the adiabatic boundary conditions can be represented
by the following expressions [20]:

Ti;1;k ¼
1

B
ð1Þ
1;1B

ð1Þ
M;M � B

ð1Þ
1;MB

ð1Þ
M;1

XM�1

m¼2

B
ð1Þ
1;MB

ð1Þ
M;m � B

ð1Þ
M;MB

ð1Þ
1;m

� �
Ti;m;k

" #
ð23aÞ

Ti;M;k ¼ 1

B
ð1Þ
1;1B

ð1Þ
M;M � B

ð1Þ
1;MB

ð1Þ
M;1

XM�1

m¼2

B
ð1Þ
M;1B

ð1Þ
1;m � B

ð1Þ
1;1B

ð1Þ
M;m

� �
Ti;m;k

" #
ð23bÞ

Ti; j;1 ¼
1

C
ð1Þ
1;1C

ð1Þ
N;N � C

ð1Þ
1;NC

ð1Þ
N;1

XN�1

n¼2

C
ð1Þ
1;NC

ð1Þ
N;n � C

ð1Þ
N;NC

ð1Þ
1;n

� �
Ti; j;n

" #
ð23cÞ
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Ti; j;N ¼ 1

C
ð1Þ
1;1C

ð1Þ
N;N � C

ð1Þ
1;NC

ð1Þ
N;1

XN�1

n¼2

C
ð1Þ
N;1C

ð1Þ
1;n � C

ð1Þ
1;1C

ð1Þ
N;n

� �
Ti; j;n

" #
ð23dÞ

Equations (23a)–(23d) also involve the implicit scheme for the Neumann boundary
conditions. The simultaneous equations resulting from the global matrix system of
Eq. (20) are solved using a BiCG iterative equation solver. Since the coefficient
matrix of the global matrix system is sparse, only the nonzero entries are stored in
column storage format. In the present study we employed the following convergence
criteria to terminate the iterative process used to resolve the coupling between the
field variables at a given time step:

ðutþ1
qþ1 � utþ1

q Þ=utþ1
q

��� ��� � 10�6 ðvtþ1
qþ1 � vtþ1

q Þ=vtþ1
q

��� ��� � 10�6

ðwtþ1
qþ1 � wtþ1

q Þ=wtþ1
q

��� ��� � 10�6 ðntþ1
qþ1 � ntþ1

q Þ=ntþ1
q

��� ��� � 10�6

ðgtþ1
qþ1 � gtþ1

q Þ=gtþ1
q

��� ��� � 10�6 ðftþ1
qþ1 � ftþ1

q Þ=ftþ1
q

��� ��� � 10�6

ðTtþ1
qþ1 � Ttþ1

q Þ=Ttþ1
q

��� ��� � 10�6

In the successive time step, we used the velocity, vorticity, and temperature compo-
nents at the previous time step as the initial guess for the next iteration. The compu-
tations are carried out until steady-state conditions are reached. The convergence
criteria used in the time loop to achieve steady-state conditions are

ðutþ1 � utÞ=ut
�� �� � 10�6 ðvtþ1 � vtÞ=vt

�� �� � 10�6 ðwtþ1 � wtÞ=wt
�� �� � 10�6

ðntþ1 � ntÞ=nt
�� �� � 10�6 ðgtþ1 � gtÞ=gt

�� �� � 10�6 ðftþ1 � ftÞ=ft
�� �� � 10�6

ðTtþ1 � TtÞ=Tt
�� �� � 10�6

For the GDQ method, the mesh point distribution in the three spatial coordinates is
assumed to be the same and is expressed as

xi ¼
cos½p=ð2LÞ� � cos½ð2i � 1Þp=ð2LÞ�
cos½p=ð2LÞ� � cos½ð2L� 1Þp=ð2LÞ� i ¼ 1; 2; . . . ;L

yj ¼
cos½p=ð2MÞ� � cos½ð2j � 1Þp=ð2MÞ�
cos½p=ð2MÞ� � cos½ð2M � 1Þp=ð2MÞ� j ¼ 1; 2; . . . ;M

zk ¼
cos½p=ð2NÞ� � cos½ð2k � 1Þp=ð2NÞ�
cos½p=ð2NÞ� � cos½ð2N � 1Þp=ð2NÞ� k ¼ 1; 2; . . . ;N

ð24Þ

where L, M, N are the number of grid points in the x, y, and z directions,
respectively.

5. RESULTS AND DISCUSSIONS

The accuracy of the present numerical procedure is verified by (1) a grid inde-
pendence study and (2) validating the predicted results with the benchmark
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solutions. Air is assumed to be the working fluid, with Pr ¼ 0:71 for the natural-
convection simulation cases.

5.1. Grid Independence Study

For the grid independence study, numerical results are obtained for natural
convection in a cubic cavity (see Figure 1) for Ra ¼ 103 and 104. The computational
grid was refined successively from 153 to 193 and 253. The following mean and over-
all Nusselt numbers are considered as the parameters for comparison purposes.

1. The mean Nusselt number throughout the cavity is

NumeanðyÞ ¼
Z 1

0

qTðy; zÞ
qx

����
x¼�0:5; or x¼0:5

dz ð25Þ

2. The overall Nusselt number on the boundary at x ¼�0.5 or x ¼ 0.5 is

Nuoverall ¼
Z 1

0

NumeanðyÞ dy ð26Þ

The effect of grid refinement on the values of the mean and the overall Nusselt
numbers is shown in Table 1 for Ra ¼ 103 and 104. As the mesh is refined
successively from 153 to 193 and 253, there is a consistent improvement in the accu-
racy of the predicted values of the Nusselt numbers for both values of the Rayleigh
number, with no difference being observed between the grids 193 and 253. This indi-
cates that the 253 grid can produce grid-independent numerical results and hence will
be used throughout this work. The grid independence study is also demonstrated by

Figure 1. Geometry and boundary conditions for the buoyancy-driven cavity problem.
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plotting the temperature profiles along the centerline of the symmetry plane at
y ¼ 0.5. Figures 2a and 2b show the effect of grid refinement on the temperature pro-
files for Ra ¼ 103 and 104, respectively. The temperature profiles of all three meshes
almost coincide with each other for both Ra ¼ 103 and 104. The effect of grid refine-
ment on the velocity profile u–z along the vertical symmetric central line is shown in
Figures 3a-1 and 3a-2 for Ra ¼ 103 and 104, respectively. Similarly, Figures 3b-1 and
3b-2 represent the x–w plots along the horizontal symmetric central line for Ra ¼ 103

and 104, respectively. The exact coincidence of the above velocity profiles for all
three meshes indicates that the present numerical algorithm based on the velocity–
vorticity formulation and the GDQ method predicts the temperature and flow
results consistent with grid refinement.

5.2. Validation of Numerical Results

For the case of a natural-convection problem, the effect of Rayleigh number on
the convective heat transfer between the end walls is evaluated in terms of the mean
and the overall Nusselt number for Ra ¼ 103, 104, 105, and 106. In order to validate
the present numerical algorithm, the predicted results are compared with the results
obtained by three different numerical schemes: (1) the pseudo-spectral Chebyshev
algorithm (Tric et al., 2000), (2) the lattice Boltzmann model (Peng et al., 2003),
and (3) the finite-difference method (Fusegi et al., 1991). Table 2 shows the compari-
son of the present results with the results of the above three numerical schemes for
Ra ¼ 103 and 104. For both Rayleigh numbers, the present results are in close agree-
ment with the results of the above three numerical schemes, which adopted grids
finer than 253, used in the present method. Table 3 shows a similar comparison
for Ra ¼ 105 and 106. Even for higher Rayleigh number values, the present results
obtained using 253 grid are closer to the results of Tric et al. [15], who used a grid
size of 813. A close look at the tabular values indicates that the present predictions
are in better agreement with the results of Tric et al. [15] compared to the results of
the other two numerical schemes [16, 17], obtained using finer meshes. For all four
values of Rayleigh number considered in the present analysis, the average and over-
all Nusselt numbers on the isothermal wall have been predicted with less than 0.4%
error in comparison to the benchmark results of Tric et al. [15]. Though Wong and
Baker [5] also solved the velocity–vorticity equations to study natural convection in a
cubic cavity, they had to use a fine mesh of size 483 in order to compute the vorticity
boundary values using a second-order-accurate Taylor’s series scheme, since they
employed the finite-element method. Moreover, the numerical schemes used in

Table 1. Grid independence study results for Ra ¼ 103 and 104

Ra
103 104

Method GDQ GDQ GDQ PSC [15] GDQ GDQ GDQ PSC [15]

Mesh size 153 193 253 323 153 193 253 613

Nuoverall 1.069 1.070 1.070 1.070 2.052 2.054 2.054 2.0542

Numean (y ¼ 0.5) 1.085 1.087 1.087 1.0873 2.248 2.251 2.251 2.2505
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[5, 15–17] were implemented on high-speed computers such as Cray computers.
Using the present numerical algorithm, the benchmark results could be achieved
using a coarse mesh on a Pentium IV personal computer. The reason is that the

Figure 2. Temperature profiles in the centerline of the symmetry plane at y ¼ 0.5 for (a) Ra ¼ 103,

(b) Ra ¼ 104.
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Figure 3. Velocity profiles along the centerline in the symmetry plane at y ¼ 0.5 for (a) Ra ¼ 103, (b)

Ra ¼ 104.

Table 2. Validation results for Ra ¼ 103 and 104: Comparison of Nusselt number at the isothermal wall,

x ¼�0.5

Ra
103 104

Method GDQ PSC [15] LBM [16] FDM [17] GDQ PSC [15] LBM [16] FDM [17]

Mesh size 253 613 813 323 253 613 61� 45� 45 623

Nuoverall 1.070 1.070 1.075 1.085 2.054 2.0542 2.085 2.100

Numean (y ¼ 0.5) 1.087 1.0873 1.097 1.105 2.251 2.2505 2.304 2.302
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Table 3. Validation results for Ra ¼ 105 and 106: Comparison of Nusselt number at the isothermal wall,

x ¼�0.5

Ra
105 106

Method GDQ PSC [15] LBM [16] FDM [17] GDQ PSC [15] LBM [16] FDM [17]

Mesh size 253 813 91� 65� 65 623 253 813 N=A 623

Nuoverall 4.335 4.3370 4.378 4.361 8.666 8.6407 N=A 8.770

Numean (y ¼ 0.5) 4.610 4.6127 4.658 4.646 8.91 8.8771 N=A 9.012

Figure 4. Velocity vectors at y ¼ 0.5 plane for (a) Ra ¼ 103, (b) Ra ¼ 104, (c) Ra ¼ 105, (d) Ra ¼ 106.
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GDQ method makes use of all the grid points in a given coordinate direction while
approximating a differential with respect to that coordinate direction. Hence, while
computing the vorticity values at the boundary, there is no need to use very fine
mesh near the boundary as required in the finite-element scheme [5].

5.3. Results on Flow and Thermal Characteristics

The ability of the present coupled numerical scheme is further demonstrated by
plotting the velocity, vorticity, and temperature contours on various symmetric
mid-planes along the principal axes of the cubic cavity. Figures 4a–4d show the velo-
city vector distributions on the x�z plane at y ¼ 0.5 for Ra ¼ 103, 104, 105, and 106.
As the Rayleigh number increases, the flow is characterized by a combination of an

Figure 5. Vorticity contours at y ¼ 0.5 plane for (a) Ra ¼ 103, (b) Ra ¼ 104, (c) Ra ¼ 105, (d) Ra ¼ 106.
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Figure 6. Centerline velocity profiles of the symmetry plane for 103 � Ra � 106.
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almost stagnant interior fluid core and distinct boundary layers near the side walls.
Since the vorticity is the primitive variable in the present formulation, the vortical
flow patterns due to the natural convection are obtained directly. The vorticity con-
tour distributions on the x�z plane at y ¼ 0.5 are shown in Figures 5a–5d for
Ra ¼ 103, 104, 105, and 106. The vorticity values near the isothermal walls increase
with increase in the value of Rayleigh number, resulting in a strong circulatory
motion. Higher values of vorticity on the isothermal walls indicate the intense
convection effect on the fluid structure. The above constant vorticity contours
clearly demonstrate again the existence of a near-stagnant interior core along with
the distinct boundary layers near the end walls.

Figures 6a and 6b show the variations of u velocity along the vertical centerline
and w velocity along the horizontal centerline at the y ¼ 0.5 plane for Ra ¼ 103, 104,
105, and 106. The peak values of the horizontal and the vertical velocities increase
due to the intensified convective activities with increase in Rayleigh number. The

Figure 7. Contour maps of temperature at y ¼ 0.5 plane for (a) Ra ¼ 103, (b) Ra ¼ 104, (c) Ra ¼ 105,

(d) Ra ¼ 106.
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steep rise in the w-velocity gradient at the points on the hot and the cold walls also
confirm the increased convective activity at higher Rayleigh number values as
observed in Figure 6b. The u�z and x�w velocity profiles predicted in the present
work are in qualitative agreement with the results of Wong and Baker [5].

The temperature contours on the x�z plane at y ¼ 0.5 are shown in Figure 7
for Ra ¼ 103, 104, 105, and 106. With increase in Rayleigh number, a high degree of
convection is observed such that distinct thermal boundary layers start appearing
near the isothermal walls. The thickness of the thermal boundary layer decreases
as Rayleigh number increases. The 3-D variations of temperature field can be under-
stood by plotting the temperature contours on the x�y plane at z ¼ 0:5 as shown in
Figures 8a–8d for different Rayleigh numbers. Sharp temperature changes are noted
at the left and right edges of the x�y plane due to the increase in the Rayleigh num-
ber and are clearly indicated in the above figures in combination with temperature
contours on the vertical plane at y ¼ 1. Figures 9a–9d represent the temperature

Figure 8. Contour map of temperature T at z ¼ 0.5 for Pr ¼ 0.71 and Rayleigh numbers (a) Ra ¼ 103, (b)

Ra ¼ 104, (c) Ra ¼ 105, (d) Ra ¼ 106.
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contours on the y�z plane at x ¼ 0 for different Rayleigh numbers. The vertical
stratification of the temperature field becomes distinct with increase in Rayleigh
number, as indicated in these figures. The accurate predictions of the coincidence
of the temperature profiles on the x ¼ 0 plane with those on the y ¼ 1 plane demon-
strate that the present numerical scheme is capable of predicting the 3-D variation
of the temperature field accurately. In order to understand the 3-D convective effect,
the variation of the mean Nusselt number along the y direction are plotted in Figures
10a–10d for Ra ¼ 103, 104, 105, and 106. As the Rayleigh number increases, the mean
Nusselt number increases as the symmetry plane is approached, and the peak of the
mean Nusselt number occurs at y ¼ 0:5. Due to the presence of intensive convective
flow in the y direction, the convective heat transfer is enhanced, resulting in the
appearance of two minor peaks at y ¼ 0:2 and 0.8.

Figure 9. Contour map of temperature T at x ¼ 0 for Pr ¼ 0.71 and Rayleigh numbers (a) Ra ¼ 103,

(b) Ra ¼ 104, (c) Ra ¼ 105, (d) Ra ¼ 106.
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6. CONCLUSIONS

In the present numerical study, natural convection in a differentially heated
cubic cavity has been studied using the Navier–Stokes equations in velocity–vorticity
form and the energy equation. The governing equations have been solved by a
coupled numerical algorithm based on the GDQ method. A grid independence study
conducted for Ra ¼ 103 and 104 indicated that the accuracy of the numerical predic-
tions of heat transfer parameters increases consistently with the mesh refinement.
Validation test results obtained for Ra ¼ 103, 104, 105, and 106 show that the bench-
mark results could be achieved using only a 253 mesh, which is much coarser com-
pared to the finer grids used in other benchmark algorithms. As the Rayleigh
number increases, the convective flow field is intensified near the end walls in the
y direction, which was confirmed by the appearance of two minor peaks of the mean
Nusselt number. The thickness of the boundary layer near the isothermal walls

Figure 10. Distribution of the mean Nusselt number along the y direction for (a) Ra ¼ 103, (b) Ra ¼ 104,

(c) Ra ¼ 105, (d) Ra ¼ 106.
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decreases with increase in Rayleigh number. The results obtained demonstrate that
the combination of the GDQ method and the velocity–vorticity form of the Navier–
Stokes equations is an efficient numerical procedure to study flow and heat transfer
in a differentially heated cubic enclosure.
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