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J. STRUCT. MECH., 12(4), 483-503 (1984-85) 

Nonlinear Response of Dou~ble Wall Sandwich 

Panels* 

H.-K. Hongt and R. Vaicaitis 

ABSTRACT 

An analytical study is presented to predict the nonlinear response of a 
double wall sandwich panel system that is subjected to random-type loading. 
Viscoelastic and nonlinear spring-dashpot models are chosen to characterize 
the behavior of the core. The nonlinear panel response is obtained by utilizing 
modal analyses and Monte Carlo simulation techniques. Numerical results 
include the response spectral densities, root-mean-square responses, and 
probability density function histograms. It is found that by proper selection of 
the dynamic parameters and damping characteristics, the structural response 
can be significantly reduced. 

I. INTRODUCTION 

Information available in the literature and  from ongoing research o n  the 
response of surface panels of various transportation vehicles tha t  a re  ex- 

*Communicated by J. T. P. Yao. 
tpresently with the Department of Civil Engineering, National Taiwan University, Taipei, 
Taiwan. 
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484 HONG AND VAICAlTlS 

posed to high intensity inputs indicates a need to reduce these response 
levels to acceptable limits [I, 21. Past studies have demonstrated that sand- 
wich panels can achieve a significant amount of response reduction [3-71. 
However, these studies were limited to linear models. Under high intensity 
inputs, soft core materials, and/or thin face plate constructions, linear theory 
becomes invalid. Therefore, an analytical study of nonlinear response of a 
double wall sandwich-type panel system is undertaken in this paper. 

The governing differential equations for nonlinear vibration of a double 
wall construction shown in Fig. I are developed for the case in which the 
core material is taken to be very soft, so that bending and shearing stresses 
can be ncglected and, consequently, the core can be described by a uniaxial 
constitutive law. Linear viscoelastic and nonlinear spring-dashpot models 
are chosen to characterize behavior of the core. Both face plates are modeled 
according to thin plate, large deflection theory [8, 91. The input acting on 
the external (top) face plate is assumed to be a random pressure field. 

Several methods have been proposed to study random vibration of non- 
linear systems [lo-121. Among the most widely used are the Fokker-Planck 
equation solutions [lo, 1 1 ,  131, perturbation method [14, 151, stochastic 
linearization [16, 171, and the Monte Carlo simulation [18, 241. Exact solu- 
tions of the Fokker-Planck equation are available only for a few simple 
cases. The perturbation method is usually limited to one or two degree of 
freedom systems and is valid only for weakly nonlinear cases. Stochastic 
linearization, although used for problems with strong nonlinearities [18, 191, 
may not yield meaningful results for the complex nonlinear problem con- 
sidered in this study, TO circumvent these difficulties, a Monte Carlo approach 
is employed to study the nonlinear response of a double wall panel system. 
In this case the time histories of the random input processes are simulated 
[20, 241 and the solution of the governing equations is obtained in a time 
domain. A modal analysis is utilized to decompose the vibrations of the 
face plates and the coupled system is solved by a Galerkin-like procedure 
[9]. For verification, a comparison is made between results of the simulation 
and power spectral density approaches for special linearized cases. 

The objective of the present study is to develop an analytical model that is 
capable of predicting nonlinear response of the double wall sandwich Cbn- 
struction and to demonstrate that such a model could be used to minimize 
response of the bottom plate. By proper selection of the dynamic parameters 
and damping characteristics, the response of the bottom plate can be reduced, 
even though the vibration levels of the top plate are large. Such a model 
could be used to study the response of compliant walls t o  convective random 
inputs and to minimize noise transmission into aircraft and other transporta- 
tion vehicles. 
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DOUBLE WALL SANDWICH PANELS 

II. RANDOM RESPONSE OF A DOUBLE WALL SYSTEM 

The double wall system is composed of a soft core and two elastic face 
plates, as shown in Fig. 1 .  T o  assess the dynamic response characteristics of 
the system, various structural models l.hat include geometric and damping 
nonlinearities and the viscoelastic properties of the core are considered in 
the formulation. 

For vibration of the elastic face plates, both classical linear and the von 
Karman nonlinear theories are considered [8,9,25].  Several linear and non- 
linear models are constructed to  represent the behavior of the core material 
and to investigate its effect on the overall response of the system. In the 
linear case the response analysis is performed in a frequency domain, utilizing 
a power spectral density approach [3]. The nonlinear response is calculated 
in a time domain by a Monte Carlo method [ZO]. The analysis presented 
herein is limited to a thick core of dimension 0.25 to  2 in. The details and 
numerical results of a linear formulation can be found in Ref. 3. 

The geometry of the double wall sandwich panel system used for non- 
linear deflection response calculations is shown in Fig. 1. The top and bottom 
plates are simply supported on all four edges. Following von Karman plate 
theory, the plate motions are modeled by four nonlinear partial differential 
equations for the vertical deflections w,. and w, and the Airy stress functions 
FT and F, [8, 9,25-271, 

I h~ I Bottom plate 

Fig. 1 Geometry of double wall sandwich panel. 
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HONG AND VAICAITIS 

+ mSwB/3 + mswT/6 + Ks[ws - w,] - p(x, y ,  0, r )  = O  ( 3 )  

where tn, c, D, E, and h are the mass, damping coefficient, plate stiffness, 
modulus of elasticity, and plate thickness, respectively. Subscripts T, B, and 
S denote top and bottom plates and the core, respectively. The K, is either a 
linear or nonlinear operator that describes the behavior of the soft core, V 4  
is the biharmonic operator V 4  = d4/dx4 + 2d4,/dx2 dyz + d4/dy4, and p(x, y ,  
0, r )  and p,(x, j l ,  r )  are the acoustic and input pressures that act on the 
bottom and top plates. Equations I and 3 express Newton's second law in 
the vertical direction, while Eqs. 2 and 4 ensure the compatibility of in- 
plane strains. Defining the Airy stress functions for both plates, in terms of 
the membrane in-plane forces, N,, Ny ,  and N,,, 

the equilibrium requirements are satisfied. Subscripts T and B have been 
dropped, since for each F there is one set of equations, Eq. 5. 

The boundary conditions corresponding to vertical deflections w, and w, 
are those of simply supported plates. Exact boundary conditions for the 
Airy stress function F are very complicated and, for the present study, in- 
plane boundary conditions are satisfied on the average [25]. Thus, 

where 
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DOUBLE WALL SANDWICH PANELS 487 

The terms u and v are in-plane displacements, which can be expressed in 
terms of the Airy stress function and the vertical deflection, 

in which v is Poisson's ratio. The first two conditions given in Eq. 6 imply no 
in-plane stretching of the plane midsurface, while the last two specify 
vanishing in-plane shear a t  the plate boundaries. 

T o  solve Eqs. 1-4, vertical deflections of the top and bottom plates are 
expressed in terms of the simply supported plate modes: 

where A:, and A:, are generalized coordinates of the top and bottom 
plates, respectively, and X,,,, = sin (mrrxlL,) sin (nrrylL,). 

Substitution of Eqs. 9 and 10 into Eqs. 2 and 4 yields two inhomogeneous 
partial differential equations in F. The solution for F may then be written as 

where F, and F, denote the particular and homogeneous solutions, respec- 
tively. Since both equations for F, arid F, are of the same form, only one 
equation is given and the subscripts and superscripts are dropped for brevity. 
A particular solution for Airy stress function can be obtained, following the 
procedures given in Refs. 25-28, as 

A,,A,ps(:nr - ms) 

x { [ ( m  + r)' + ( 2 ) ' ( n  + . P ) ~ ] - ~  cos ( m  + r)rrx cos (n + s)ny 
Lx LY 
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HONG AND VAICAITIS 

+ [e - r,' + (5)'cn - $1'1 " cos (m - r)nx cos (n - s)ny} 
LY Lx LY 

x {[(, + r l2  + (?)'(n - s)2]-2cos (m + r)nx cos (n - s)ny 
L x  LY 

+ [ (m - r)' + (?J~(~ + s ) 2 ~ - 2 C o s  (m - r ) m  cos cn + s ) Y  
L, LY 

For the case of in-plane boundary conditions that are satisfied on the 
average, the homogeneous solution can be written as 

where C7, C,, and C9 are constants of integration that are to be determined 
from the boundary conditions specified in Eq. 6 .  Combining Eqs. 5, 1 1 ,  and 
13, 

Using Eqs. 6 and 8, together with the expression for the Airy stress function 
F and the solution for the plate deflection w, the constants of integration 
reduce to 

which can then be substituted into Eq. 13 to determine the homogeneous 
solution for the Airy stress function. 

Having determined F, Eqs. I and 3 are satisfied in a Galerkin sense. The 
resulting system of nonlinear differential equations for the top plate are 
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The nonlinear stiffness coefficients Zijk,,,,, in Eq. 16 are given in the 
Appendix. The resulting equations for the bottom plate are similar to  those 
of Eqs. 16 and 17, except with the sutlscripts (and superscripts) T and B 
interchanged and the external random pressure -pE(x,  y, f )  replaced by 
the cavity backup pressure p(x, y, 0 , t ) .  'Then, the resulting system of equa- 
tions for the generalize coordinates A:, and A:, can be solved numerically. 

Due to  the anticipated large deflections of the top plate and foamlike 
materials to  be used in the core to isolate the motions of the double wall 
structural system, nonlinear and viscoelastic models are constructed. to  
represent the stiffness and damping characteristics of the core. Consider the 
case of a core material that is modeled a!; a combination of nonlinear springs 
and nonlinear dampers. The term Ks[wT - w,] in Eqs. 1 and 3 can be 
written as 

where k , ,  k , ,  k ,  and c , ,  c,, c ,  are the stiffness and damping coefficients, 
respectively. The hard spring behavior is simulated by a positive cubic 
coefficient k , .  In this case, when the relative core displacement ( w ,  - w,) 
exceeds ( k l / k 2 ) 1 1 2 ,  a state of strong nonlinearity is present. When the coeffi- 
cient k ,  is negative, the effect of nonlinearity is that of a soft spring. The 
spring will buckle if the relative displacement exceeds the value of (k,/ 
( -3k , ) ) ' I2  [28].  By including the quadratic terms in Eq. 18, a system with 
asymmetric nonlinearity can be studied. It should be noted that a symmetric 
nonlinearity at the equilibrium position might be forced into asymmetric 
behavior if the system is excited about some mean position. 
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490 HONC AND VAICAITIS 

When the core material exhibits linear viscoelastic behavior, the term 
Ks[wT - w,] can be expressed as 

where Es(t, r )  is the relaxation function of the viscoelastic material. For a 
nonaging viscoelastic material, Es(t, T )  reduces to Es(t - T )  and the expres- 
sion on the right-hand side of Eq. 19 reduces to a convolution type integral. 
Thus, 

The terms A:(T) and A;(T) for T < I are known during the numerical 
integration process of the system of equations given in Eq. 16. 

Before step-by-step numerical integration can be implemented for the 
coupled system of nonlinear differential equations given for the top plate in 
Eq. 16 and a similar expression for the bottom plate, the time histories of the 
generalized random forces Q;(r) and the solution for the enclosure pressure 
p(x ,  y, 0, r )  are needed. The solution for pressure in the enclosure is given 
in Ref. 29. The random time histories of the generalized random forces are 
generated utilizing a simulation technique for multidimensional and multi- 
variate random processes [23]. To reduce computation time, the simulation 
procedure is modified to accommodate the fast Fourier transform (FFT) 
procedure [19-241. 

The nonlinear system of equations that govern. the motion of the double 
wall system are coupled through inertia, damping, and stiffness terms. It is 
convenient to write the system in the following symbolic form: 

where a, = m, + ms/3, a, = m, + ms/3, 6, = ms/6, and R; and R $  
include damping, stiffness, and forcing terms. The system of the nonlinear 
equations, Eqs. 21 and 22, can now be solved by standard numerical integra- 
tion routines. Once the generalized coordinates A;(r) and A:(!) are known, 
displacements of the top and bottom plates are calculated from Eqs. 9 and 
10. The root-mean-square values and the spectral densities of the deflection 
response can then be estimated. The spectral densities are calculated utilizing 
the FFT algorithm. It should be noted that, for the present nonlinear system, 
the response is non-Gaussian. 
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DOUBLE WALL SANDWICH PANELS 

Ill. RANDOM PRESSURE INPUT 

In this section a brief discussion is given on the external random input, its 
spectral representation, and the simulation of the input sample functions, 
which are then used for a time domain analysis approach. The external noise 
acting on a structural panel is described, in general, by a random pressure 
process p,(x, y, I ) .  The experimental pressure-time histories, if available, 
could be used directly in a time domain analysis. Depending on the nature 
of the input pressure, some simplificat~ons of the randomness can be made 
to  facilitate the recording and processing of data. 

T o  provide the random response analysis of structures with nonlinearities 
and/or nonstationary inputs, a time domain Monte Carlo-type analysis is 
needed. Simulation techniques for multidimensional and multivariate 
Gaussian random processes with prescribed power spectral densities or 
evolutionary spectra can be utilized to generate sample inputs [18, 211. These 
simulations are greatly expedited by incorporating the fast Fourier transform 
(FFT) technique [19, 20, 231. In the present study, random input pressures 
are assumed to be Gaussian and are ~~imulated according to  the procedure 
given in Ref. 18. 

VI. NUMERICAL RESULTS 

Numerical results presented herein correspond to  the double wall sand- 
wich panel system shown in Fig. I .  The following set of parameters are 
selected for the study: The dimensions of the double wall panel are L, = 20 
in. and L, = I0 in. The structural response is computed at the center of 
the plate; i.e., .Y = 10 in. and g = 5 in. The top and bottom face plates are 
assumed to be made of aluminum, with material densities p,  = p, = 
0.000251 l b , - ~ ~ / i n . ~ ,  moduli of elasticity E, = En = 10' psi, and Poisson's 
ratios v, = v ,  = 0.3. The structural modal damping ratios of each plate are 
calculated from 

where w,,,, are the uncoupled natural frequencies. The fundamental modal 
damping ratio is taken to be [, , = 0.02. 

The input random pressurep, that a.cts on the top plate of the double wall 
panel system is taken to be that of truncated Gaussian white noise, for which 
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492 HONG AND VAICAITIS 

the spectral densities are 

8.41 x lo-' ( p ~ i ) ~ / H z ,  0 < f < 1024 Hz 
s," = 

0, otherwise 
(24) 

Spatial distribution of the random pressure is assumed to be uniform over 
the exterior surface of th: top plate. The spectral densities given in Eq. 24 
correspond to a 1 10-dB s ~ u n d  level, based on a I-Hz bandwidth. The overall 
input sound pressure lev:l is 130.1 dB. All calculations are based on a fre- 
quency bandwidth of Af= 1 Hz. The effect of the acoustic pressure p(x,  
y, 0, r )  is not included in the calculations. 

To demonstrate accuracy of the time domain solution, a direct comparison 
of results is made between the power spectral density (PSD) and the Monte 
Carlo (MC) approaches. In Fig. 2, root-mean-square (rms) deflection 
response at the center of the top plate is plotted versus the input rms pressure. 
As can be observed from these results, agreement between these two methods 
is very good when the response is linear. In obtaining these results, the 
following data were used: equal top and bottom plate thicknesses h, = 
hg = 0.032 in., core material-air spring with density p, = 1.147 x lo-', 
lb,-~' / in.~,  thickness h ,  = I in., spring constant k ,  = 19.48 l b & ~ ~ ,  and 
k ,  = k, = c,  = c, = c, = 0. Included also in Fig. 2 are the static and 
dynamic nonlinear deflection response of the top plate. Input for the static 

0.8 - 

0.6 - 
RMS 

w ~ / h ~  

0.4 - 

0.2 - 

PSD 

INPUT RMS PEZSSURE, psi  

Fig. 2 Root-mean-square response of top plate. 
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DOUBLE WALL SANDWICH PANELS 

0 .  -- R o t t o r ,  p l a te  r'  = I0 in. 
F ---- Top p l a t e  y * =  5 in .  

w,,, = 0.064 in. 

PDL 

dB 

-100 - 

-120- 

-140 I 1- 
0 200 400 600 800 10C 

FREOUENCY, Hz 

Fig. 3 Plate deflxtion I:vcls ( F  = system fl:~.ural mode, D = system dilatational mode). 

case is the rms value of the random precisures. Since the core, modeled by the 
air spring, is relatively stiff and the pressure inputs are relatively small, static 
response is linear and the loading is shared equally by the two plates. The 
deflection response spectral densities for the top and bottom plates, deter- 
mined by the PSD method, are given in Fig. 3. The following data were used 
to obtain these results: h ,  = 0.048 in., .h, = 0.064 in., p, = 1.147 l b , - ~ ~ / i n . ~ ,  
h, = 1 in., k, = 2 lb,/in.3, and g, = 0.03. The abscissa is a logarithmic 
scale, called the plate deflection level (I'DL), in units of decibels (dB), 

PDL(x*, y*, w )  = 10 log [S,(x*, y*, o)Aw/w:,,] (25) 

where S, is the deflection response spectral density, the reference deflection 
w,,, is taken as 0.064 in., x* = 10 in., and y* = 5 in. The modes that are 
excited by the random pressure are indicated in Fig. 3 by the symbols F a n d  
D, which refer to the flexural and dilatational modes, respectively, of the 
double wall system. As can be seen from Fig. 3, no distinct dilatational peaks 
are observed from the top plate at higher frequencies (above 300 Hz). This 
is due to the fact that these dilatational. natural frequencies are very close to 
the uncoupled natural frequencies of the bottom plate and away from those 
of the top plate. Response levels a t  the higher frequencies are significantly 
lower for the bottom plate when compared to the response levels of the top 
plate. 
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494 HONG AND VAICAITIS 

Shown in Fig. 4 are segments of the simulated time history of the input 
pressure and the response time histories of the top and bottom plates. Pro- 
bability density functions of the panel deflections are plotted versus standard 
deviations in the form of a histogram in Fig. 5. For the purposes of com- 
parison, Gaussian density functions are also included in the figure. From 
these results it can be observed that the nonlinear response of the top plate 
tends to exhibit non-Gaussian characteristics. The response of the bottom 
plate is linear and its amplitude distribution is very close to Gaussian. 

A parametric study to determine the effects of variations in system param- 
eters on the double wall panel response is performed. The effect of variations 
in the top plate thickness 11, is illustrated in Fig. 6 where a Monte Carlo-type 
nonlinear analysis was performed to obtain these results. For the case h,  = 
0.064 in., response of the top plate is linear and distinct resonant peaks are 
observed in the response spectral density. However, when the response 
reaches the nonlinear range, resonant peaks above the fundamental mode 
are suppressed due to decoupling of the top and bottom plate modes. The 
flexural modes are most affected and the dilatational modes, except the 

-0.1 1 I I I 

0 106 0 130 0 155 0.179 0 203 0.228 

TIME, sec 

I I I 

0 106 0 I30  0 155 0 179 0 203 0 .228 

TIME, sec 

Fig. 4 Time histories of simulated input and plate responses. 
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DOUBLE WALL SANDWICH PANELS 

, lowe' "WT 

u : Standard 
deviation n 

Fig. 5 Probability density function histogram of deflection response. 

h,=0.016 in. 

100 200 300 400 
FREQUENCY,  HZ 

Fig. 6 Response of bottom plate for different top plate thicknesses. 

fundamental ones, are excited to a lesser extent. Thus, significant reduction 
of the bottom plate response is achieved. However, response a t  the funda- 
mental dilatational mode does not seem to be significantly affected by non- 
linear response variations of the top plate. Since response is dominated by the 
fundamental mode, rrns responses for the three cases considered are about 
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the same. It should be noted that by decreasing the thickness of the top 
plate, surface density of the double wall sandwich construction is reduced. 
Thus, favorable gains in response reduction can be expected for a smaller 
amount of added weight t h o u g h  a design that consists of a thin top plate 
and a thicker bottom plate. 

The effects of decreasing the stiffness of the core appear in Figs. 7 and 8. 
Results indicate that the response of the bottom plate is reduced over almost 
the entire range of frequencies and the resonant peaks are shifted to lower 
frequencies. A softer core material, therefore, can accommodate more 
deformation. As a result, a significant decrease in bottom plate response may 
be obtained by reducing the thickness of the top plate and decreasing the core 
stiffness. This could be attributed to large deflections of the top plate and the 
core, which contribute to most of the deformation of the coupled system 
and thus alleviate respdnse of the bottoin plate. 

The importance of core damping is illustrated in Figs. 9 and 10. As can 
be ~ e k n  from these figures, increasing dambing in the .core can reduce 
structural modal peaks. Such an effect is h o s t  beneficial in suppressing 
resonance of the fuhdamental mode bkcause, as just stated, decreasing the 
core stiffness or top plate thickness do& not have much effect on the funda- 
mental mode. 

The effecis of nqnlineat stiffness and nonlinear damping of the Core are 
shown in ~ i ~ .  11, Results shown in Fig. 1'1 indicate that a positive non- 
linearity might have a positive'effect on response reduction above'frequencies 

i. 
-1001 . - I - '  . I . -. .._I 

0 100 200 300 400 5 
FREQUENCY, HZ 

:Fig. 7 ~ o i t o m  plite response for tGo values of Eare stiffn&ses ( ~ o r i i e  Carlo method). 
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DOUBLE WALL SANDWICH PANELS 

I I I 

0.06L 0048 0032 0.016 

h , ,  in 

Flg. 8 Root-mean-square deflection response for different top plate {hicknesses and 
two values of core stiffness. 

-140- I I 4 I 
0 200 400 600 800 101 

FREOUENCY, H z  

Fig. 9 ~ f f e c t  of core dainping on plate response. 
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hg = 0.064 in 
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Fie. I0 Root-mean-sauare deflection response for different top plate thicknesses and - 
two values of core damping. 

PDL 
dB 
- 60 

a ,-A eh 

I ! I I I I 

100 200 300 400 
FREQUENCY,  Hz 

Fig. I 1  Effect on nonlinear core stiffness on bottom plate response. 
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Fig. 12 Response of bottom plate for several values of core material density (PSD 
method). 

FREQUENCY, Hz 

Fig. 13 Response of bottom plate for several values of core material density (Monte 
Carlo method). 
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500 HONG AND VAICAITIS 

of 250 Hz, while in the low frequency range (below 200 Hz) no definite 
trend is detected. This could be attributed to the hardening effect of the 
core stiffness on suppressing dilatational modes. The nonlinear damping has 
very little influence on the response reduction, throughout the frequency 
range. Damping in the present system seems to be dominated by the linear 
damping term. 

Mass of the core is apportioned to the top and bottom plates, as shown in 
Eqs. I and 3. Figure I2 depicts the response spectral density of the bottom 
plate for several values of core material density. In this case, thicknesses of 
the top and bottom plates are identical; i.e., /I, = h, = 0.064 in. Similar 
results are presented in Fig. 13 for 11, = 0.064 in. and h, = 0.016 in., based 
on a timc domain nonlinear analysis. With increasing core density, the 
flexural and dilatational modes tend to separate more and the resonant 
response increases and shifts toward lower frequencies. Thus, a double wall 
construction with a heavy core might not be beneficial to decrease the 
response of thc bottom plate. 

V. CONCLUSIONS 

An analytical model has been developed to predict the nonlinear response 
of a double wall sandwich panel system that is subjected to random loading. 
Results indicate that the response is strongly dependent on geometric and 
material properties of the double wall sandwich construction. Deflection 
response of the bottom plate can be controlled by proper selection of the 
core stiffness and top platc thickness. For a soft core and nonlinear response 
of the top plate, no distinct resonant peaks were observed a t  frequenciesabove 
the fundamental resonant frequency of the coupled system. By increasing 
damping in the core, the response peak at the fundamental frequency can 
also be suppressed. This suggests that the viscoelastic damping factor of the 
core should be large in the vicinity of the fundamental natural frequency of 
the coupled system. 

A better response reduction of the bottom plate is achieved for a core 
with a light mass than for a core with a heavy mass. Such an observation is 
contradictory to that of single panel construction, where more added weight 
is considered to be beneficial to response and noise attenuation. However, 
for double wall construction, inertia coupling between the top and bottom 
plates is introduced through the core. A heavier core tends to induce stronger 
coupling and larger response of the bottom plate. The effect of nonlinear 
stiffness and nonlinear damping of the soft core on response reduction is 
generally favorable, but the contributions are not very large. 
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APPENDIX 

The terms used are 

( P  + 9 )  and ( q  - P )  even 

( p  + q )  odd and ( q  - p) even 
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