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ABSTRACT 

 

 In this study, we analyze the physical mechanism of water well 
resonance induced by pre-earthquake signals. A weak pressure wave 
passing through the confined aquifer is considered as the incoming 
pre-earthquake signal. Since the porous skeleton is hard, this pressure 
wave is simply the limiting case of second kind of dilatational wave 
of poroelasticity. Because the driving signals of weak pre-earthquake 
pressure wave transmitting through confined aquifer are so weak that 
can hardly affect the solid skeleton we, believe a very possible reason 
for this is due to the effect of resonant amplification of free surface 
water waves in wells. The water inside the well is assumed to be 
incompressible, inviscid and irrotational while that outside the well is 
treated as porous-media fluid flow with rigid skeleton. The potential 
flow theory with small amplitude water wave and porous media flow 
following Darcy’s law are adopted for waters inside and outside the 
well respectively. By using the regular perturbation expansion method 
based on a small gauge function k0R (k0  is the wavenumber, R is the 
well radius), the well-posed boundary-value-problem thus can be 
solved. It is found that the weak pre-earthquake longitudinal pressure 
wave is only a triggering mechanism for the resonance of transverse 
gravitational free surface water wave inside the well.  

 
KEYWORDS: pre-earthquake signals; well; resonance; 
longitudinal wave; transverse waves. 
 
INTRODUCTION 
 

The problem of the response of groundwater induced by 
earthquake has been studied by many investigators. For example, 
Cooper et al. (1965) is a study on the response of well water to 
seismic waves, and Liu and Wen (1997) is the analysis of the long 
waves passing through aquifer. However, researches on the response 
of groundwater induced by weak  pre-earthquake signals are rare. 

There are evidences, indeed, that groundwater somehow is affected 
by very weak pre-earthquake signals. For example, one day before the 
drastic 921-earthquake at central Taiwan in 1999, pre-earthquake 
responses were observed in some water wells in Tsuo-Shui River  
 

 
water basin in central Taiwan. Because the driving signals of weak 
pre-earthquake pressure wave transmitting through confined aquifer 
are so weak that can hardly affect the solid skeleton we, believe a  
 
very possible reason for this is due to the effect of resonant 
amplification of free surface water waves in wells.  Although unlike 
resonances driven by large energy such as Cooper et al. (1965) or 
conventional harbour resonance researches, the traditional resonance 
analyzing methods are still worth referring to for our present study. 

In Cooper et al. (1965), the oscillation of water column in a well 
due to an incoming harmonic seismic wave is studied. This problem 
is similar to the well-known oscillating fluid in a U-tube of fluid 
mechanics (e.g. see Chapter 13 of Streeter and Wylie (1985)). This 
study is about the response of well water due to huge seismic wave 
but not weak pre-earthquake wave. Although the resonance 
phenomena is not discussed in Copper et al. (1965), the resonant 
effect of it can be easily obtained. 

Harbour resonance is an important problem for harbour design. The 
famous “ Merian’s formula” is just the result of the resonant analysis 
of water wave which relates the unfavored harbour geometry to the 
designed wave. There are many investigations about harbour 
resonance, for example, McNown (1952), Mei (1989), etc. are 
theoretical studies, Chen and Mei (1974), Tsay and Liu (1983), etc. 
are numerical researches. 

In this study, we’ll refer to the aforementioned resonance studies 
and analyze the resonance of water in wells in response to weak 
pre-earthquake signal transmitting through confined aquifer. A weak 
pressure wave passing through the confined aquifer is considered as 
the incoming pre-earthquake signal. The water inside the well is 
assumed to be incompressible, inviscid and irrotational while that 
outside the well is treated as porous-media fluid flow with rigid 
skeleton. The potential flow theory with small amplitude water wave 
and porous media flow following Darcy’s law are adopted for waters 
inside and outside the well respectively.  
 
FORMULATION 
 
 

Governing Equations of Fluid in Confined Aquifer 
Based on Biot’s theory of poroelasticity, for the skeleton of the 

porous aquifer being assumed rigid, and the water incompressible, the 
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continuity equation and the momentum equation for water inside the 
aquifer are 
                    04 =⋅∇ V                          (1) 
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                    (2) 

where subscript 4 refers to the aquifer region as shown in Figure 1; 

4V  = velocity vector of water; 
4p  = pressure of the fluid inside the 

aquifer; ρ  = density of the fluid; µ  = dynamic viscosity of fluid; 

0n  and k  = porosity and specific permeability of the aquifer, 

respectively. 
 The velocity potential 

4φ  may be defined as 
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where K  = hydraulic conductivity, and then, the continuity equation 
becomes  
                     04

2 =∇ φ                          (4) 

and integrating (2) with respect to the vertical coordinate z , (2) 
becomes 
                   )(44 Hzggp −−−= ρφρ                    (5) 

In the foregoing equations, z  = vertical upward coordinate from the 
bottom of the well; and H = depth of undisturbed water in the well. 
 
Governing Equations of Fluid in Well 

It is quite reasonable that homogeneous water in the well is 
assumed to be incompressible, inviscid and irrotational; and the fluid 
domains of the present study are shown in Figure 1. 

For regions (1) - (3), we let 
                   3,2,1, =∇= jV jj φ               (6) 

where 
jV
 and 

j
φ  = velocity vectors and velocity potentials of fluid, 

respectively; and the subscript j  denotes the flow regions (see 

Figure 1). The continuity equation and linear momentum equation are  
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By substituting (6) into (7), (7) becomes  
                 3,2,1,02 ==∇ j

j
φ                  (9) 

Then, by substituting (6) into (8), and integrating (8) with respect to 
z , (8) becomes 

              ( ) 3,2,1, =−−
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where t = time; 
jp
 = the pressure of the fluid in the well. 

 
Boundary Conditions 

On the bottom of the well (i.e. 0=z , Rr <<0 ), the normal 
velocity equals zero, i.e., 

                      
03 =

∂
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z
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On the free surface of fluid in the well, Hz = , Rr <<0  for 
region (1), we have the conventional kinematic and dynamic 
boundary conditions as  
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where R  = radius of the well; η  = the vertical deviation of water 

surface from the mean free surface. For convenience, we usually 
combine (12) with (13) to get rid of η  as  
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On the upper and lower aquitard / aquifer interface (i.e. ∞<< rR , 

2
hz = , and 

1
hz = ), the boundary condition is 

                     
0

4 =
∂

∂

z

φ                          (15) 

On the lateral surfaces inside the well except the screen, the normal 
velocity equals zero, i.e., Rr = ; Hzh <<

2
 for flow region 1, and 

1
0 hz <<  for flow region 3, we get 
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where 
2
h  and 

1
h  = the height of upper and lower aquitard / aquifer 

interface. 
On the lateral screen surface inside the well (i.e. Rr = , and 

21
hzh << ), the continuity conditions of mass flux and pressure are 

considered. From Eqs. (3) and (6), we have 
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and according to Eqs. (5) and (10), it is obtained that 
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At the far field, 
21
hzh <<  and ∞→r , the radiation boundary 

condition is 
               outgoing

r
→

∞→
4

limφ  or  0                  (21) 

On the interface between two regions in the well, the artificial 
internal boundaries, the continuity conditions of mass flux and 
pressure shall be satisfied as follows: 
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for region 1 / region 2, and 
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for region 2 / region 3. 
 
Regular Perturbation Expansions 

Since the present study focuses on the problem of periodic linear 
water wave, we may introduce a time factor tie ω−  into the 
time-dependent variables. We shall use the same notation as 
time-dependent variables discussed earlier to represent the following 
time-independent variables for simplicity, where ω  is the angular 
frequency of weak incident pressure wave. 

Eqs. (4) and (9), together with boundary conditions (11) and 
(14)-(25), form a complete boundary-value-problem. However, 
because K  in (19) is much less than one, we may encounter a highly 
ill -conditioned system when solving undetermined coefficients by 
matrix. Hence, we have to further simplify the problem in order to 
solve it. 

Notice that by referring to reasonable order of magnitude of each 
variable such as 210

10~ mk p
− , 28

10~ mNλ , ω 〜  100 s-1 , 

smkg ⋅−4
10~µ , and mR 1

10~
− , we find 

       (26)            
where κ  = volume bulk modulus of water, G  = Lame constant, 

3570



  

 

and F  = non-dimensional parameter, for rigid skeleton of the porous 
aquifer according to Huang and Song (1993).  We thus may 
introduce 
             

110~~
2

0 <<= −R
k

Rk
pλ

ωµ
ε

                (27) 

as a small parameter to be the gauge function for regular perturbation 
expansion, where 

0k  = wavenumber of weak incident pressure wave 

(i.e. wavenumber of the limiting case of second kind of longitudinal 
wave of poroelasticity); λ  = Lame constant of elasticity. Different 
from that for low frequency tsunami long wave in Liu and Wen 
(1997), referring to (26), this 

0k  for pre-earthquake signal may give 

very small decay rate when the wave is short and skeleton is rigid.  
Also notice that 

     
 
or 
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where n0〜1,     3310~ mkgρ , 21
10~ smkgg ⋅ . 

Considering (28) for boundary condition (19), we then find that it 
is quite natural to introduce the regular perturbation expansions with 
the gauge function ε  as 
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We shall expect 0
Iφ  to represent the incident pressure wave, 0

4φ  to 

represent the reflection pressure wave within the confined aquifer, 
while 1

1φ , 1

2φ , 1

3φ  to be the first-order perturbation solutions inside 

the well. 
 
Dividing Methods 

Since in the boundary-vale-problem of region 2, there are too many 
non-homogeneous boundary conditions, the general solution cannot 
be obtained straightforwardly. Based on the superposition principle 
for linear problem, we can use the dividing method to solve the 
original boundary-value problem. By letting 
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then for 1~
jφ , 

region 1 
           0

~1
1

2 =∇ φ , Rr <<0 , Hzh <<2              (34) 

             

        0

~
~

1

11

1

2 =
∂

∂
+−

z
g

φ
φω , Hz = , Rr <<0            (35) 

 

            0

~1
1 =

∂

∂

z

φ , 
2hz = , Rr <<0                 (36) 

 

            0

~1
1 =

∂

∂

r

φ , Rr = , Hzh <<2                (37) 

 
region 2 

          0
~1
2

2
=∇ φ , Rr <<0 , 

21 hzh <<               (38) 

 

            0

~1
2 =

∂

∂

z

φ , 
2hz = , Rr <<0                 (39) 

 

           0

~1
2 =

∂

∂

z

φ , 
1hz = , Rr <<0                  (40) 

 

         )(

~
0

4

0

0

1

2 φφ
φ

+
∂

∂
=

∂

∂
I

r
Kn

r

, Rr = , 
21 hzh <<        (41) 

 
region 3 

             0
~1
3

2 =∇ φ , Rr <<0 , Hz <<0             (42) 

         

              0

~1
3 =

∂

∂

z

φ , 
1hz = , Rr <<0               (43) 

 

              0

~1
3 =

∂

∂

z

φ , 0=z , Rr <<0               (44) 

 

              0

~1
3 =

∂

∂

r

φ , Rr = , 
10 hz <<               (45) 

 
For 1ˆ

jφ
, 

region 1 
             0ˆ1

1

2
=∇ φ , Rr <<0 , Hzh <<2            (46) 

           

           0
ˆ

ˆ
1

11

1

2 =
∂

∂
+−

z
g

φ
φω , Hz = , Rr <<0          (47) 

 

             
zz ∂

∂
=

∂

∂ 1

2

1

1
ˆˆ φφ , 

2hz = , Rr <<0              (48) 

 
            1

2

1

2

1

1

~ˆˆ φφφ += , 
2hz = , Rr <<0              (49) 

    

              0
ˆ1
1 =

∂

∂

r

φ , Rr = , Hzh <<2              (50) 

 
region 2 

              0ˆ1
2

2
=∇ φ , Rr <<0 , 

21 hzh <<           (51) 

 

           
zz ∂

∂
=

∂

∂ 1

1

1

2
ˆˆ φφ , 

2hz = , Rr <<0                (52) 

 
          1

2

1

1

1

2

~ˆˆ φφφ −= , 
2hz = , Rr <<0                (53) 

 

           
zz ∂

∂
=

∂

∂ 1

3

1

2
ˆˆ φφ , 

1hz = , Rr <<0                (54) 

 
          1

2

1

3

1

2

~ˆˆ φφφ −= , 
1hz = , Rr <<0                (55) 

 

           0
ˆ1
2 =

∂

∂

r

φ , Rr = , 
21 hzh <<                 (56) 

 
region 3 

            0ˆ1
3

2 =∇ φ , Rr <<0 , 
10 hz <<              (57) 

 

            
zz ∂

∂
=

∂

∂ 1

2

1

3
ˆˆ φφ , 

1hz = , Rr <<0               (58) 

   

3571



  

 

           1

2

1

2

1

3

~ˆˆ φφφ += , 
1hz = , Rr <<0               (59) 

 

            0
ˆ1
3 =

∂

∂

z

φ , 0=z , Rr <<0                 (60) 

 

            0
ˆ1
3 =

∂

∂

r

φ , Rr = , 
10 hz <<                 (61) 

 
 
SOLUTIONS 
 

For a weak plane incident pressure wave (e.g. see Arfken and 
Weber (2001)) 
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where a  = small amplitude ( 1<<a ), and the incident pressure wave 
comes from the direction of 

0θ  as shown in Figure 2, the velocity 

potential may also be represented as 
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Thus, the coordinate transformation 
                    

0θθθ −=′                         (64) 

transforms old coordinate system ( 0=θ  at x  axis) to the new one 
( 0=′θ  at the direction of incident pressure wave). Without losing the 
generality, we will choose the new coordinate system in latter 
discussions. 

Straightforwardly, substituting (62) into termsO )1( , z -independent 
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is obtained.  
By using (38)-(41), (62)-(63) and applying the orthogonality of 

trigonometric and Bessel functions, we get z -independent 

              ∑
∞

=

′=
0

0

1

2 cos)(
~~

m

mm mrkJBa θφ                (67) 

)()(

2~

0

)1(

00

0

RkHRkJRk

Kni
B

mm

m

m
′

−
=
π

α ,                 

               K,2,1,0=m                 (68) 
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where 
mnk  = the wave number in the well, 
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Finally, according to (13) or (12), the perturbed wave profile is 
obtained as the real part of 
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and the non-dimensional form may be defined as 
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From the denominator of the above equation, we may easily find that 
as 
               ( ) 0tanh

2
→− Hkgk mnmnω                 (85) 

where Rk mnmn β= ; 
mnβ  = specific eigenvalues of Bessel function 

which satisfies 
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the amplitude of wave height is going to be infinite and resonance 
thus occurs. 

Notice that the order of magnitude of H  is about 10  m , hence 

( ) 1tanh →Hkmn ; i.e. H  has no effect on the occurrence of resonance 

practically. 
 

RESULTS 
 

In the following discussion, we only apply the porosity 3.00 =n  

and the radius of well 2.0=R  m  for demonstration. More detailed 
data are given in Table 2. 

Fig. 3(a) and 3(b) show a comparison example of vertical contour 
distributions of perturbed velocity potential in the direction of 0=′θ  
in response to same incoming pressure wave with and without 
resonance (Fig. 3(a) for 1=m , 2=n ). From top to bottom are 
figures near free surface, Region 1, Region 2, and Region 3, 
respectively. It is observed that when a weak incident pressure wave 
transmitting into the well through the screen, the contours of velocity 
potentials vary significantly and violently in the top figure of  Fig. 
3(a) as resonance occurs, while it is quiescent in the top figure of  
Fig. 3(b) as resonance does not occur. It is also observed that since 
both the contours of velocity potentials in Fig. 3(a) and Fig. 3(b) are 
discontinuous near the place of 20≅z  m , the incident pressure 
wave cannot cause resonance on free surface directly. We thus 
conclude that the weak pre-earthquake longitudinal pressure wave 
only plays the role as a trigger to disturb the initial equilibrium state 
of water in the well, while the main driving mechanism for resonance 
of transverse free  surface water wave is still the gravitational force. 
Notice that since the radius of observing well is so small, huge energy 
to disturb the equilibrium of well water is not necessary. In summary 
of Fig. 3, a weak pre-earthquake longitudinal pressure wave is only a 
triggering mechanism for the resonance of transverse gravitational 
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free surface water wave inside the well. 
Because when a specific mode of resonance occurs, the amplitude 

of water elevation of the corresponding mode tends to be infinite, 
while that of other modes are small and negligible, we thus can 
rewrite the series representation (84) to reveal a specific mode of 
resonance as 
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   (87)          

Further, the non-dimensional water elevation (87) of a specific mode 
of resonance multiplied by ( )[ ]Hkgk mnmn tanh

2 −ω  can be used not 

only to avoid singular behavior of (87) but also to reveal the wave 
pattern clearly on the other hand. Fig. 4 presents the wave pattern of 
surface water when resonance occurs. From top to bottom, figures of 

2,1,0=m  are shown in Fig. 4. Fig. 4(a) is for 2=n , while Fig. 4(b) 

is for 3=n . It is observed that when m  equals zero, the pattern of 
water elevation is axisymmetric and is independent of θ ′ . However, 
when m  doesn’t equal zero, the water elevation will have θ ′ - 
dependence, and the resonance wave pattern has plane-symmetry 
with m -symmetric planes as 

m

jπ
θ

2
=′ ( 1,,1,0 −= mj K ).  

The symmetric plane of resonance wave pattern of 1=m  provides 
a method to determine the direction of incoming pressure wave as 
indicated by Fig. 4. Therefore, the symmetric plane of resonance 
wave pattern of 1=m  can be used to point out the direction between 
the well and the location that pre-earthquake occurs. For practical 
application, based on this property, the location of possible later 
earthquake source can be determined by intersecting the 
direction-lines of several observing wells at different positions 
provided that the observing time-interval is in the order of seconds 
because the time periods of most earthquakes are in seconds. 

 
CONCLUSIONS 
 

The physical phenomenon of resonant amplification of free surface 
water wave in well in response to weak pre-earthquake longitudinal 
pressure wave transmitting through confined aquifer is analyzed 
successfully in the present study. 

In solving this problem, a regular perturbation expansion method 
based on a small gauge function Rk0=ε  is introduced to overcome 

the conventional difficulty that arose from the small value of K  
appearing in continuous mass flux boundary condition on the well 
screen, (19). 

Instead of resonance of water surface in the well induced by huge 
longitudinal pressure wave as Cooper et al. (1965) which being 
similar to water oscillation in U-tube, and resonance of water surface 
wave induced by huge incoming transverse wave flux as traditional 
harbour resonance, in the study, we get a different mechanism of 
resonance. It is a resonance of transverse free surface water wave 

inside the well of small radius triggered by a weak pre-earthquake 
incoming longitudinal pressure signal transmitting through the 
confined aquifer. 

The symmetric plane of resonance wave pattern of 1=m  can be 
used to point out the direction between the well and the location that 
pre-earthquake occurs. For practical application, based on the 
aforementioned property, the location of possible later earthquake 
source can be determined by intersecting the direction-lines of several 
observing wells at different positions provided that the observing 
time-interval is in the order of seconds because the time periods of 
most earthquakes are in seconds. 
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Variable Notation Value Unit 

Density of fluid ρ  1000 3mkg  

Hydraulic conductivity K  0.001 
2sm  

Gravitational 
acceleration 

g  9.81 
2smkg ⋅  

Radius of well R  0.200 m  

Water depth in well H  50.0 m  

Height of the lower 
confined aquifer 

boundary 
1h  1.0 

m  

Height of the upper 
confined aquifer 

boundary 
2h  10.0 m  

Porosity 0n
 0.300  

 

 

 

 

Table 1. Schematic diagram of solving sequence 

   Flux transport 

   Pressure transport 

Table 2. Detailed data of each variable used in this study 

Figure 1. Schematic diagram of weak incident 
pressure wave impacting on a well in 
side view. 
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Figure 2. Schematic diagram of weak incident 
pressure wave impacting on a well in top 
view. 

1φ

2h

1h

H

r

z

0
R

screen
confined  

aquifer  
2φ

3φ

 

4φ 0

Iφ

3574



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Contour distributions of perturbed 

velocity potential in the direction of 
0=′θ : (a) with resonance 

      (b) without resonance 
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Figure 4. Resonance wave pattern of surface water 
when resonance occurs for each resonance 
parameter: (a) 2=n  (b) 3=n  
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