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ABSTRACT

This paper describes a new technique to classify and analyze the electroencephalogram (EEG)
signal and recognize the EEG signal characteristics of Sleep Apnea Syndrome (SAS) by using
wavelet transforms and an artificial neural network (ANN). The EEG signals are separated into
Delta, Theta, Alpha, and Beta spectral components by using multi-resolution wavelet transforms.
These spectral components are applied to the inputs of the artificial neural network. We treated the
wavelet coefficient as the kind of the training input of artificial neural network, might result in 6
groups of wavelet coefficients per second signal by way of characteristic part processing technique of
the artificial neural network designed by our group, we carried out the task of training and
recognition of SAS symptoms. Then the neural network was configured to give three outputs to signify
the SAS situation of the patient. The recognition threshold for all test signals turned out to have a
sensitivity level of approximately 69.64 % and a specificity value of approximately 44.44 %5 In
neurology clinics, this study offers a clinical reference value for identifying SAS, and could reduce
diagnosis time and improve medical service efficiency.
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Humans spend nearly one-third of their lives
sleeping. Good sleep is an essential precondition to the
maintenance of mental and physical health. As people
enter middle age and beyond, the upper respiratory
tracts of some individuals shrink, which may lead to
obstruction of the nasal passages and snoring during
sleep. This apnea may affect the quality of sleep and
health when it occurs frequently, and may even cause
death in severe cases. Sleep Apnea Syndrome (SAS) is
a very common sleep disorder. Breathing often stops
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for more than ten seconds each instance in a case of
SAS, after which the patient must struggle to return to
a normal state of breathing. This continues in cyclic
fashion. A patient is considered to suffer from SAS if
he or she suffers breathing stoppages an average of
five times per hour for more than ten seconds each
time. However, after a patient awakens because of
SAS, the resumption of breathing must occur
continuously for more than 3 seconds [1]. SAS is
usually diagnosed by analysis of clinical
polysomnography (PSG) signals, which measure the
chest and abdominal breathing effort, nasal and oral
airflow, and blood-oxygen (SpO2) saturation, and by
electrocardiogram (ECG).

Electroencephalogram (EEG) signals are quite
useful since they give off no radiation, are non-
invasive, and are suitable for monitoring over long
periods of time. In addition, useful EEG reference
values are available for studying SAS. EEG signals are
neither stationary nor arbitrarily shifted in frequency
range, and can be classified as four types of basis
waves, namely as delta, theta, alpha, and beta waves.
There is an abrupt frequency shift in the EEG signal
when sleep apnea ends: Sleep EEG activity shifts from
a delta wave to theta and alpha waves in the range of
4~14 Hz. This phenomenon is used as a criterion for
identifying SAS [2].

SAS may occur for 10 seconds or more when a
patient falls asleep during non-rapid eye movement
(NREM) sleep. When breathing becomes normal, brain
waves tend to shift to a relatively continuous frequency
signal above delta, namely in the theta and alpha wave
frequency bands [3-4]. If we compare EEG signals
with nasal and oral airflow signals when symptoms of
SAS, we see that the nasal and oral airflow signals are
clearly reduced, and the EEG signal shifts above the
delta frequency band, when an episode of SAS occurs.
As shown in Fig. 1, the EEG signal is continuous at a
high frequency level. This signal is a characteristic
sign of the SAS disorder.
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Fig. 1. The signal characteristic of SAS disease.

Records from a sleep database (the MIT-BIH
Polysomnography Database) were analyzed over 30-
second time intervals to determine the patient's sleep
condition. Taking the slp59 EEG record as an example,
the signal sampling frequency was 250Hz, total
recorded time was 4 hours, and the entire sleep time
was divided into 480 small episodes; each episode was
separately judged, and was recorded in the file slp59.st.
Our system was used to sequentially analyze EEG
records via the steps of training, simulation testing, and
adjustment of the learning rate parameter, etc., and the
parameter was tested and adjusted within the tolerable
range of error. Artificial neural network (ANN)
training was performed in this paper in order to
achieve effective recognition results. The system's
recognition results were compared with doctors'
recognition findings in the MIT-BIH sleep database.
Table I provides the definitions of sensitivity and
specificity. A true positive (TP) signifies that a SAS
seizure was recognized both by a doctor and by the
computer system. A false negative (FN) signifies that a
SAS seizure was identified by the computer system,
but not by the doctor. A false positive (FP) signifies
that the SAS seizure was identified by the doctor, but
not by the computer. A true negative (TN) signifies
that the SAS seizure was identified by neither the
doctor nor the computer system.

Table 1. The definitions of sensitivity and specificity

Doctor SAS SAS
System ( Positive ) ( Negative )
SAS True Positive False Negative

{ Positive ) (TP ) ( FN)
SAS False Positive True Negative

( Negative ) (FP) (TN )

Sensitivity Specificity
(TP/TP+FP ) | (TN/FN+ TN)

This paper used three different types of structural
methods identify and compare the EEG signals
characteristic of STATUS; these methods involved the
use of wavelet transforms and an artificial neural
network. Because it was easily able to perform signal
decomposition, reconstruction, and time domain partial
location, the db3 mother wavelet basis of the discrete
wavelet transform (DWT) built into MATLAB was
adopted to analyze EEG signals. In addition, the ANN
supervised learning back-propagation algorithm was
adopted and used in conjunction with the gradient
steepest descent (GST) method to minimize the mean
square error between the actual output and the
expected output. We arrived at the best learning
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efficiency and good recognition results by changing or
adjusting the weight value of the learning rule. This
enabled us to distinguish and compare EEG signal
characteristics using three types of different structural
techniques in the ANN model; these techniques
consisted of characteristic part analysis (CPA),
continual characteristic segment analysis (CCSA), and
characteristic segment part analysis (CSPA). The three
different structural techniques model are described as
follows:

2.1. CPA Technique

Since an entire section of the EEG signal
characteristics band for SAS sleep is continuous over
13 seconds, we therefore had to simultaneously
concatenate 12-second signals from the previous
section or the next section in order to extract EEG
signal characteristics. We therefore used a sampling
time smaller than 1 second to implement the section
sampling. A signal was extracted for each second and
wavelet transform decomposition performed for 0.5
second intervals (125 sampling points) in order to
achieve better resolution. This allowed us to arrive at
the wavelet coefficient corresponding to the wavelet
transform decomposition, and this wavelet coefficient
was within the scope of theta and alpha wave
frequencies. We treated the wavelet coefficient as the
training input for the four-layer ANN, where the ANN
learns to transform an n-dimensional input vector into
an m-dimensional output vector according to certain
(not necessarily known) criteria. The ANN is
composed of a set of n simple neural computing
elements. Functionally, there are four layers of cells:
input, output, and interior or hidden cells. The input
layer contains 12 processing elements and the first
hidden layer contains 24 processing elements. The
second hidden layer contains 12 processing elements
and the output layer contains one processing element.
Weight matrices W specify the weights of the
connections between cells in the four layers. Such
matrices completely determine the connectivity of
networks and the direction of signal propagation. The
weights of connection layers are modulated in order to
allow the tasks of training and classification to be
carried out. We set a learning rate parameter of 0.01 so
that the system would train 10,000 times. The ANN
employed a sigmoid function to restrict the output
value within a range of -1 to +1. Nasal and oral
airflow signals were considered auxiliary reference
marks for identifying the occurrence of SAS episodes.
A -1 output value indicates that a SAS seizure did not
occur and a +1 value indicates a SAS seizure. We input
all the training materials and used computer
programming to adjust the threshold value to set up a
group model. This model expressed the conditions for

identification of SAS seizures shown in Fig. 2 [5].
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Fig. 2. The output goal value defined by neural

network.

2.2. CCSA Technique

In order to enhance identification ability, wavelet
decomposition of the EEG signal was performed with
one section every 8 seconds. We use the continual
characteristic segment processing method with a three-
layer ANN, and treated the wavelet coefficient as the
training input of the ANN. The input layer contained
12 processing elements and the first hidden layer
contained 32 processing elements. The output layer
contained 3 processing elements. The weights of the
connection layer were modulated to perform the tasks
of training and classification. We set a learning rate
parameter of 0.01 so that the system would train
10,000 times. The ANN employed a sigmoid function
to restrict the output value within a range of -1 to +1.
We used the output result for comparison purposes.

2.3. CSPA Technique

The CSPA technique was used to perform wavelet
decomposition of the EEG signal with one section
every 6 seconds. We found that the use of a hidden
layer with 32 neurons yielded the best identification
rate. We used probability mapping as shown in formula
(1) to obtain the variable material criterion and
normalize the wavelet coefficient output matrix. When
the variable materials were distributed consistent with
parameter normality, testing and choosing k=1.96
enabled us to map 95% of input variable values within
[-1, +1] to obtain three types of output condition.

X _ X{JM’ -—u (1)

new
kxs

1 : average of the parameter
s: standard deviation of the parameter
Characteristic segment part processing was
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performed by modulating 0.1 of the learning rate
parameters and the corresponding threshold values
(AE2, NE2, SE2,) which ensured that training was
carried out approximately 10,000 times. We then
arrived at the least mean-square error of the actual
output and the goal output. The convergence is shown
in Fig. 3 [6-7].
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Fig. 3. The convergent situation of the EEG signal
trained.

A section of the EEG signal characteristic of SAS
was specially tested and analyzed via ANN. We found
that the characteristic value of SAS defined [1, 0, 0]
occurred in the neighborhood of the 2430™ second
(around the 2424™ - 2430t second). The convergence
of the SAS characteristic value was revealed clearly, as
shown in Fig. 4. The convergence demonstrates that
the output target value of SAS continuously
approached the training value.
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Fig. 4. The convergent result of the EEG signal
trained.

3. RESULT

This paper presents to results of analysis of the
slp59 EEG recording from the MIT-BIH sleep database
using the wavelet transform and an artificial neural
network method. The measuring electrode points were
located at C3-O1, and the signal showed no
interference from muscle artifacts. We identified SAS

episodes using three different ANN methods involving
characteristic part analysis, continual characteristic
segment analysis, and characteristic segment part
analysis. Identification results for all sleep recordings
were compared with non-rapid eye movement sleep
judgments made by doctors. After comparison, we
finally arrived at the computer identification results
shown in Table II to Table VII.

Table II. The recognition effect of the entire sleep
material of CPA technique

Doctor SAS SAS
System ( Positive) |( Negative )
SAS ( Positive ) 94 164
SAS ( Negative ) 46 154
Sensitivity | Specificity
67.14 9 48.43 %

Table III. The recognition effect of the non-rapid
eye movement sleep material of CPA technique

Doctor SAS SAS
System ( Positive ) |( Negative )
SAS ( Positive ) 78 95
SAS ( Negative ) 34 76
Sensitivity Specificity
69.64 % 44 . 44 9%

Table IV. The recognition effect of the entire sleep
material of CCSA technique

Doctor SAS SAS
System ( Positive ) |[( Negative )
SAS ( Positive ) 80 183
SAS ( Negative ) 60 135
Sensitivity | Specificity
57.14 9% 42.45 %

Table V. The recognition effect of the non-rapid eye
movement sleep material of CCSA technique

Doctor SAS SAS
System ( Positive ) |( Negative )
SAS ( Positive ) 70 92
SAS ( Negative ) 42 79
Sensitivity Specificity
62.5 9% 46.2 9%
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Table VI. The recognition effect of the entire sleep
material of CSPA technique

Doctor SAS SAS
System ( Positive) [( Negative )
SAS ( Positive ) 89 179
SAS ( Negative ) 51 139
Sensitivity | Specificity
63.57 % 43.71 %

Table VII. The recognition effect of the non-rapid
eye movement sleep material of CSPA technique

Doctor SAS SAS
System ( Positive ) |( Negative )
SAS ( Positive ) 72 91
SAS ( Negative ) 40 80
Sensitivity Specificity
64.29 % 46.78 9%

We finally confirmed identification results for the
slp59 EEG signal recording. The results reveal that
computer identification rate for non-rapid eye
movement sleep is better than for all sleep data in the
MIT-BIH database. We therefore confirmed that the
EEG signals characteristic of SAS appear frequently
during non-rapid eye movement sleep. In addition, the
other five sets of EEG recordings in the MIT-BIH sleep
database with the same electrode positions (C3-O1)
were also analyzed using wavelet neural network
training; Table VIII to Table X show the system's
identification results. We finally reached the
conclusion that the system recognition rate for the
slp59 EEG recording is better than for the other sleep
recordings.

Due to physiological factors, however, different
people's characteristics are not entirely identical. If a
patient's EEG signal characteristics are not clear, the
ANN method will be unable to correctly identity SAS
episodes, even though it can separate the characteristic
frequency band scope by means of wavelet
decomposition.

4. CONCLUSIONS

In this paper we have tried to find a new solution
to the problem of identifying SAS episodes. In order to
achieve this goal, the EEG signal characteristics of
SAS episodes were extracted using an ANN. A
wavelet neural network was used to as a SAS

Table VIII. The recognition effect of others of CPA
technique

The non-RNM sleep

- The entire sleep material
EEG sleep matens material
Record
Sensitivity 9 | Specificity 9 | Sensitivity 94 | Specificity %3

glp03 52,08 59.23 54.55 59.62
slplé 49.79 54.09 4948 51.26
slp4 s 50.24 5045 48.72 5082
slp6 1 49.55 58.80 48.17 59.51
slp67x 50.03 55.68 51.02 57.58

Table IX. The recognition effect of others of CCSA
technique

- 5 i The non- RNM sleep
EEG The entire sleep material material
Record
Sensitivity%|  Specificity?)| Sensitivity%;|  Specificity%

slp03 58.33 56.70 50.00 55.60
sip16 46.81 62.96 46.91 66,39
slp4s 55.61 43.42 55.77 43.24
slp61 44,55 60.40 45,55 59.20
slp6h7x 48.48 50.50 51.02 57.58

Table X. The recognition effect of others of CSPA
technique

EEG The entire sleep material Thi u":::;iﬁ?l[ sleep
Record i
Sensitivity % | Specificity % | Sensitivity % | Specificity %

dp03 3125 67.26 4545 68.50
dple 4043 60,57 39.69 67.23
slpd5s 5268 5351 52.56 53.89
alp6l 36.82 64.40 3508 66.56
slp67x 3788 62.50 40.82 7273

identification system. The system's identification
results achieved a sensitivity of approximately 69.64%
and a specificity of approximately 44.44%. By
reducing diagnosis time as well as SAS seizure
tracking time, the system thus improves medical
service efficiency.

S. DISCUSSION

Though the ANN SAS identification system
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developed in this study yielded promising initial
results, it still requires improvement:

(1) If suffocation, muscle pains, or limb twitches,
etc., occur during the sleep period, the EEG signal may
awaken the patient; therefore accidental awakening
must be prevented.

(2) The EEG signal characteristics of a SAS
episode are certainly not entirely clear, the signal is
easily contaminated by artifacts, and episodes may be
difficult to recognize. A preprocessor circuit is
therefore needed to eliminate EEG signal artifacts and
enable the system to recognize SAS episodes.
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