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This article describes a compact numerical algorithm based on the generalized differential

quadrature (GDQ) method for the numerical analysis of natural convection in a differen-

tially heated square cavity. The velocity–vorticity form of the Navier–Stokes equations and

energy equation are used to represent the mass, momentum, and energy conservations of the

fluid medium in the cavity. The GDQ form of the governing equations and the vorticity defi-

nition at the boundaries are solved by a coupled solution algorithm using a global matrix

scheme for all the field variables. The vorticity values at the boundary are correctly imposed

using the GDQ method, which approximates a given space derivative with higher-order

accuracy compared to the existing schemes based on Taylor’s series expansion. This has

assured a divergence-free solution for the flow field by satisfying the continuity constraint,

though the pressure term is not used directly in the present formulation. The proposed

algorithm is validated for a lid-driven cavity flow for Reynolds number Re ¼ 100, 400,

and 1,000, and the predicted velocity profiles are in excellent agreement with the benchmark

solutions. The algorithm is then used to compute the average Nusselt number and flow para-

meters for natural convection in a square cavity for Rayleigh number Ra ¼ 103, 104, 105,

and 106. These results are in better agreement with the benchmark solutions than the results

obtained by other numerical schemes, which used much finer grids compared to the present

scheme.

1. INTRODUCTION

In the governing equations used to represent natural-convection problems,
the fluid momentum conservation equations are coupled to the energy equation
through the buoyancy term. In order to compute the temperature field correctly,
the fluid momentum conservation equations have to be satisfied exactly, because
it is the moving parcel of the fluid which carries the energy from one region to
another region. Generally, the Navier–Stokes equations in velocity–pressure form
are employed to represent the flow field. Gresho and Sani [1] pointed out that
the pressure appearing in the incompressible Navier–Stokes equations is not a
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thermodynamic variable, but it has to be handled in such a way that the continuity
constraint is satisfied because the pressure is not an explicit variable in the conti-
nuity equation. Without using the pressure term, the fluid momentum conservation
equations can be expressed either in vorticity–stream function form or in velocity–
vorticity form. Though there is no need to specify the pressure boundary conditions
in the above two formulations, the continuity constraint can be satisfied only when
the vorticity definition are properly imposed on the boundary. Napolitano et al. [2]
presented a review of various methods for computing the vorticity boundary con-
ditions in the vorticity–stream function formulation. Though this formulation is free
from the pressure term and requires less computational effort, it is very difficult to
extend this approach for solving three-dimensional Navier–Stokes equations.

The velocity–vorticity form of the Navier–Stokes equations pioneered by
Fasel [3] has been found to be an effective alternative formulation to represent the
Navier–Stokes equations for the solution of both two- and three-dimensional flow pro-
blems [4, 5] without involving the pressure term. An impressive property of this formu-
lation is that its numerical formulation is independent of whether or not the reference
frame is inertial. Since the vorticity is one of the field variables, this formulation can
be used to study vortex-dominated flows. The main disadvantage of this formulation
is that the number of field variables increases to six for the case of three-dimensional
Navier–Stokes equations. Numerical solution of the velocity–vorticity equations
have been attempted using the finite-difference method with a staggered grid [4] and
also by the finite-element method [6, 7]. Guevremont et al. [7] employed quadratic
elements for the velocity components and linear elements for the vorticity to solve
three-dimensional velocity–vorticity equations using the finite-element method by a
coupled numerical algorithm. Though a coupled solution scheme was employed, they
used the Newton method to linearize the governing equations. Lo and Young [8] esta-
blished a time-accurate computational fluid dynamics (CFD) finite-element algorithm
for two-dimensional incompressible Navier–Stokes equations by velocity–vorticity
formulation and obtained numerical results for Reynolds number Re ¼ 100 to
20,000 for a lid-driven cavity flow. They extended their work to study two-dimensional
free surface flows at higher Reynolds numbers [9].

NOMENCLATURE

g acceleration due to gravity

L length of square cavity

Nu0 Nusselt number on the vertical boundary

at x ¼ 0

Nu0 average Nusselt number throughout the

cavity

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

T dimensionless temperature

DT temperature difference

u; v dimensionless velocities in the x and y

directions

umax maximum horizontal velocity

vmax maximum vertical velocity

x; y dimensionless Cartesian coordinates

a thermal diffusivity

b thermal expansion coefficient

C boundary of the computational

domain

m dynamic viscosity

n kinematic viscosity

q mass density

x dimensionless vorticity in the

z direction

X computational domain
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In the velocity–vorticity formulation the incompressibility constraint has to be
satisfied by enforcing the definition of vorticity aptly at the boundaries of a compu-
tational domain. This demands the accurate computation of vorticity values at the
boundaries in order to obtain a divergence-free flow field. Generally, the vorticity
boundary values are computed externally and enforced at the boundaries before
the solution of the vorticity transport equations. Wong and Baker [10] used a
second-order-accurate Taylor’s series expansion scheme to compute the vorticity
boundary values in their study on three-dimensional flow problems using the
finite-element method. Based on our previous work [8, 9] on the velocity–vorticity
formulation, we found the generalized differential quadrature (GDQ) method to
be an efficient scheme to enforce the vorticity definition suitably at the boundaries,
because the GDQ method uses higher-order polynomials with weighting functions to
approximate the partial space derivatives of a function. Since the vorticity is defined
in terms of velocity gradients, the GDQ method can be used to compute the vorticity
values at the boundary more accurately compared to other schemes. The differential
quadrature (DQ) method developed by Bellman et al. [11, 12] has been improved [13]
and well established. Shu and co-workers [14–16] applied the GDQ method to simu-
late two- and three-dimensional incompressible viscous flows using vorticity–stream
function and primitive-variable forms of the Navier–Stokes equations.

In the present work, we propose a new numerical algorithm based on the GDQ
method for solving two-dimensional Navier–Stokes equations in velocity–vorticity
form for the study of natural convection in a square cavity. The use of the GDQ
method assures the accurate computation of the vorticity boundary values, so a
divergence-free solution is guaranteed. The governing equations in the form of a
vorticity transport equation, velocity Poisson equations, and an energy equation
are approximated using the GDQ method. The resulting coefficient matrices and
the load vectors of all the field variables are combined to form a global matrix
scheme, resulting in a coupled solution algorithm. The vorticity definition expressed
in terms of velocity gradients is approximated by the GDQ method to evaluate the
vorticity values at the boundaries. The resulting coefficient matrices of velocities for
the vorticity definition are incorporated into the global matrix at the boundary
points. This procedure results in an implicit way of computing the vorticity bound-
ary values and hence there is no need to specify the vorticity boundary values exter-
nally. The present method is also easy to implement from the discretization point of
view, since it does not require a staggered grid as required by the finite-difference
methods. The proposed algorithm is validated by solving a lid-driven square cavity
problem at Re ¼ 100, 400, and 1,000. The efficiency of the present scheme to solve
coupled problems is demonstrated by solving a differentially heated square cavity
problem for Rayleigh number Ra ¼ 103, 104, 105, and 106. The application of the algor-
ithm to flow and natural-convection problems is discussed in the following sections.

2. GENERALIZED DIFFERENTIAL QUADRATURE METHOD

The GDQ method replaces a given partial space derivative of a function f ðxÞ
by a linear weighted sum of the function values at the discrete sample points
considered along the coordinate direction. As a result, the given partial differential
equation reduces to a set of algebraic equations. Hence the GDQ method can be
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used to obtain numerical solution of partial differential equations. Details about this
method can be obtained elsewhere [13]. For a function of two variables f ðx; yÞ, the
lth-order derivatives with respect to x and the mth-order derivatives with respect to y
can be obtained as [13]

f ðlÞx ðxi; yjÞ ¼
XL
k¼1

A
ðlÞ
i;k f ðxk; yjÞ l ¼ 1; 2; . . . ;L� 1 ð1aÞ

f ðmÞ
y ðxi; yjÞ ¼

XM
k¼1

B
ðmÞ
j;k f ðxi; ykÞ m ¼ 1; 2; . . . ;M � 1 ð1bÞ

for i ¼ 1; 2; . . . ;L; j ¼ 1; 2; . . . ;M

where L, M are the number of grid points in the x; y directions, respectively, and

A
ðlÞ
i;k; B

ðmÞ
j;k are the respective weighting coefficients. For the first-order derivatives,

the weighting coefficients A
ðlÞ
i;k; B

ðmÞ
j;k can be determined as follows:

A
ð1Þ
i;j ¼ Lð1ÞðxiÞ

ðxi � xjÞLð1ÞðxjÞ
i; j ¼ 1; 2; . . . ;L; but j 6¼ i ð2aÞ

B
ð1Þ
i;j ¼ Mð1ÞðyiÞ

ðyi � yjÞMð1ÞðyjÞ
i; j ¼ 1; 2; . . . ;M; but j 6¼ i ð2bÞ

in which

Lð1ÞðxiÞ ¼
YL

j¼1; j 6¼i

ðxi � xjÞ Mð1ÞðyiÞ ¼
YM

j¼1; j 6¼i

ðyi � yjÞ ð3Þ

Similarly, the weighting coefficients for the second- and higher-order derivatives can
be obtained as

A
ðlÞ
i;j ¼ l A

ðl�1Þ
i;i A

ð1Þ
i;j �

A
ðl�1Þ
i;j

xi � xj

 !
for i; j ¼ 1; 2; . . . ;L;

but j 6¼ i; l ¼ 2; 3; . . . ;L� 1 ð4aÞ

B
ðmÞ
i;j ¼ m B

ðm�1Þ
i;i B

ð1Þ
i;j �

B
ðm�1Þ
i;j

yi � yj

 !
for i; j ¼ 1; 2; . . . ;M;

but j 6¼ i; m ¼ 2; 3; . . . ;M � 1 ð4bÞ

When j ¼ i, the weighting coefficients are written as

A
ðlÞ
i;i ¼ �

XL
j¼1;j 6¼i

A
ðlÞ
i;j i ¼ 1; 2; . . . ;L; l ¼ 1; 2; . . . ;L� 1 ð5aÞ
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B
ðmÞ
i;i ¼ �

XM
j¼1;j 6¼i

B
ðmÞ
i;j i ¼ 1; 2; . . . ;M; m ¼ 1; 2; . . . ;M � 1 ð5bÞ

It should be noted from the above equations that the weighting coefficients for the
second- and higher-order derivatives can be computed from the first-order deriva-
tives themselves. The main advantage of the GDQ method is that the lth-order and
mth-order derivatives of a function can be approximated with ðL� lÞth-order and
ðM �mÞth-order accuracy when L and M are the number of grid points considered
in the x and y coordinate directions, respectively.

2.1. Incompressible Viscous Flow Problem

Governing equations and boundary conditions. For a steady, two-
dimensional, and incompressible viscous flow, the Navier–Stokes equations in
velocity–vorticity form are written as

Velocity Poisson equations

r2u ¼ � qx
qy

ð6Þ

r2v ¼ qx
qx

ð7Þ

Vorticity transport equation

u
qx
qx

þ v
qx
qy

¼ 1

Re
r2x ð8Þ

In Eqs. (6)–(8), u and v are the velocity components in the x and y directions, respec-
tively, and x is the vorticity defined for a 2-D incompressible flow in a solution
domain X surrounded by a boundary C. We seek a solution in the domain X, which
satisfies the Dirichlet boundary conditions of velocity given as

u ¼ ub ð9Þ
and the corresponding vorticity values on the boundary can be obtained using the
definition given as

x ¼ qv
qx

� qu
qy

ð10Þ

Numerical solution of the momentum equations using the GDQ. The
spatial derivatives of the velocity Poisson equations (6) and (7) and the vorticity trans-
port equation (8) can be numerically approximated by the GDQmethod using Eqs. (1)–
(5). For a given set of grid points considered in the coordinate directions, the GDQ
approximation of the governing equations results in the following algebraic equations:

XL
k¼1

A
ð2Þ
i;k uk;j þ

XM
k¼1

B
ð2Þ
j;k ui;k þ

XM
k¼1

B
ð1Þ
j;kxi;k ¼ 0 ð11Þ
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XL
k¼1

A
ð2Þ
i;k vk;j þ

XM
k¼1

B
ð2Þ
j;k vi;k �

XL
k¼1

A
ð1Þ
i;kxk;j ¼ 0 ð12Þ

ui;j
XL
k¼1

A
ð1Þ
i;kxk;j þ vi;j

XM
k¼1

B
ð1Þ
j;kxi;k �

1

Re

XL
k¼1

A
ð2Þ
i;kxk;j þ

XM
k¼1

B
ð2Þ
j;kxi;k

 !
¼ 0 ð13Þ

The velocity boundary conditions can be computed as

u1;j ¼ 0 uL;j ¼ 0 ui;1 ¼ 0 ui;M ¼ 1

v1;j ¼ 0 vL;j ¼ 0 vi;1 ¼ 0 vi;M ¼ 0
ð14Þ

for i ¼ 1; . . . ;L and j ¼ 1; . . . ;M

The vorticity boundary conditions expressed in terms of velocity gradients by Eq. (10)
can also be approximated by the GDQ method as follows:

xi;j �
XL
k¼1

A
ð1Þ
i;k vk;j þ

XM
k¼1

B
ð1Þ
j;k ui;k ¼ 0 ð15Þ

for i ¼ 1; . . . ;L; and j ¼ 1 or j ¼ M

for j ¼ 2; . . . ;M � 1; and i ¼ 1 or i ¼ L

The GDQ approximation of the governing equations expressed by the algebraic
equations (11)–(13) are coupled and nonlinear equations. By combining the respective
coefficient matrices of the flow variables, Eqs. (11)–(13) can be expressed as a global
matrix scheme as follows:

A1; 0 A2

0 B1; B2

0 0 C1

2
4

3
5 u

v
x

8<
:

9=
; ¼

fu
fv
fx

8<
:

9=
; ð16Þ

where

½A1� ¼
XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k ½A2� ¼

XM
k¼1

B
ð1Þ
j;k

½B1� ¼
XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k ½B2� ¼ �

XL
k¼1

A
ð1Þ
i;k

½C1� ¼ ui;j
XL
k¼1

A
ð1Þ
i;k þ vi;j

XM
k¼1

B
ð1Þ
j;k � 1

Re

XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k

 !

The specification of velocity boundary conditions using Eq. (14) is straightfor-
ward. However, the vorticity boundary conditions represented by Eq. (15) can be
specified either explicitly as adopted by Napolitano et al. [2] and Wong and
Baker [10] or implicitly. Since the vorticity as well as the velocities, the gradients
of which are used in the vorticity definition, are the field variables to be computed,
an implicit computation of vorticity boundary values makes the computational
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algorithm simple. In order to achieve an implicit computation of the vorticity
boundary values, the vorticity definition expressed by Eq. (15) is used to modify
the coefficients of velocities and vorticity in Eq. (16) at the solid boundaries. This
results in a coupled solution algorithm, in which the vorticity boundary values will
be computed implicitly. Further, the use of the GDQ method allows the compu-
tation of the vorticity boundary values with higher-order accuracy, which is essential
to satisfy the incompressibility constraint. In the above global coefficient matrix,
only the nonzero entries of the coefficient matrices of the velocities and vorticity
are evaluated and stored in a compressed column-vector storage form. A biconjugate
gradient iterative scheme [17] is used to solve the final equations.

2.2. Natural Convection in a Square Cavity

Governing equations and boundary conditions. In the case of natural-
convection problems, the momentum transport equation includes the buoyancy force
generated as a result of difference in density of the fluid caused by the temperature
difference. The buoyancy term is computed based on the Boussinesq approximation.
By taking the curl of the primitive variable form of the governing equations for
natural convection and making use of the vorticity definition, the velocity–vorticity
form of the natural-convection equations can be obtained as follows:

Vorticity transport equation

u
qx
qx

þ v
qx
qy

¼ Prr2xþRaPr
qT
qx

ð17Þ

Energy equation

u
qT
qx

þ v
qT
qy

¼ r2T ð18Þ

in which L, a=L, a=L2, L2=a, and T ¼ ðh� hcÞ=ðhh � hcÞ are used as scale factors
for length, velocity, vorticity, time, and temperature in the above nondimensional
form of governing equations. The other nondimensional parameters are defined as
Ra ¼ gbDTL3=an and Pr ¼ n=a. The velocity Poisson equations (6) and (7) remain
unaffected, as they represent the kinematic condition of the flow field. Equations
(17) and (18) with x as vorticity and T as the scalar temperature field are the final
form of the governing equations to be solved along with the velocity Poisson equa-
tions (6) and (7) in the domain X with the specified boundary conditions for velocity,
vorticity, and temperature on the solid boundary C. The boundary conditions
for velocity and vorticity have already been defined by the expressions given by
Eqs. (9) and (10).

The Dirichlet and Neumann boundary conditions for temperature are as
follows:

T ¼ Tb ð19aÞ

qT
qy

¼ 0 ð19bÞ
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Numerical solution of the governing equations for natural convection
by the GDQ method. Following the steps as discussed in Section 2.1 for the flow
equations, the GDQ approximation of the velocity Poisson equations (6) and (7), the
vorticity transport equation (17), and the energy equation (18) are expressed as

XL
k¼1

A
ð2Þ
i;k uk;j þ

XM
k¼1

B
ð2Þ
j;k ui;k þ

XM
k¼1

B
ð1Þ
j;kxi;k ¼ 0 ð20Þ

XL
k¼1

A
ð2Þ
i;k vk;j þ

XM
k¼1

B
ð2Þ
j;k vi;k �

XL
k¼1

A
ð1Þ
i;kxk;j ¼ 0 ð21Þ

ui;j
XL
k¼1

A
ð1Þ
i;kxk;j þ vi;j

XM
k¼1

B
ð1Þ
j;kxi;k � Pr

XL
k¼1

A
ð2Þ
i;kxk;j þ

XM
k¼1

B
ð2Þ
j;kxi;k

 !

�RaPr
XL
k¼1

A
ð1Þ
i;k Tk;j ¼ 0 ð22Þ

ui;j
XL
k¼1

A
ð1Þ
i;k Tk;j þ vi;j

XM
k¼1

B
ð1Þ
j;k Ti;k �

XL
k¼1

A
ð2Þ
i;k Tk;j þ

XM
k¼1

B
ð2Þ
j;k Ti;k

 !
¼ 0 ð23Þ

The algebraic equations (20)–(23) are the GDQ form of the governing equa-
tions for the velocities, vorticity, and temperature. By combining the coefficient
matrices of all the field variables, the following global matrix form is obtained for
the coupled solution algorithm:

D1; 0 D2 0
0 E1; E2 0
0 0 F1 F2

0 0 0 G1

2
664

3
775

u
v
x
T

8>><
>>:

9>>=
>>; ¼

fu
fv
fx
fT

8>><
>>:

9>>=
>>; ð24Þ

where

½D1� ¼
XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k ½D2� ¼

XM
k¼1

B
ð1Þ
j;k

½E1� ¼
XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k ½E2� ¼ �

XL
k¼1

A
ð1Þ
i;k

½F1� ¼ ui;j
XL
k¼1

A
ð1Þ
i;k þ vi;j

XM
k¼1

B
ð1Þ
j;k � Pr

XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k

 !

½F2� ¼ �RaPr
XL
k¼1

A
ð1Þ
i;k

½G1� ¼ ui;j
XL
k¼1

A
ð1Þ
i;k þ vi;j

XM
k¼1

B
ð1Þ
j;k �

XL
k¼1

A
ð2Þ
i;k þ

XM
k¼1

B
ð2Þ
j;k

 !
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The expressions (14) and (15) for the velocity and the vorticity boundary conditions
that have already been derived in the previous section remain the same. The vorticity
values at the boundaries are evaluated implicitly by the procedure discussed in
Section 2.1. The Dirichlet temperature boundary conditions at the left and the
right walls of the square cavity can be represented as

T1;j ¼ 1 TL;j ¼ 0 ð25Þ

The adiabatic boundary conditions on the top and the bottom sides of the square
cavity can be expressed in the GDQ form as

Ti;1 ¼
1

B
ð1Þ
1;1B

ð1Þ
M;M � B

ð1Þ
M;1B

ð1Þ
1;M

XM�1

k¼2

ðBð1Þ
1;MB

ð1Þ
M;k � B

ð1Þ
M;MB

ð1Þ
1;kÞTi;k

" #
ð26aÞ

Ti;M ¼ 1

B
ð1Þ
1;MB

ð1Þ
M;1 � B

ð1Þ
M;MB

ð1Þ
1;1

XM�1

k¼2

ðBð1Þ
M;kB

ð1Þ
1;1 � B

ð1Þ
1;kB

ð1Þ
M;1ÞTi;k

" #
ð26bÞ

for i ¼ 2; . . . ;L� 1; j ¼ 1; 2; . . . ;M

3. RESULTS AND DISCUSSION

The present numerical algorithm based on the velocity–vorticity formulation
and the GDQ method is validated for a lid-driven cavity flow at Re ¼ 100, 400,
and 1,000. Later the algorithm is applied to solve a natural-convection problem
in a differentially heated square cavity, in which the momentum equation is coupled
to the energy equation through the buoyancy term. Numerical results for natural-
convection at Ra ¼ 103–106 are obtained and compared with the benchmark
solutions. The present algorithm allows the prediction of temperature field without
using the pressure term. We used the following expression to compute the mesh-
point distributions in both x and y directions in the GDQ numerical procedure:

x i ¼
cos½p=ð2NÞ� � cos½ð2i � 1Þp=ð2NÞ�
cos½p=ð2NÞ� � cos½ð2N � 1Þp=ð2NÞ� i ¼ 1; 2; . . . ;N ð27Þ

where N is the number of grid points considered in a given coordinate direction.

3.1. Validation Results for Lid-Driven Cavity Flow

A program in FORTRAN has been developed to validate the code for the
solution of two-dimensional incompressible Navier–Stokes equations in velocity–
vorticity form for a lid-driven square cavity as shown in Figure 1a. The top lid of
the cavity is assumed to move with a unit velocity in the x direction. Figure 2a shows
the comparison of the present results for u–y and x–v plots obtained using different
grids with those of Ghia et al. [18] obtained with a grid of size 129�129 for
Re ¼ 100. As can be seen from the above figure, even with a coarser grid of size
15�15, the present predictions are in close agreement with the results of Ghia et al.
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[18], who used a grid of size 129�129. The comparison of the present results
obtained using two different grids for Re ¼ 400 with the results of Ghia et al. [18]
are shown in Figure 2b. It is noted that the present results obtained with a finer grid
of size 21�21 are in excellent agreement with the predictions of Ghia et al. [18]. As
the Reynolds number increases, a finer mesh has to be used in order to capture the
thin boundary layers developed along the wall boundaries. Hence, for the case of
Re ¼ 1,000 we used a 31�31 grid size to get the flow solutions. Figure 2c depicts
the comparisons of the present results with those of Ghia et al. [18] obtained with
a grid of size 129� 129 for Re ¼ 1,000. The present numerical results predicted using
a mesh of size 31� 31 are in close agreement with the results of Ghia et al. [18]. It
can be observed from the above figures that the present results obtained even with a
coarse mesh show excellent agreement with the benchmark solutions for Re in the

Figure 1. (a) Cavity flow problem with boundary conditions. (b) Natural-convection problem with boundary

conditions.
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range 100–1,000. The changes in the velocity vector distribution with increase in
Reynolds number are shown in Figures 3a, 3b, and 3c for Re ¼ 100, 400, and
1,000, respectively. The expected flow behavior depicted in the above figures
demonstrates the efficiency of the present coupled numerical algorithm to solve
the Navier–Stokes equations in velocity–vorticity form.

3.2. Mesh Dependence Study

The GDQ method approximates a given partial space derivative with an or-
der equal to ðL� lÞ, where L is the number of grid points in the given coordinate
direction and l is the order of derivative. This indicates that the GDQ method
requires only a coarser mesh compared to the finite-element and the finite-differ-
ence methods to achieve a given numerical accuracy. In order to demonstrate this

Figure 2. Velocity profiles at horizontal and vertical line: (a) Re ¼ 100; (b) Re ¼ 400; (c) Re ¼ 1,000.
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property of the GDQ method and verify the consistency in the numerical accuracy
with refinement of mesh, a mesh dependence study is carried out using the square
cavity problem at Re ¼ 100, 400, and 1,000. The minimum u velocity, and the
minimum and maximum v- velocities, are considered as the comparison para-
meters. The present numerical predictions of these parameters are compared with
the results of Ghia et al. [18] and two commercial codes: (1) the FIDAP with the
finite-element method (FEM) [19], (2) the TASC flow using the finite-volume
method (FVM) [19] as found in [20], and (3) the BDIM [20]. Tables 1, 2, and 3
show the comparisons of the present results with those of the benchmark solutions
for Re ¼ 100, 400, and 1,000, respectively. Observing the values in Table 1, it is
easily understood that the present scheme based on the GDQ method can predict
the benchmark solutions for Re ¼ 100 using a much coarser grid, 15� 15, com-
pared to other numerical schemes, which required a finer mesh. Similarly, for

Figure 3. Velocity distribution for: (a) Re ¼ 100; (b) Re ¼ 400; (c) Re ¼ 1,000.
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Re ¼ 400, Table 2 indicates that the GDQ method requires only a 21� 21 grid,
whereas other numerical schemes have used finer meshes of the order of 41� 41
and higher, in order to get the same results. It can be observed that even with such
finer meshes, the FEM [19] and the FVM [19] could not predict results as close to
the benchmark solutions as are predicted by the present numerical scheme. The
above observations hold good for all three comparison parameters shown in the
above tables. Comparison of results for Re ¼ 1,000, shown in Table 3, indicates
that the present results obtained using a grid of size 31� 31 are in excellent agree-
ment with those of the benchmark solutions, which had used much finer meshes
ð129� 129Þ than the present method. The tabular values indicate that the present
coupled numerical scheme based on the velocity–vorticity equations and the GDQ
method is capable of predicting the benchmark solutions for a cavity flow with less
than 3% error using meshes much coarser than other numerical schemes.

Table 1. Numerical results of lid-driven square cavity for Re ¼ 100

Velocity

mesh size

Bench. [18]

ð129�129Þ
GDQ ðv� xÞ

ð15�15Þ
FEM [19]

ð21�21Þ
FVM [19]

ð21�21Þ
BDIM [20]

ð21�21Þ

ðuÞmin �0.211 �0.211 �0.178 �0.191 �0.213

Error (%) 0.47 15.64 10.47 1.42

ðvÞmin �0.245 �0.243 �0.217 �0.233 �0.259

Error (%) 0.82 11.3 4.9 5.71

ðvÞmax 0.175 0.172 0.152 0.16 0.177

Error (%) 1.71 13.14 8.57 1.14

Table 2. Numerical results of lid-driven square cavity for Re ¼ 400

Velocity

mesh size

Bench. [18]

ð129� 129Þ
GDQ ðv� xÞ
ð21� 21Þ

FEM [19]

ð41� 41Þ
FVM [19]

ð41� 41Þ
BDIM [20]

ð41� 41Þ

ðuÞmin �0.327 �0.329 �0.309 �0.237 �0.327

Error (%) 0.61 5.5 27.5 0

ðvÞmin �0.450 �0.455 �0.430 �0.387 �0.458

Error (%) 1.11 4.44 14 1.78

ðvÞmax 0.302 0.306 0.284 0.230 0.306

Error (%) 1.32 5.96 23.84 1.32

Table 3. Numerical results of lid-driven square cavity for Re ¼ 1,000

Velocity

mesh size

Bench. [18]

ð129� 129Þ
GDQ ðv� xÞ
ð31� 31Þ

FEM [19]

ð41� 41Þ
FVM [19]

ð41� 41Þ
BDIM [20]

ð41� 41Þ

ðuÞmin �0.383 �0.392 �0.264 �0.243 �0.389

Error (%) 2.35 30.29 36.55 1.57

ðvÞmin �0.516 �0.526 �0.359 �0.411 �0.533

Error (%) 1.94 30.43 20.35 3.29

ðvÞmax 0.371 0.380 0.211 0.227 0.371

Error (%) 2.69 43.13 38.81 0
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3.3. Natural Convection in a Square Cavity

After successfully validating the present algorithm for a lid-driven cavity
problem, natural convection in a differentially heated square cavity is analyzed.
The velocities at all the boundaries are assumed to be equal to zero. Temperatures
equal to 1 and 0 are assumed at the left and the right walls, respectively. Adiabatic
conditions are assumed on the top and bottom sides of the cavity. In order to verify
the ability of the present numerical algorithm to satisfy the momentum conservation
and the continuity constraint along with heat transfer, results on flow and tempera-
ture fields are obtained for Ra ¼ 103, 104, 105, and 106.

Figures 4a–4d show the velocity vector distributions on the x–y plane for
Ra ¼ 103, 104, 105, and 106, respectively. Since the left wall is at a higher tempera-
ture than the right wall, the density of fluid near the left wall decreases compared to

Figure 4. Velocity distribution at different Ra number for: (a) Ra ¼ 103; (b) Ra ¼ 104; (c) Ra ¼ 105;

(d) Ra ¼ 106.
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the density of the fluid adjacent to the right wall, resulting in a clockwise rotation
of the fluid inside the cavity as seen from the above figures. At low values of Ray-
leigh numbers, that is, at 103 and 104, the convective effect is too small and hence
the inertial forces do not make significant contribution to the heat transport
between the end walls. As the Rayleigh number increases, the buoyancy force
increases, resulting in a strong circulation of the fluid inside the cavity and thus
increasing convective heat transport as observed in Figures 4c and 4d. Vorticity
distributions inside the cavity for different values of Rayleigh number display the
effect of buoyancy force on the vorticity field generated as a result of convection
inside the cavity.

Figures 5a–5d show the vorticity distributions on the x–y plane for Ra ¼ 103,
104, 105, and 106, respectively. For Ra ¼ 103, a somewhat concentric vorticity distri-
butions about the center of the cavity is observed in Figure 5a, because the heat

Figure 5. Vorticity distribution at different Ra number for: (a) Ra ¼ 103; (b) Ra ¼ 104; (c) Ra ¼ 105;

(d) Ra ¼ 106.
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penetration across the fluid has not yet set the complete convection process. The
vorticity values are also small compared to those at high Rayleigh numbers. As
the Rayleigh number increases, the onset of convection separates the two zones of
the fluid circulating near the hot and the cold walls, as observed in Figures 5b–5d.
This trend is enhanced at Ra ¼ 106, as seen in Figure 5d. It is to be noted from Fig-
ures 5a–5d that the strength of vorticity increases with increase in the Rayleigh num-
ber, as expected. Since the vorticity is a function of velocity gradient and also it is
generated at the boundary of the cavity, the GDQ method could predict the vortici-
ties very accurately, and these are demonstrated in the above figures.

Figures 6a–6d represent the temperature distributions inside the cavity for
Ra ¼ 103, 104, 105, and 106, respectively. As can be seen from these figures, the
present numerical scheme can accurately predict the changes in the temperature of
the fluid, varying from 1.0 at the left wall to 0.0 at the right wall. At low Rayleigh
number value, the heat transfer is purely by means of diffusion because the buoyancy
force generated is not strong enough to initiate fluid convection, as noted in
Figure 6a for Ra ¼ 103. As the Rayleigh number increases, the convection inside
the cavity also increases, and this results in diminishing thermal boundary layers
at the hot and the cold walls as observed in Figures 6c and 6d. Higher temperature
gradients observed near the end walls reveal the strength of convective heat transfer
at high Rayleigh number flows. The expected trends of temperature distribution
could be obtained because the fluid momentum conservation and the continuity
constraint have been correctly satisfied on the computational domain by the present
algorithm.

3.4. Comparison of umax, vmax, and Nusselt Number for
Natural Convection

The numerical accuracy of the present algorithm to predict the flow and heat
transport parameters is tested by comparing the following parameters with bench-
mark solutions of de Vahl Davis [21] and others [15, 22, 23]:

1. Maximum horizontal velocity ðuÞmax on the vertical midplane and its location
2. Maximum vertical velocity ðvÞmax on the horizontal midplane and its location
3. The Nusselt number on the vertical boundary at x ¼ 0, evaluated as

Nu0 ¼
Z 1

0

uT � qT
qx

� �
dy ð28Þ

4. The average Nusselt number throughout the cavity, evaluated as

Nu0 ¼
Z 1

0

Nu0 dx ð29Þ

Numerical results of de Vahl Davis [21], the GDQ method applied to the primi-
tive-variable form of the momentum equations [15], the finite-difference method [22],
and the finite-volume method [23] are considered for the purpose of comparison.
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Tables 4–7 show the comparisons of the present results with the above references for
Ra ¼ 103, 104, 105, and 106, respectively. The expected trend of increase in the values
of umax, vmax, and average Nusselet number with increase in Rayleigh number has
been correctly predicted by the present algorithm. From the tabulated results it
can be observed that the present GDQ method produced the benchmark solutions
with a much coarser mesh compared to the mesh used in the benchmark solutions
for all four values of Rayleigh number. Further, the present coupled numerical
scheme using the velocity–vorticity equations predicts flow and heat transfer
parameters much closer to the benchmark solutions, compared to the results of
Shu and Wee [15], who used the GDQ method to solve the primitive form of the
momentum equations, though we used the same grid size as used in [15]. For all four
values of Rayleigh number considered here, the present numerical scheme predicts
flow and heat transfer parameters much closer to the values of the benchmark

Figure 6. Temperature distribution at different Ra number for: (a) Ra ¼ 103; (b) Ra ¼ 104; (c) Ra ¼ 105;

(d) Ra ¼ 106.

GDQ METHOD FOR NATURAL CONVECTION 337



solutions compared to the results obtained by the finite-difference method [22] and
the finite-volume method [23], which used finer meshes than the present scheme. This
demonstrates that the present GDQ method is a very powerful numerical scheme to
solve flow and heat transfer problems when the momentum equations in velocity–
vorticity form are solved as a fully coupled system of equations. As an extension
of the present study, simulation of natural convection in a cubical cavity is being
carried out, and the results will be communicated as a separate article.

4. CONCLUSIONS

A numerical scheme based on the GDQ method has been developed for solving
the velocity–vorticity form of two-dimensional Navier–Stokes equations for flow
and heat transfer in a square cavity. The vorticity boundary conditions are computed
directly from the vorticity definition from the global matrix obtained as a result of

Table 4. Numerical results of natural convection in a square cavity for Ra ¼ 103

Mesh size

Bench. [21]

ð81� 81Þ
GDQ (present)

ð11� 11Þ
GDQ [15]

ð11� 11Þ
FD [22]

ð41� 41Þ
FV [23]

ð21� 21Þ

ðuÞmax 3.649 3.645 3.648 3.642 3.649

Error (%) 0.11 0.027 0.192 0

y 0.813 0.815 0.81 0.8 0.813

Error (%) 0.246 0.369 1.6 0

ðvÞmax 3.697 3.697 3.696 3.699 3.690

Error (%) 0 0.027 0.054 0.189

x 0.178 0.179 0.18 0.175 0.179

Error (%) 0.562 1.11 1.685 0.562

Nu0 1.117 1.115 1.118 1.117 1.109

Error (%) 0.18 0.09 0 0.716

Nu0 1.118 1.116 1.118 1.117 1.113

Error (%) 0.179 0 0.089 0.447

Table 5. Numerical results of natural convection in a square cavity for Ra ¼ 104

Mesh size

Bench. [21]

ð81� 81Þ
GDQ (present)

ð19� 19Þ
GDQ [15]

ð19� 19Þ
FD [22]

ð41� 41Þ
FV [23]

ð21� 21Þ

ðuÞmax 16.178 16.180 16.182 16.265 16.189

Error (%) 0.012 0.025 0.538 0.068

y 0.823 0.821 0.82 0.825 0.822

Error (%) 0.243 0.365 0.243 0.122

ðvÞmax 19.617 19.612 19.628 19.662 19.606

Error (%) 0.025 0.056 0.229 0.056

x 0.119 0.118 0.12 0.125 0.12

Error (%) 0.840 0.840 5.042 0.840

Nu0 2.238 2.235 2.244 2.239 2.310

Error (%) 0.134 0.268 0.045 3.217

Nu0 2.243 2.239 2.244 2.245 2.248

Error (%) 0.178 0.045 0.089 0.223
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coupling the vorticity definition through the velocities with the velocity Poisson
equations, the vorticity transport equation, and the energy equation. Further, the
vorticity boundary conditions are computed with much higher-order accuracy by
the GDQ method compared to the schemes based on the Taylor’s series expansion,
which is generally employed to compute the vorticity boundary conditions. Numerical
results obtained for Re ¼ 100, 400, and 1,000 for a lid-driven cavity flow show good
agreement with the benchmark solutions. The higher-order-accurate GDQ method is
capable of achieving the benchmark solutions with a maximum error less than 3%
using a coarser mesh compared to other numerical schemes.

Natural convection in a differentially heated square cavity was also studied by
the coupled solution algorithm. Velocity, vorticity, and temperature distributions
computed for Ra ¼ 103, 104, 105, and 106 show the expected flow and heat transfer
behaviors. The present coupled numerical scheme predicted average Nusselt

Table 6. Numerical results of natural convection in a square cavity for Ra ¼ 105

Mesh size

Bench. [21]

ð81� 81Þ
GDQ (present)

ð25� 25Þ
GDQ [15]

ð25� 25Þ
FD [22]

ð41� 41Þ)
FV [23]

ð40� 40Þ

ðuÞmax 34.722 34.698 34.721 35.156 34.632

Error (%) 0.069 0.003 1.25 0.259

y 0.855 0.854 0.85 0.85 0.851

Error (%) 0.0117 0.585 0.585 0.468

ðvÞmax 68.590 68.215 68.462 68.138 68.090

Error (%) 0.547 0.187 0.659 0.729

x 0.066 0.067 0.07 0.075 0.073

Error (%) 1.515 6.06 13.64 10.606

Nu0 4.509 4.512 4.518 4.479 N=A

Error (%) 0.067 0.2 0.665 N=A

Nu0 4.519 4.515 4.519 4.522 4.537

Error (%) 0.089 0 0.066 0.398

Table 7. Numerical results of natural convection in a square cavity for Ra ¼ 106

Mesh size

Bench. [21]

ð81� 81Þ
GDQ (present)

ð33� 33Þ
GDQ [15]

ð33� 33Þ
FD [22]

ð81� 81Þ
FV [23]

ð72� 72Þ

ðuÞmax 64.630 64.789 64.855 65.332 64.834

Error (%) 0.246 0.348 1.086 0.316

y 0.850 0.853 0.85 0.85 0.850

Error (%) 0.352 0 0 0

ðvÞmax 219.360 220.256 220.072 221.658 220.599

Error (%) 0.408 0.325 1.048 0.565

x 0.0379 0.038 0.04 0.038 0.038

Error (%) 0.264 5.541 0.264 0.264

Nu0 8.817 8.825 8.822 8.763 8.825

Error (%) 0.091 0.057 0.612 0.091

Nu0 8.8 8.816 8.814 8.829 N=A

Error (%) 0.182 0.159 0.33 N=A
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numbers closer to the benchmark solutions with less than 2% error using a grid
much coarser than those used by other numerical schemes. Numerical results
obtained by the present method for flow as well as heat transfer problems suggest
that the higher-order-accurate GDQ method can be well exploited when the
Navier–Stokes equations in velocity–vorticity form are used and solved as coupled
equations.
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