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ABSTRACT

In this paper, the concept of group delay time is used to model
the phase spectrum on each separated frequency range according to the
compact support of Meyer wavelet. The regression equations to pre-
dict the mean value and standard deviation of group delay times can be
developed on the basis of the recorded earthquake set. Based on the
predicted mean value and standard deviation for a target site, the sample
of group delay time at a certain discrete frequency can be either gener-
ated randomly by a specified probability density function or simulated
conditionally by applying the Kalman filtering technique to consist of
the earthquake data observed at nearby stations. Then, the phase spec-
trum can be modeled by integrating the simulated group delay times.
On the basis of the modeled phase spectrum, the design ground motion
can be simulated by the iteration process of modifying the Fourier
amplitude, such that the associated spectral response acceleration will
be compatible with the design response spectrum as specified by the
seismic design code.

447

I. INTRODUCTION

In recent years, time history analysis has become
more and more important for the seismic design of
structures, and hence, it is required to develop a simu-
lation method to simulate the time history of design
ground motion. For a site of interest, the appropriate
design ground motions should be not only compat-
ible with the design response spectrum as specified
by the seismic design code, but also consistent with
the earthquake data observed at the target site to

*Correspondence addressee

perform the same waveform characteristics.

A primitive method to simulate design ground
motions is to generate a nonstationary time history
by multiplying an envelope function (Jennings, ef al.,
1968) to a stationary time history simulated by using
random phase criteria (Shinozuka and Jan, 1972).
However, it may lose the waveform characteristics
of the target site. Another method is to use the phase
spectrum of an observed ground motion to control the
non-stationary nature of earthquake motions. Con-
sider the 1999 Chi-Chi earthquake (Taiwan), the
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Fig. 1 (a) Comparison of the observed seismograms (ag) and the time histories (a,) recovered by their own phase spectra and the Fourier
amplitude determined at the reference site CHYO075, and (b) Locations of the reference site and other observation stations

ground motions observed at some stations near the
Chelungpu Fault and the epicenter are shown in Fig.
1(a) as denoted by ag, and Fig. 1(b) shows the loca-
tions of these stations. For each observed ground
motion, we can obtain the phase spectrum and the
Fourier amplitude. Defining station TCUQ75 as a ref-
erence site, and for any other site, based on its own
phase spectrum and the common Fourier amplitude
determined at the reference site, a new time history
can be recovered and shown in Fig. 1(a) as denoted
by a,. It can be found that, although the Fourier am-
plitude has been changed, the recovered waveform is
very similar to the original one, because they share
the same phase spectrum. Furthermore, as shown in
Fig. 1(a), the similar waveform can be also recov-
ered for the case of station TAP003, even though the
station is located in the Taipei Basin, 200 km away
from the reference site (TCUQ75). It implies that the
most important issue for simulating the design ground
motion is to model the phase spectrum. As long as
the phase spectrum for a site of interest is modeled,
we can simulate the design ground motion by modi-
fying the Fourier amplitude based on the available
design response spectrum. Hence, the simulated de-
sign ground motion will be compatible with the de-
sign response spectrum and also perform the same
waveform characteristics as the earthquake ground
motions observed at the target site. Because the phase
characteristic of earthquake motion strongly controls
the non-stationary nature of earthquake motions,
many methodologies have been developed to model

the phase spectrum of ground motions (Sato et al.,
1998 and Sato et al., 1999).

Group delay time is defined as the derivative of
the phase spectrum with respect to circular frequency
(Papoulis, 1962). The mean value of group delay time
and its standard deviation within a certain frequency
range represent the central arrival time and duration,
respectively, of the earthquake motion with frequency
content of such a bandwidth (Satoh et al., 1996).
Therefore, it is much easier to model the group delay
time than to model the phase spectrum directly.
Furthermore, in order to simulate better ground
motions, the phase spectrum should be modeled one
by one for a series of separate frequency bands, rather
than once for the whole frequency range, and it is
implemented by wavelet decomposition. In this
paper, the discrete Meyer wavelet decomposition
(Meyer, 1989) is adopted because the Meyer wavelet
is a frequency band-limited function whose Fourier
transformation is smooth, and hence it provides a
much faster asymptotic decay in the time domain.
Furthermore, the discrete Meyer wavelet transforma-
tion of observed ground motions is determined eas-
ily in the real domain. The procedure to determine
the group delay time and the associated mean value
and standard deviation for each decomposed compo-
nent of an observed ground motion is illustrated
briefly in this paper.

On the other hand, based on statistical analysis,
it can be found that the student t-distribution with a
degree of freedom ¢=3 can be recognized as the
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representative distribution of group delay times within
the compact support of Meyer wavelet. Therefore,
for the given mean value and standard deviation of
group delay times of a certain decomposed com-
ponent, the sample of group delay times at each dis-
crete frequency within the associated compact sup-
port can be generated randomly by the identified
probability density function of student t-distribution
(¢=3).

In general, the mean value and standard devia-

tion of group delay times of each decomposed com- .

ponent can be modeled as functions of the epicentral
distance and earthquake magnitude. However, be-
cause the object of this study is to determine the de-
sign ground motion according to the Chi-Chi earth-
quake at a site with no records available, the depen-
dence of the earthquake magnitude is dropped. On
the basis of the recorded data from the observation
stations during the Chi-Chi earthquake, the attenua-
tion relations to predict the mean value and standard
deviation of group delay times of each component can
be regressed as functions of the hypocentral distance
in this paper.

For a site of interest, in addition to the random
generation of group delay times by only the predicted
mean value and standard deviation, the earthquake
data observed at nearby stations can be considered
together to simulate a sample of group delay time by
applying conditional simulation methods. Condi-
tional simulation methods should be devised to al-
low the realization of a sample field at an unobserved
location, which satisfies the properties of a stochas-
tic field and is compatible with measured values at
observed locations. Nonstochastic conditional simu-
lation (Kameda and Morikawa, 1992), application of
the Kriging method (Vanmarck and Fenton, 1991;
Hoshiya and Murayama, 1993), and Kalman filtering
technique (Sato and Imabayashi, 1999) were devel-
oped by using the cross-spectrum to model spatial
stochastic characteristics of ground motions. In
this paper, after defining a spatial correlation of
group delay times, the Kalman filtering technique is
applied to model the group delay times and further
to simulate the phase spectrum for an unobserved
point.

Finally, based on the predicted phase spectrum
at a site of interest, the design ground motion can be
simulated by modifying the Fourier amplitude owing
to the resonance effect, such that the associated spec-
tral response acceleration will be compatible with the
design response spectrum as specified by the seismic
design code. Because of the nonstationary nature in-
cluded in the modeled phase spectrum, this simulated
design ground motion will perform the same wave-
form characteristics as the earthquake ground motions
observed at the target site.

II. DETERMINATION OF GROUP DELAY
TIME

Group delay time t,,(®) is defined as the deriva-
tive of the phase spectrum @(w) with respect to cir-
cular frequency .

dd(w)
dw

o) = ()
The phase spectrum determined from a ground mo-
tion should be unwrapped to obtain the group delay
times. The mean value and standard deviation of
group delay times within a certain frequency range
express the central arrival time and duration,
respectively, of the earthquake motion with frequency
content of such a bandwidth.

In this study, based on the prediction of group
delay times for a series of separate frequency bands,
the phase spectrum will be simulated within a certain
frequency range one by one, rather than once for the
whole frequency range. It is implemented by using
the Meyer wavelet decomposition. The Meyer wave-
let function ¢(¢) is defined explicitly in the frequency
domain by

0 s f| e 1173, 473]
PN ={ esinZpG|f|-D] ;13| f|<23
ei”fcos[gﬁ(%l fl-11 ;2B3<|f| <43

(2)

where @ (f) is the Fourier transformation of ¢(f), and
B(a) is an auxiliary function that goes from 0 to 1 on
the interval [0,1] and can be defined by (Daubechies,
1992)

B(e)=a*(35-84a+7007-200*); ac [0,1] (3)

It can be found that the Meyer wavelet is a frequency
band-limited function whose Fourier transformation
is smooth, and hence it provides a much faster as-
ymptotic decay in the time domain. The Meyer wave-
let (z) and its Fourier amplitude | @ (f)| are illustrated
in Fig. 2.

The discrete wavelet transformation of a time
function x(¢) and its inverse transformation are de-
fined by

x(@) = ; x(t) = ; (Ek: a (1))
(Djk(t) = 2]'/2(0(21'1 .y

ax= | ouroa )
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Fig. 2 Meyer wavelet ¢(f) and its Fourier amplitude “(/T(f)‘
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where @;(?) is the discrete Meyer wavelet function
with integers j and k denoting the scale factor and
time shift, respectively, and the set of functions
@i(t) for all scales is an orthonormal basis for the
linear space of L,(R). Owing to the Meyer wavelet
transformation, all components x;(t) with different
scale factors, j, are orthogonal to each other, and the
Fourier transformation of the j-th component X;(f) has
a compact support defined by 2//3<f<2*?/3. Tt is noted
that adjacent compact supports overlap with each
other in the frequency domain.

We consider the earthquake data observed at sta-
tion TCUO52 during the Chi-Chi earthquake as an
example. As shown in Fig. 3, it is a typical near-
fault ground motion, and for convenience, the value
of PGA has been scaled to become 1g. Based on Eq.
(4), the orthogonal components can be decomposed

Station TCUO052 (1999 Taiwan Chi-Chi EQ)

g o5l

K 0

3 051

;|

< _15 " L " 1 " " ) Il

0 10 20 30 40 50 60 70 80 90
Time (sec)

®

E

&

=

G

2

2 600 .

0 10 20 30 40 50 60 70 80 90
Time (sec)

Fig. 3 Ground motion observed at station TCU052 during the Chi-
Chi earthquake (1999)
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Time histories and Fourier amplitude spectra of the Meyer wavelet decomposed components (j=-3~4) of the ground motion ob-

by means of the Meyer wavelet transformation. Both
the time histories and the Fourier amplitude spectra
of the components with scale factor j=-3 to 4 are
shown in Fig. 4. It is found that the signals in a com-
ponent with smaller scale factor (lower frequency
contents) concentrate to become a single group with
only one central arrival time. However, the signals
in a component with a larger scale factor (higher fre-
quency contents) separate to many groups and arrive
at different times. It may be due to the larger band-
width of frequency contents, the crack open and heal-
ing processes of the fault rupture, and may even be
caused by sub-events. The overlap situation can be
observed in the Fourier amplitude spectrum, and
further, the Fourier amplitude at the central frequency
range on each compact support is coincident with the
one determined from the total ground motion (denoted
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Fig. 5 Distribution of the group delay time for the decomposed
components with j=-3 to 4 of the ground motion observed
at station TCU052

by a dashed line). On the other hand, based on the
Fourier spectrum of the total ground motion, it can
be found that the Fourier amplitudes for frequencies
higher than 20 Hz are much smaller than those for
lower frequencies. Hence, signals with frequencies
higher than 20 Hz are ignored, and only the compo-
nents with scale factor j=-3 to 4 are considered in the
analysis.

Based on the phase spectrum of the j-th decom-
posed component P w), the group delay times té{)(w)
at discrete frequencies within the compact support can
be determined by Eq. (1), and then, the mean value
uf) and the standard deviation o) of group delay
times for the j-th decomposed component can be car-
ried out. The distribution of group delay times for
the decomposed components (j=-3 to 4) of the ground
motion observed at station TCUO052 is shown in Fig.
5, and the associated mean values and standard de-
viations are listed in Table 1.

In general, the group delay times and the asso-
ciated mean value and standard deviation can be de-
termined straightforwardly for each decomposed com-
ponent of an observed ground motion, and the proce-
dure is outlined in Fig. 6.

III. RANDOM GENERATION OF GROUP
DELAY TIME FROM THE
DISTRIBUTION CHARACTERISTIC

The histograms of the group delay times deter-
mined for each decomposed component with j=-1 to
4 of the ground motion observed at station TCU052
during the Chi-Chi earthquake are shown in Fig.
7. Compared with the density distribution functions
of normal distribution and student t-distribution
with a degree of freedom ¢=3, it can be found that
the r-distribution expresses well the probabilistic
characteristic of group delay times. The density

Table 1 The mean value and the standard devia-
tion of the group delay time

dse) oo
j=-3 44.5741 7.6745
j=-2 51.0558 8.8775
Jj=-1 45.3677 6.9164
j=0 43.4836 6.6704
j=1 51.1724 12.1331
j=2 47.9925 13.7978
j=3 45.6374 15.7368
j=4 45.7900 12.0596
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) =
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Fig. 6 Procedure to determine the group delay times and the as-
sociated mean value and standard deviation for each de-
composed component of an observed ground motion

distribution function of the student t-distribution, with
¢ degrees of freedom of a random variable ¢, can be
expressed by (Ang and Tang, 1975)

¢+1
F[(¢+1)/2](1+ﬁ)’7_
¢

HO=15% Tien)

__x-
t= (ol/o+1) (%)

herein, i and o are the mean and standard deviation
of an independent random sample x.

In addition to the station TCUO052, all of the
ground motions observed at the stations in the cen-
tral part of Taiwan during the Chi-Chi earthquake and
its aftershock (M=6.8) are considered to study the
probabilistic characteristic of group delay times. For
the k-th observed ground motion (k=1~N, N: number
of observed ground motions), the group delay time at
each discrete frequency and the mean (7)) and stan-
dard deviation (0{)) for the j-th compact support (j=
-1~4) can be determined straightforwardly by the pro-
cedures shown in Fig. 6. Furthermore, the probabil-
ity density function £ can be determined from the
histograms of the observed group delay times within
the j-th compact support. On the other hand, based
on the determined 4/} and ¢}, the associated prob-
ability density function of the t-distribution, ﬁfﬁl(s)(qﬁ),
can be determined by Eq. (5) for a trial ¢ degrees of

freedom. Based on the least squares method, the
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Fig. 7 Histograms of the group delay times determined for compact supports with j=-1 to 4 of the ground motion observed at station

TCUO052

¢-dependent error function can be defined by

N
=1

4 . ;
Er@)=5 2 X wlfi-fhe@)  ©

IS

Herein, w; denotes the weighting that is defined by
the bandwidth of the j-th compact support, and hence
is proportional to the number of samples in the j-th
compact support. It is noted that the ground motions
observed at 73 stations for the main shock and 61 sta-
tions for the aftershock in the central part of Taiwan
are analyzed. As shown in Fig. 8, the degree of free-
dom ¢=3 causes the error function to become its
minimum, for both the main shock and the aftershock.
It implies that the student z-distribution, with a de-
gree of freedom ¢=3, can be recognized as the repre-
sentative distribution of group delay times within a
compact support for the central part of Taiwan.
Hence, based on the means and standard deviations
of the group delay times, the sample of group delay
times at each discrete frequency within the bandwidth
can be generated randomly by the identified student
t-distribution (¢=3), and further, integrated to model
the phase spectrum of design ground motions.
Consider the ground motion observed at station
TCUO052 during the Chi-Chi earthquake again, based

1999 Chi-Chi Earthquake
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Fig. 8 ¢-dependent error function determined by Eq. (6) for the
main shock and the aftershock of the Chi-Chi earthquake

on the determined mean value (u)) and standard
deviation (o)), the sample of group delay times at
each discrete frequency within the j-th compact sup-
port can be randomly generated by the identified stu-
dent t-distribution (¢=3). Fig. 9 shows the compari-
son of the observed and randomly generated group
delay times within the compact support with j=1 and
2. By integrating the randomly generated group de-

lay times, the phase spectrum for the j-th component
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Comparison of the observed and randomly generated group delay times within the compact support with j=1 and 2 of the compo-

nents decomposed from the ground motion observed at station TCU052

can be simulated.

Combining the simulated phase spectrum and the
forward-determined Fourier amplitude of each j-th
component within its main frequency range (27'<
/<2)), the associated time history can be recovered by
the inverse Fourier transformation. Fig. 10 shows the
comparison of the recovered signal, denoted as aj,,
and the forward decomposed signal, denoted as ajo,
for each j-th component. It is found that they are in
good agreement for lower frequency components. On
the other hand, there exist significant differences for
higher frequency components. It is because the sepa-
rated groups with different arrival times can hardly
be recovered by only one central arrival time (,u,/)).
However, for a near-fault earthquake, the contribu-
tion due to the higher frequency components is less
than that due to the lower frequency components.
Therefore, the recovered total ground acceleration
(summation of all of the j-th recovered components)
is in good agreement with the original earthquake
ground motion observed at TCUOQ52 as shown in Fig.
11(a). Furthermore, the velocity pulse can also be
recovered as shown in Fig. 11(b).

However, how to predict the mean value and the
standard deviation of group delay times of each com-
ponent at a site with no records available, and how to
overcome the random numbers in generating the
group delay times are not well defined yet, and these
problems will be solved in the next section.
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Fig. 10 Comparison of the recovered signals (denoted as a;,) and
the forward wavelet decomposed signals (denoted as a;p)
for the j-th component (j=-3 to 4) at station TCU052

IV. CONDITIONAL SIMULATION OF GROUP
DELAY TIME AT AN UNOBSERVED SITE

In general, the mean value and standard devia-
tion of group delay times of each component can be
modeled as functions of the epicentral distance and
earthquake magnitude. The parameters should be
regressed by the observed earthquake data sets.
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Fig. 11 Comparison of the observed and simulated total ground

motion at station TCUQ52: (a) for ground acceleration and
(b) for ground velocity

However, because the purpose of this study is to de-
termine the design ground motion corresponding to
the Chi-Chi earthquake at a site with no records
available, the dependence of the earthquake magni-
tude can be dropped and only the earthquake data
observed during the Chi-Chi earthquake are analyzed.
The attenuation relations to predict the mean value
ug) and standard deviation o{J) of group delay times
of the j-th component are expressed as

()

) (R) = of 'R
o) ®) = o 'R (7)

where R is the hypocentral distance and o/, of/,
Y/ and 947 are parameters to be determined by the
regression analysis. It is noted that the recorded time
sequence is relative to the trigger time of the acceler-
ometer at each station when the detected ground ac-
celeration exceeds a threshold. Therefore, the origin
time of each observed time history should be synchro-
nized to become the starting moment of the event by
adding the calculated travel time of the direct P-wave
generated at the hypocenter to the individual station
trigger time.

In this paper, the station CHYO08S is selected as
the target site. The attenuation relations to predict
the mean value 4{J) and standard deviation o) of
group delay times are regressed by the earthquake data
set recorded at the surrounding stations as denoted
by open circles in Fig. 12. The regression results of
the attenuation relations of the mean value and stan-
dard deviation are shown in Fig. 13, and the values
of o), o)), YY) and 94/ are listed in Table 2.

Based on the regressed attenuation relations, the

Chi-Chi, Taiwan Earthquake (1999/9/21)
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Fig. 12 Locations of the target site CHY088 and nearby observa-
tion stations
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deviation G§{) of group delay times

mean value and standard deviation of group delay
times of each decomposed component at CHYO088 can
be predicted. Here, instead of random generation
from only the predicted mean value and standard
deviation by the identified student t-distribution
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Table 2 Attenuation relations obtained from the
regression analysis of the mean value

(1)) and the standard deviation (c{))
— A RY ) 5
:u;éa}'— O((IIRJ/{I O-l(él - OZ(ZJ)R},i

o) AP o) A

j=-3 26.57 0.131 9.31 0.177
Jj=2 18.91 0.196 3.22 0.357
Jj=-1 7.86 0.411 3.73 0.349

1.92 0.730 0.70 0.729
3.34 0.588 4.01 0.289
6.28 0.432 6.49 0.167
3.97 0.546 9.94 0.068
3.64 0.559 2.07 0.448

\‘\.k”‘\‘k‘
AW = O

(¢=3), the earthquake data observed at the nearby sta-
tions are included together to model the group delay
times by applying the Kalman filtering technique. In
this study, the four closest stations, with similar site
conditions, around the target site (station CHY088)
are selected, and the locations of these four nearby
stations are denoted by open circles with superscripts
‘r’ in Fig. 12.

Consider m seismograms observed at m nearby
stations with spatial coordinates X » (p=1~m; m=4 in
this study), the group delay time tg,{)(Xp, wy) at X,
and a discrete circular frequency w; within the j-th
compact support can be determined from the decom-
posed components. Then, the mean value u{/)(X,)
and standard deviation 0'25{,)( X,,) of each component at
X, can be determined straightforwardly. The spatial
coordinate of the target site (station CHYO0S88) is de-
fined as X,,., and its mean value and standard devia-
tion of group delay times predicted from Eq. (7) for
the j-th component are denoted as u{/)(X,.;) and
O} (Xni1), respectively. To define the spatial correla-
tion of group delay times, the covariance between any
two points X, and X, (p,q,=1~m+1) are assumed as

M= o (X,)0 ) (X exp(— n4,,) (8)
where 4,, is the horizontal distance between X, and
X, and 1 is assumed to have a constant value of 0.1.
Defining a vector composed of the m+1 group
delay times at X, (p=1~m+1) and a certain circular
frequency @, within the j-th compact support as

Z(j)(a) ) = {I(J)(Xl’ a)k) l(/)(X27 w/c) I(J (Xm? a)k)
ti’{;)(ankl? a)k)}T (9)

The mean and covariance matrix associated with
Z9(ay) within the compact support can be expressed
as

ZYV= (uf) (X)) uP ) o 1 X w2, )T

MYV=[MP(X,, X,)] (10)
It is noted that all the values of the components in
the mean vector Z Y and the covariance matrix MY
can be well determined, as mentioned before. For
the m observation points, the m-dimensional vector
composed of the group delay times at @, can be de-
fined as

y(j)(w)——{t(j)(xl?a)k) t (X27 a)/c) Z’(j)(}gm wk)}T

gr
(11)

According to Egs. (9) and (11), it yields the observa-
tion equation

YN w)=HZ(ay) H=[I 0] (12)

where H is the observation matrix with a dimension
of mx(m+1), and I is the unit matrix of order m.

The Kalman filtering technique is adopted to
obtain the posterior best estimator of group delay
times conditioned by the observation equation. Be-
cause the apriori best estimator and its covariance
matrix are given by Eq. (10), the posterior best esti-
mator of group delay times and the assocmted cova-
riance matrix, denoted as Z“’(@,) and M"Y’ are ex-
pressed as

Z(j)(a)k) :7‘(1)+K(1)(y(J)(a)k)_Hj(j))
M(j)= MY KDOEMD (13)

where the matrix K with a dimension of (m+1)xm
is the Kalman gain of the j-th component, and is de-
fined as

KO=M O H[HM P H™+R ] (14)

The observation noise matrix R/ is assumed to be
the zero matrix as the posterior best estimator of group
delay times is approached. Partitioning the covari-
ance matrix MY into the observed and unobserved
parts

) (2}
M(j)_ Mmj m Mmj mt 1 (15)
- )
Mmj+l m Mm+l m+ 1

and substituting Eq. (15) and the observation matrix
H given in Eq. (12) into Eqgs. (13) and (14), the
Kalman gain K'Y, the posterior best estimators of
group delay times Z'/(k) and its covariance matrix
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Fig. 14 Comparison of the observed and predicted total ground
motion at the target site CHY088

M can be determined under the condition of R“=0
as

K(j)= ) I ) (16)
[ 1(1{3- l,m(Mft{,)m)—l
v Zfr{l (@)
yP ()

= () j ) N= 10y G VAY
Z MY LMD ) e D(wy - Z )

(17)
_ 0 ' 0
= () ) ) v g
0 Mm+l,m+l_ m+1,m(Mm,m) Mm,m+1
(18)

These results show that the posterior best estimators
of group delay times at observation points are identi-
" cal to the observed values and that the associated com-
ponents of covariance matrix become zero. For the
target site X,,.; (station CHYO088), the posterior best
estimator of group delay times at a discrete circular
frequency @, within the j-th compact support (272//
3<w<272/*%/3) can be summarized to be

()
tgr (Xm + 1 wk)

= U X )+ M MP) 0(0)-Z D)

(19)
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Fig. 15 Comparison of the response spectra associated with the
observed and predicted ground motions at the target site
CHYO088

Therefore, by integrating the simulated group delay
times, the phase spectrum of each j-th component can
be modeled within the compact support for the target
site. Furthermore, considering the predicted phase
spectrum and the forward-determined Fourier ampli-
tude from the ground motion observed at station
CHYO088, the time history of the predicted ground
motion can be recovered by the inverse Fourier
transformation. The time histories of the accelera-
tion and velocity between the observed and predicted
signals are compared in Fig. 14. Fig. 15 shows the
comparison of the response spectra associated with
the observed and predicted ground motions by a 4-
way logarithm format, and it can be seen that they
are in good agreement.

V. SPECTRUM COMPATIBLE DESIGN
GROUND MOTION

Based on the regressed attenuation relations, the
mean value and standard deviation of group delay
times for each component at a site of interest can be
predicted. Then, the sample of group delay times can
be either generated randomly by the identified stu-
dent t-distribution (¢=3), or simulated conditionally
by applying the Kalman filtering technique to con-
sist of the earthquake data observed at nearby stations.
Finally, the phase spectrum can be determined by in-
tegrating the group delay time within the non-over-
lapped main frequency range (2/7'<f<2’) of each j-th
compact support. The procedure to model the phase
spectrum for a target site is outlined in Fig. 16. On
the other hand, in addition to the modeling of phase
spectrum for a target site, the Fourier amplitude
should be determined to simulate the design ground
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Table 3 Code-defined normalized response spectrum coefficients for soil profile type III

Period Extremely Short Very Short Short Moderate Long
Range(sec) 7<0.03 0.03<7<0.2 0.2<7<0.611 0.61157<2.415 T22.415
San(T) 1.0 8.824T+0.7352 2.5 1.8/T% 1.0

X Simulated Spectrum Compatible Ground Motion
Random generation N . . ] i ) .
student t-distribution (¢=3) @
I
Predicted uf) (X,,.,) & 6 (X,.,) > £
by mgress&:(ig atten:Jation :elations) or Kot @) & Kat» @) g
)
Observed 12 (X.1_y ©p) Conditional simulation 3
(from nearby stations) Kalman filtering technique
Fig. 16 Procedure to model the phase spectrum from the group Time (sec)
delay times predicted by either the student z-distribution 3 IResI‘)onselSpec‘trum .
(¢=3) or the Kalman fiitering technique 25 4 — Code (S,p)
T --- Response Spectrum ||
B2t |
S 15|
|Spect1a1 response accelerat_ionl |MF,l (0=27/T)= aD(T)/SM(Tﬂ 1
0.5 . L

MF (©) (1)
It MF =1

for all @

A, (w)=MF (w)xA,(®)

Fig. 17 Procedure to determine the ground motion compatible with
the design spectral response acceleration

motion, such that the associated spectral response
acceleration will be compatible with the design re-
sponse spectrum as specified by the seismic design
code.

The procedure to simulate a ground motion com-
patible with the expected design spectrum is illus-
trated in Fig. 17. Based on the modeled phase spec-
trum D,(®) and a trial Fourier amplitude A,(®), we
can recover the total ground motion, and then deter-
mine the associated spectral acceleration S,,(T) for
any structural period 7. Because the response is domi-
nated by the wave with resonant frequency, the modi-
fication factor for the Fourier amplitude at a circular
frequency of w=2n/T can be defined by

MFn(a))|a):271:/T:SaD(T)/San(T) (20)

where S,p(7) is the normalized design spectral re-
sponse acceleration for a structure with period 7.
Then the Fourier amplitude on the next iteration pro-
cess can be defined by

An+1(w)=MFn(a))XAn(w) (21)

We repeat this iteration process until MF,(®) is equal
to 1.0 at all frequencies.

0 05 1 15 2 25 3 35 4 45 5
Period (sec)

Fig. 18 Spectrum compatible ground motion at the target site
CHYO088

It is noted that station CHYO0S88 is located on a
soft site, thus, the normalized design spectral response
acceleration S,,(7) specified by the current seismic
design code in Taiwan for Soil Profile Type III (Soft
Soil) should be considered. The associated values of
S.p(T) are listed in Table 3. Based on the predicted
phase spectrum for the target site (CHYO088) and the
procedure shown in Fig. 17, the spectrum compatible
ground motion can be simulated and shown in Fig.
18. Furthermore, consider the zoning factor Z=0.33g
at the target site, which means the design PGA corre-
sponding to a return period of 475 years as specified
by the current seismic design code in Taiwan, the
simulated spectrum compatible ground motion can be
scaled to have a peak ground acceleration of 0.33g to
become the design ground motion at the target site
(CHYO088), and further, can be applied as the input
ground motion to analyze the earthquake performance
of structures for design purposes.

VI. CONCLUSIONS

Based on the ground motions observed during
the Chi-Chi earthquake, the attenuation relations to
predict the mean value and standard deviation of
group delay times within each frequency range ac-
cording to the compact support of Meyer wavelet can
be regressed as functions of the hypocentral distance.
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Based on the predicted mean value and standard de-
viation at a site of interest, the sample of group delay
times can be generated randomly by the identified
student t-distribution (¢=3). In addition to random
generation, the sample of group delay times can be
also simulated conditionally from the predicted mean
value and standard deviation as well as the earthquake
data observed at nearby stations by applying the
Kalman filtering technique. Then, the phase spec-
trum at a site of interest can be modeled by integrat-
ing the simulated group delay times. Finally, owing
to the resonance effect, the Fourier amplitude can be
modified by forcing the associated spectral response
acceleration to be compatible with the design response
spectrum as specified by the seismic design code.
Therefore, based on the predicted phase spectrum and
the modified Fourier amplitude, the design ground
motion at a site with no records available can be
simulated. The simulated design ground motion will
be compatible with the design response spectrum and
also perform the same waveform characteristics as
the earthquake ground motions observed at the target
site. Hence, the time history analysis can be imple-
mented to analyze the earthquake performance for
design purposes.
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