
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING
Commun. Numer. Meth. Engng 2005; 21:107–118
Published online 14 December 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.731

An e�cient global matrix free �nite element algorithm
for 3D �ow problems

K. Murugesan‡, D. C. Lo§ and D. L. Young∗;†;¶

Department of Civil Engineering and Hydrotech Research Institute; National Taiwan University; Taipei; Taiwan

SUMMARY

This paper describes a �nite element solution algorithm for the numerical solution of large size three-
dimensional �ow problems on a personal computer. To demonstrate the algorithm, the Stokes equations
in velocity–vorticity form are solved for a lid-driven cubical cavity problem. The Galerkin’s weighted
residual form of the governing equations is evaluated for all the elements of the computational do-
main and kept as element-matrices and element-vectors. This results in a set of simultaneous equations
corresponding to the global nodes of each element. Those elements that contain the boundary nodes
are modi�ed to incorporate the Dirichlet boundary conditions. A conjugate gradient iterative scheme is
employed to solve the simultaneous equations in element form to get the solution at the global nodes.
The matrix–vector products used in the conjugate gradient iterative solver are performed in element
level, assembling only the element-level vectors to form the global vectors. Since the element-level
computation has eluded the formation of global matrices, the numerical solution of three-dimensional
Stokes equations using a mesh of size as high as 513 could be achieved on a personal computer. The
algorithm is validated by comparing the results for a three-dimensional transient di�usion problem and
Stokes �ow in a lid-driven cubical cavity. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: �nite element method; element-level storage; velocity–vorticity formulation; three-dimen-
sional Stokes �ow

1. INTRODUCTION

The application of the �nite element (FE) method for the solution of three-dimensional
�ow problems results in sparse and diagonally dominant global coe�cient matrices. The bi-
conjugate gradient iterative scheme [1] is one of the widely used methods to solve large-size

∗Correspondence to: D. L. Young, Department of Civil Engineering and Hydrotech Research Institute, National
Taiwan University, Taipei, Taiwan.

†E-mail: dlyoung@hy.ntu.edu.tw
‡Post-doctoral Research Fellow.
§Research Scholar.
¶Professor.

Contract=grant sponsor: National Science Council of Taiwan

Received 7 November 2003
Copyright ? 2004 John Wiley & Sons, Ltd. Accepted 25 August 2004



108 K. MURUGESAN, D. C. LO AND D. L. YOUNG

sparse matrices by storing only the non-zero entries of the matrices in compact vector stor-
age form [2]. While solving three-dimensional �ow problems using �ner meshes, even the
compact storage schemes require huge memory space because the number of non-zero en-
tries increases signi�cantly. Hence the size of the vectors storing the non-zero entries also
increases, occupying a huge RAM of a computer. Depending on the mesh size, this will be
in tens of multiples of the total number of grid points. For solving such large-size prob-
lems, Irons [3] developed the frontal solver, which does not form the global matrices. In the
element-based frontal solver, the process of accumulating the contributions for a given degree
of freedom results in a frontal width. The frontal solver performs e�ectively only when this
frontal width is minimized by proper global element node numbering of the domain using
some special algorithms. Hughes et al. [4] proposed an element-by-element solution scheme
based on an idea of operator-splitting. For a di�usion problem their method uses the inverse
square root of the capacitance matrix. Hence it is easy to implement this method only when
the capacitance matrix is diagonal, which is not always the case with �ow problems. Hughes
et al. [5] extended their concept developed in Reference [4] for structural and solid me-
chanics problems by converting elliptical equations into parabolic equations by using arti�cial
time derivatives. Conjugate gradient methods are highly attractive schemes to solve a large
sparse system of equations because the solution scheme depends only on vectors obtained as
products of coe�cient matrices and vectors [6]. When these products are performed at an
element level, a signi�cant saving in computational time and e�ort can be achieved. Sheu
et al. [7] implemented the BICGSTAB iterative solver in an element-by-element format to
achieve computational e�ciency in parallel computation of three-dimensional Navier–Stokes
equations using the FE method. Thiagarajan and Aravamuthan [8] proposed a pre-conditioner
for the conjugate gradient method used along with an element-by-element solution scheme for
parallel computation. Phoon [9] developed a generalized Jacobi (diagonal) preconditioning
approach to implement the conjugate gradient iterative solver using an element-by-element
strategy.
The implementation of the element-by-element iterative solution procedure to solve large-

scale problems on a personal computer is not straight forward though the scheme has been
e�ciently exploited in parallel computations [7–9]. The main reason for this restriction is the
requirement of huge computer memory to store the large-size global matrices. Even a compact
vector storage scheme requires a memory space of 1 336 694 to store only the non-zero entries
for a 3D �ow problem with a mesh of size 313. Hence the necessity of storing such huge-size
vectors restricts the use of the conjugate gradient iterative solvers such as the BICG iterative
solvers [1] on personal computers. In this context, the present work proposes an alternate
scheme to store and solve large-size problems involving a few hundred thousands grid points
on a personal computer. The proposed algorithm makes use of the concept of element-wise
approximation of the governing equations by the FEM and vector computations associated
with the conjugate gradient iterative method. The present method can be used to solve both
the steady state and the transient �eld problems without using the pseudo-time derivative
for steady state problems as proposed by Hughes et al. [4]. The algorithm is veri�ed by
solving three-dimensional problems, one on transient heat di�usion and the other on steady
state Stokes �ow. The e�ciency of the algorithm to solve a large number of equations on a
personal computer has been demonstrated by solving the Stokes �ow in a lid-driven cubical
cavity using a mesh of size as high as 513. The proposed algorithm is explained by its
application to the numerical solution of three-dimensional Stokes �ow equations.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



AN EFFICIENT GLOBAL MATRIX 109

2. GOVERNING EQUATIONS AND FE SOLUTION

The governing equations for a three-dimensional steady state Stokes �ow can be represented
in velocity–vorticity form without involving the pressure term as [10]:

Vorticity transport equation:

∇2�=0 (1)

Velocity Poisson equation:

∇2V=−∇ ×� (2)

where the vorticity is de�ned as

�=∇ ×V (3)

No-slip velocity boundary conditions are assumed on all the boundary surfaces except the top-
moving lid where unit velocity is assumed. A second-order accurate Taylor’s series scheme
proposed by Wong and Baker [11] has been employed to compute the boundary vorticity
values using the vorticity de�nition given as

�b =∇ ×Vb (4)

The application of the Galerkin’s weighted residual method to the governing equations (1)
and (2) results in the following integral equations:

∫
�
N T(∇2�) d� = 0 (5)

∫
�
N T(∇2V+∇ ×�) d� = 0 (6)

The above integrals are evaluated for all the elements and the various coe�cient matrices and
the vectors are stored as element-matrices and element-vectors without forming the global
matrices. The element-wise vorticity transport equations in matrix form can be written as

[Kijk]{�ik}=0 (7a)

[Kijk]{�ik}=0 (7b)

[Kijk]{&ik}=0 (7c)

Similarly, the element-wise velocity Poisson equations in matrix form can be represented as

[Kijk]{uik}=[Zijk]{�ik} − [Yijk]{&ik} (8a)

[Kijk]{vik}=[Xijk]{&ik} − [Zijk]{�ik} (8b)

[Kijk]{wik}=[Yijk]{�ik} − [Xijk]{�ik} (8c)

where i; j and k represent the element, row and column indices, respectively. The computa-
tional domain is discretized using eight-node tri-linear elements through isoparametric formu-
lation and the integration is performed by the Gaussian quadrature. A Cartesian co-ordinate
system with x–y co-ordinates on the horizontal plane and z co-ordinate in the vertical direction
is assumed.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



110 K. MURUGESAN, D. C. LO AND D. L. YOUNG

2.1. Storage of global matrices

In the classical global matrix algorithm, the coe�cient matrices and the load vectors of Equa-
tions (7) and (8) are evaluated for all the elements and they are assembled to obtain the
global form of simultaneous equations given as

[Aij]{�j}= {fi} (9)

where i and j represent the row and column indices. The global coe�cient matrix [Aij]
is sparse and banded. In order to save computer memory, only the non-zero entries of the
coe�cient matrix are stored either in a banded matrix form or using a compressed row=column
format. This procedure becomes very signi�cant in the context of numerical solution of three-
dimensional �ow problems. As far as the equation solver is concerned, the conjugate gradient
iterative solvers are more e�cient to solve sparse matrices compared to other solvers. The
solution algorithm of a conjugate gradient method depends only on vectors obtained by the
products of N ×N matrices with N × 1 vectors. In the BICG iterative solver [1] the non-
zero entries of the coe�cient matrices are stored in a column format. The size of a vector
required to store the non-zero entries will be in tens of multiples of the total number of
grid points in the computational domain. For example when a mesh of size 513 is used in
a three-dimensional Stokes �ow problem, the size of a vector required to store the locations
and the non-zero entries of a coe�cient matrix is 6 407 854. Storage of vectors of this size in
various subroutines in the BICG solver occupies a huge RAM of a computer. Hence solving
three-dimensional �ow problems using �ner meshes demands either use of powerful computers
like Cray computers or parallel computation. The proposed algorithm in this article aims at
providing an alternate method to store the non-zero entries so that large-size problems can be
handled on a personal computer.

2.2. Global matrix free FE scheme

When all the coe�cient matrices and the vectors are kept in an element-wise storage scheme,
the formation of sparse global matrices and the associated compact storage procedures can be
avoided. However, this demands the inclusion of the Dirichlet boundary values at the element
level itself. This can be achieved by determining the number of elements contributing the
Dirichlet value to a boundary node. In a three-dimensional computational domain the boundary
nodes are located on corners, edges and surfaces. A boundary node at a corner is shared by
only one element, a boundary node along an edge is shared by two elements and a boundary
node on a surface is shared by four elements. In Figure 1, the shaded region represents a
section of a boundary surface of a three-dimensional computational domain. The corner nodes
1, 3, 9 and 7 share only one element each, that is, elements 1, 2, 4 and 3, respectively.
If we consider the boundary node 8 along an edge, it shares with two elements, 3 and 4.
Similarly the edge node 2 shares with elements 1 and 2. For the case of a surface boundary
node 5, there are four elements 1, 2, 3 and 4 common to this node and hence the node 5 is
shared by all these four elements. Thus for each boundary node, the data of (i) the number of
contributing elements, (ii) the element numbers and (iii) the respective rows of the elements
that contain the boundary node are generated using a subroutine. Using these data the fraction
of the Dirichlet boundary value contribution from each element surrounding a boundary node
is computed. Then the coe�cient matrices and the load vectors of those elements containing
the boundary nodes are modi�ed for the inclusion of the Dirichlet boundary values. The

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



AN EFFICIENT GLOBAL MATRIX 111

1

2

3

4

5

6

7

8

9

1010

1111

1212

1313

1414

1515

1616

1717

1818

1

2

3

4

Figure 1. Schematic diagram of boundary nodes and contributing elements.

modi�ed matrices should produce the same e�ect as that of the global matrices obtained as a
result of assembly of all the elements. The computational e�ort for this task is insigni�cant
because the number of boundary nodes is very small compared to the total number of grid
points in the computational domain. Moreover, similar to the grid points’ data this information
is generated only once.
The procedure can be explained by considering the boundary node 8 located along the edge

(Figure 1). This node is surrounded by two elements, 3 and 4. The coe�cient matrices and
the load vectors for the elements 3 and 4 can be represented as

[A3jk]{�3k}= {f3j} (10a)

[A4jk]{�4k}= {f4j} (10b)

where j and k refer to the row and column indices that vary from 1 to 8. The corresponding
global nodal connectivity for the elements 3 and 4 is given as:

Element 3: 4, 13, 14, 5, 7, 16, 17, 8
Element 4: 5, 14, 15, 6, 8, 17, 18, 9

The boundary node 8 appears in both the elements 3 and 4 but with di�erent row numbers. It
appears in the eighth row in the element 3 whereas it appears in the �fth row in the element 4.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



112 K. MURUGESAN, D. C. LO AND D. L. YOUNG

As discussed by Reddy [12] the coe�cient matrices and the right-hand side column vectors
of Equations 10(a) and 10(b) are modi�ed for the known Dirichlet value at the boundary
node 8. Since the boundary node 8 is surrounded by two elements, the Dirichlet value used
to modify the coe�cient matrices and the right-hand column vectors of the elements 3 and 4
will be 1

2 times the Dirichlet value at the node 8. In general, if �bn is the Dirichlet boundary
value at a boundary node ‘bn’, then each element surrounding this node gets a contribution
equal to (1=nesbn)�bn where ‘nesbn’ is the total number of elements surrounding the given
boundary node. Following a similar procedure all the element-level coe�cient matrices and
the right-hand column vectors are modi�ed with the known Dirichlet values. Finally, this will
result in an element-wise system of simultaneous equations given as

[Aijk]{�ik}= {fij} (11)

where i; j and k represent the element, row and column indices.
Since the conjugate gradient iterative procedure is associated with only the vectors obtained

by the multiples of matrices and vectors, all the computations are carried out at the element
level and only vector-level assembly is carried out to form the global vectors. This ensures the
maximum size of a vector computed in the present algorithm just equal to the total number
of grid points irrespective of the global node numbering of the computational domain. In this
aspect the present approach is di�erent from the frontal solver [3] whose e�ciency depends
upon the global node numbering of the elements in order to keep the front width minimum. In
the proposed algorithm a simple conjugate gradient method without preconditioning is used.
The simplicity in implementing the present scheme on a personal computer is demonstrated
with the following three-dimensional test problems.

2.3. Test problem: 1—3D heat di�usion in a cube

Initially the global matrix free FE algorithm is tested for heat di�usion in a cube studied by
Zienkiewicz and Parekh [13]. Cooling of a cube initially at a unit temperature is investigated
by four-element subdivisions using linear elements. The cube is subjected to the following
boundary conditions:

T =1 on the regions −a¡x¡a, −a¡y¡a and −a¡z¡a and
T =0 on the boundary

The temperature variation with time at x=y= z=0 is examined by solving the transient heat
conduction equation [13]. Eight-node tri-linear elements are used to discretize the computa-
tional domain through an isoparametric formulation whereas the time domain is discretized
using a second-order accurate Crank–Nicolson scheme. Table I shows the comparison of
the present results for linear elements with the corresponding results of Zienkiewicz and
Parekh [13] for D�t=a2 = 0:0125, where D is the di�usion coe�cient. The present results are
in close agreement with the results of Zienkiewicz and Parekh [13].

2.4. Test problem: 2—Stokes �ow in a lid-driven cubical cavity

In order to test the present algorithm for �ow problems, we consider the steady state Stokes
�ow in a lid-driven cubical cavity. The top lid of the cube is assumed to move with a unit
velocity in the horizontal x direction. Initially a mesh-dependence study is carried out to es-
tablish a benchmark solution. For comparison purpose we use the numerical results obtained

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



AN EFFICIENT GLOBAL MATRIX 113

Table I. Comparison of results for 3D heat di�usion problem
with D�t=a2 = 0:0125 [13].

Element length = a Element length = a=2

Dt
a2

Present Reference [13] Present Reference [13]

0.0 1.0000 1.0000 1.0000 1.0000
0.1 0.4066 0.4062 0.7847 0.7856
0.2 0.1653 0.1650 0.3698 0.3694
0.3 0.0672 0.0670 0.1699 0.1696
0.4 0.0273 0.0272 0.0780 0.0778
0.5 0.0111 0.0111 0.0358 0.0357
0.6 0.0045 0.0045 0.0164 0.0164
0.7 0.0018 0.0018 0.0075 0.0075
0.8 0.0007 0.0007 0.0035 0.0034
0.9 0.0003 0.0003 0.0016 0.0016
1.0 0.0001 0.0001 0.0007 0.0007

Table II. Results of DQ method.

Mesh umin wmin wmax

73 −0.22517 −0.17593 0.17593
113 −0.22084 −0.17972 0.17972
133 −0.22086 −0.18012 0.18012

Table III. Results for mesh sensitivity study.

Mesh umin wmin wmax

113 −0.21316 −0.17071 0.17071
213 −0.21884 −0.18036 0.18036
313 −0.21958 −0.18026 0.18026
513 −0.22235 −0.18063 0.18063

by the di�erential quadrature (DQ) method [14], which approximates the derivatives using
higher order polynomials. The minimum value of u velocity along the central vertical plane
and the minimum and maximum value of w velocity along the central horizontal plane are
considered as the parameters of comparison for the mesh sensitivity study. In order to es-
tablish the numerical accuracy of the DQ method, the Stokes �ow results are obtained using
three di�erent meshes of size 73, 113 and 133 and are shown in Table II. Since the �ow
results computed using the meshes 113 and 133 are closer to each other as observed in the
Table II, the results obtained with the mesh 113 are used for the comparison purpose. Then
the Stokes �ow results are obtained by the global matrix free FE algorithm using non-uniform
meshes of size 113, 213 and 313. In order to demonstrate the ability of the present scheme
to handle large-size problems, computations also have been carried out using a mesh of size
513 for the solution of the Stokes �ow equations. Table III shows the comparison of the �ow

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



114 K. MURUGESAN, D. C. LO AND D. L. YOUNG

-0.40 0.00 0.40 0.80 1.20
u

0.00

0.20

0.40

0.60

0.80

1.00

z

11x11x11 (DQ)

11x11x11 (FEM)

21x21x21 (FEM)

31x31x31 (FEM)

Figure 2. Comparison of u–z plot for di�erent meshes and the DQ method.

parameters obtained by the present algorithm for the mesh sensitivity study. Flow results
shown in Table III indicate that the increase in the numerical accuracy of the present algorithm
is consistent with the re�nement of the mesh. Besides, the results obtained by the present al-
gorithm using the 213mesh are closer to the results computed by the DQ method using the 113

mesh.
The u-velocity pro�les along the vertical centre line are shown in Figure 2 for the 113,

213 and 313 meshes considered in the global matrix free FE algorithm. For the purpose of
comparison, the results obtained by the DQ method using the 113 mesh are also shown as
symbols in Figure 2. A similar plot is shown in Figure 3 for the variation of w velocity along
the horizontal centre line. The results depicted in Figures 2 and 3 highlight the increase in
the numerical accuracy of the present algorithm with the re�nement of the mesh. Besides, an
excellent agreement of the present results with the results of the DQ method is clearly seen in
the above �gures. The velocity vectors and the y direction vorticity distributions on the x–z
plane at y=0:5 obtained using the 313 mesh are depicted in Figures 4 and 5, respectively.
Both the �gures exhibit the expected �ow behaviour in the cavity.
The computations for the 3D Stokes �ow have been carried out on a Pentium-IV personal

computer. In order to demonstrate the e�ciency of the present algorithm to handle large-size
problems on a personal computer, the details about the size of the memory storage used in
the present algorithm and the memory space required to store only the non-zero entries of
the global coe�cient matrix are computed for the meshes 113, 213, 313 and 513 and are
shown in Table IV. The present algorithm stores the coe�cient matrices at the element level
as indicated in the �fth row of Table IV. A comparison of the entries in the fourth and
the �fth rows indicates that the storage used in the present scheme is slightly higher than
the storage used for storing only the non-zero entries in a vector format. But the additional

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



AN EFFICIENT GLOBAL MATRIX 115

0.00 0.20 0.40 0.60 0.80 1.00
x

-0.20

-0.10

0.00

0.10

0.20

w
11x11x11 (DQ)

11x11x11 (FEM)

21x21x21 (FEM)

31x31x31 (FEM)

Figure 3. Comparison of x–w plot for di�erent meshes and the DQ method.

0 0.25 0.5 0.75 1
u

0

0.25

0.5

0.75

1

z

Figure 4. Velocity vectors on y=0:5 plane.

storage reduces signi�cantly as the mesh is re�ned. This can be understood by computing
the ratio between the entries stored by the present algorithm and the storage used for the
non-zero entries. As can be seen from Table IV, this ratio decreases as the mesh is made
�ner. But in the computer code for the BICG method [1], vectors equal to twice the total

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



116 K. MURUGESAN, D. C. LO AND D. L. YOUNG

0.00 0.25 0.50 0.75 1.00
u

0.00

0.25

0.50

0.75

1.00

z

Figure 5. � vorticity distribution on y=0:5 plane.

Table IV. Comparison of memory storage for di�erent schemes.

Mesh 113 213 313 513

Number of elements 1000 8000 27 000 125 000
Number of nodes 1331 9261 29 791 132 651
Storage for non-zero 41 534 379 114 1 336 694 6 407 854
entries and their
locations in column
format
Memory storage used in 64 000 512 000 1 728 000 8 000 000
the present method (1000,8,8) (8000,8,8) (27 000,8,8) (125 000,8,8)
Present storage=storage 1.541 1.351 1.293 1.248
used in column format
(row 5=row 4)
Non-zero entries=number 31.21 40.94 44.87 48.31
of nodes (row 4=row 3)

number of non-zero entries have to be used in many subroutines. These vectors will occupy
huge computer memory for large-size problems, thus prohibiting the use of such solvers on
personal computers.
The values in Table IV also indicate that the total number of non-zero entries increases as

the mesh is re�ned. The rate of increase of the non-zero entries with mesh re�nement can be
determined by computing the ratio between the non-zero entries and the total number of grid
points. As expected this ratio increases as the mesh is re�ned to a �ner mesh. That means the
use of a �ner mesh increases the vector size used to store the non-zero entries in the BICG
iterative scheme [1]. But in the present iterative solution procedure, the size of a vector never

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



AN EFFICIENT GLOBAL MATRIX 117

exceeds the total number of grid points and is independent of the size of the mesh used in the
computations. This characteristic of the present algorithm has made possible to execute the
computer code for a mesh 513 on a personal computer. Thus the present scheme is proved to
be highly e�cient for storing and solving large number of equations obtained as a result of
either multi-dimensional problems or mesh re�nement. As a �rst attempt in implementing the
global matrix free FE algorithm, a conjugate gradient iterative solver without preconditioning
has been employed in the present study. Even with this basic iterative solver, the convergence
for the iterations could be achieved in a number of steps little less than the total number of
equations. However, the rate of convergence can be increased further by incorporating a
preconditioning technique, which is under study.

3. CONCLUSIONS

A global matrix free �nite element solution algorithm is discussed to solve large-scale three-
dimensional �ow problems on a personal computer. By computing the elements surrounding
each boundary node, the corresponding fractional value of the Dirichlet boundary conditions
are enforced on the boundary nodes at the element-level itself. This has avoided the formation
of global matrices, thus resulting in a signi�cant saving in the computer memory. The element-
level equations are solved using a conjugate gradient iterative solver which uses the matrix
products in vector form. Test results obtained for a three-dimensional transient heat di�usion
problem and a steady state Stokes �ow in a lid-driven cubical cavity show good agreements
with the results obtained by other numerical schemes. Though the present algorithm uses
memory storage little higher than that of the compact column storage scheme for a given
coe�cient matrix, the additional storage decreases signi�cantly when the mesh is re�ned to
a �ner mesh. In addition to this, the maximum size of a vector computed in the present
algorithm never exceeded that of the total number of grid points in the computational domain
irrespective of the mesh size used. This feature of the present algorithm has made possible
to obtain the solution of Stokes �ow equations using a mesh of size as high as 513 on a
personal computer.

ACKNOWLEDGEMENTS

The National Science Council of Taiwan is gratefully acknowledged for providing the �nancial support
to carry out the present research.

REFERENCES

1. Press WH, Teukolshy SA, Vetterling WT, Flannery BP. Numerical Recipes in FORTRAN 90, (2nd edn).
Cambridge University Press: New York, 1996.

2. Saad Y. Iterative Methods for Sparse Linear Systems. PWS Publishing Company: Boston, 1996.
3. Irons B. A frontal solution program for �nite element analysis. International Journal for Numerical Methods
in Engineering 1970; 2:5–32.

4. Hughes TJR, Levit I, Winget J. Element-by-element implicit algorithms for heat conduction. Journal of
Engineering Mechanics 1983; 109:576–585.

5. Hughes TJR, Levit I, Winget J. An element-by-element solution algorithm for problems of structural and solid
mechanics. Computer Methods in Applied Mechanics and Engineering 1983; 36:241–254.

6. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of Research of the
National Bureau of Standards 1952; 49:409–436.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118



118 K. MURUGESAN, D. C. LO AND D. L. YOUNG

7. Sheu TWH, Wang MMT, Tsai SF. Element-by-element parallel computation of incompressible Navier–Stokes
equations in three dimensions. SIAM Journal of Scienti�c Computing 2000; 21:1387–1400.

8. Thiagarajan G, Aravamuthan V. Parallelization strategies for element-by-element preconditioned conjugate
gradient solver using high-performance Fortran for unstructured �nite-element applications on Linux clusters.
Journal of Computing in Civil Engineering 2002; 16:1–10.

9. Phoon KK. Iterative solution of large-scale consolidation and constrained �nite element equations for 3D
problems. International e-Conference on Modern trends in Foundation Engineering: Geological Challenges
and Solutions, Indian Institute of Technology, Madras, India, 26–30 January, 2004.

10. Tsai CC. Meshless numerical methods and their engineering applications. Ph.D. Thesis, Department of Civil
Engineering, National Taiwan University, Taipei, Taiwan, 2002.

11. Wong KL, Baker AJ. A 3D incompressible Navier–Stokes velocity–vorticity weak form of �nite element
algorithm. International Journal for Numerical Methods in Fluids 2002; 38:99–123.

12. Reddy JN. An introduction to the Finite Element Method, (2nd edn). Mc-Graw Hill: Singapore, 1992.
13. Zienkiewicz OC, Parekh CJ. Transient �led problems: two-dimensional and three-dimensional analysis by

isoparametric �nite elements. International Journal for Numerical Methods in Engineering 1970; 2:61–71.
14. Shu C, Wang L, Chew YT. Numerical computation of three-dimensional incompressible Navier–Stokes equations

in primitive variable form by DQ method. International Journal for Numerical Methods in Fluids 2003; 43:
345–368.

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2005; 21:107–118


