行政院國家科學委員會專題研究計畫成果報告

前濃縮流體注入快速氣相層析質譜、單蟲之微量分析及毛細 電泳質譜之發展與應用

計畫編號:NSC 88-2113-M-002-005 執行期限:87年8月1日至88年7月31日 主持人:何國榮 台灣大學化學系

一、摘要

Part A: 薄膜送樣結合樣品前濃縮 / 快速氣相層析質譜儀之研究

薄膜送樣系統結合快速氣相層析 質譜儀具有直接分析水中濃度低至 ppt 範圍之揮發性有機化合物的能力,於一 般操作條件下,其分析速度可以達到每 小時 20 個樣品以上,所以並不會喪失 其線上 / 及時分析的特性。在不經過任 何樣品前處理步驟的情形下,可以將水 溶液樣品中的三鹵甲烷與內標準物— 甲苯 (或氘化的甲苯)於 40 秒內完全 分離測得,而其對三鹵甲烷分析的偵測 極限更是可以達到 2~8 ppt 的濃度範 圍,顯示本分析系統確實保存了薄膜送 樣質譜技術所具有的快速 靈敏特性, 並兼具了快速分離待測物的能力。 研究 中雖然發現分析結果會受到來自穿透 薄膜之水分子的干擾,但是這干擾可以 藉由控制層析溫度或控制注入溫度來 加以克服。

本分析系統大體上來說,不但具有 良好的再現性,也具有極高的靈敏度。 在分離各種待測物的同時,不會喪失其 原有及時分析的特性,所以應能實際應 用在一些需要高準確度的分析領域,例 如在工廠或環境上對水中揮發性有機 化合物進行線上/及時分析監測等,特 別是當各分析物中具有相同的裂解離 子時。 Part B: 毛細電泳-電灑游離離子化 質譜法於單隻昆蟲毒素偵測 之應用。

本實驗建立 Polybrene 塗佈毛細電泳 (CE)管柱配合酸性緩衝液作為磷脂 A_2 的電泳分離條件,添加 β -環糊精對 於完整 PLA 不同醣形式的分離可得最 佳結果。於未添加B-環糊精的電泳條件 中,我們利用胰蛋白 將 PLA 水解成 來增加不同醣形式的分離解析 醣 度,水解程度不一導致的醣 群诰 成分析上的困難,利用篩離分子量為 3000 的過濾離心管可將醣 群與其 群分離,醣 群的雙硫鍵還 他 群, 原後可得單獨醣 與其他 此時不同醣形式的醣 分子量為 1~3 kDa,於未添加β-環糊精的電泳條 件下可以將醣 與其他 群分離 開來並且解析部份的醣形式。毛細電 泳質譜可以清楚監測到 8 種不同醣形 ,利用選擇離子偵測的模 式的醣 式下來定量估計不同醣形式的含量比 例,可以得到變異係數~1%的結果。

關鍵詞:薄膜送樣、快速氣相層析、 質譜儀、三鹵甲烷、毛細電 泳、電灑游離,磷脂 A₂

二、緣由與目的

Part A: 薄膜送樣結合樣品前濃縮/快 速氣相層析質譜儀之研究

傳統上,分析水中揮發性或半揮 發性的有機化合物,大都是利用溶劑 (如CH,Cl,)萃取或吹氣、捕集(purge and trap)技術來做分離、濃縮,然後 以氣相層析儀 (gas 再 chromatography, GC)或氣相層析質 譜儀 (gas chromatography/ mass spectrometry, GC/MS) 來進行定 性、定量分析,雖然這是一種分析水 中揮發性或半揮發性有機化合物的 有效方法,但是在整個分析過程中, 需要花費很多時間在樣品前處理 上,因此,不論是在環境污染源的監 測或是在工業流程的監測,都無法提 供立即而有效的分析結果來作為判 斷處理的依據。

薄膜送樣質譜分析技術 (membrane introduction mass spectrometry, MIMS)自從1963年由 Georeg Hoch及Bessel Kok提出以 後,經過一段時期的沈寂,1974年被 Tou等人改良應用, 1985年再度被 Cooks等人改進效能,終於以其快速 的分析速度、高度的選擇性、卓越的 靈 敏 度 以 及 不 須 樣 品 前 處 理 等 優 點,吸引了研究人員的注意,而且其 構造簡單、易於操作並適用於各種型 式的質譜儀,此外,還能與流動注入 分析(flow injection analysis, FIA) 技術配合使用,進行線上監測。這些 優點,使得薄膜送樣質譜分析法成為 一項很有潛力的分析技術。

由於薄膜送樣技術是利用利用 樣品溶液通過薄膜時,其中所含待測 之揮發性或半揮發性的有機化合物 幾乎同時穿透薄膜進入質譜儀分 析,因此其定性必須藉由特性離子來 判定,若樣品溶液中同時有多種待測 化合物具有相同的特性離子,則在定 性、定量上將會有誤差產生,為了避 免此類誤差的產生,必須藉由層析技 術來達到分離的效果,以便能確實定 性、定量。然而,如果是以傳統的氣 相層析儀來進行分離工作,少者數分 鐘,多則數十分鐘,則薄膜送樣質譜 技術原先所具有的及時監測之優點 將因而喪失。

近年來已有許多文獻報導利用 薄膜送樣質譜分析技術進行線上環 境及程序分析,更有研究人員利用冷 凍聚集(cold-trap)來進行樣品前濃 縮,以達到降低偵測極限的目的。本 實驗室希望能藉由犧牲部份及時監 測的特性,利用樣品前濃縮技術來聚 集並提升進入質譜儀的樣品量,另外 配合上快速氣相層析技術,將各種待 測物於極短的時間內分離測定,以獲 得較低的偵測極限及較精確定性、定 量的優點。

Part B: 毛細電泳-電灑游離離子化質 譜法於單隻昆蟲毒素偵測之 應用。

電灑離子化質譜法是在1大氣壓下 將分析物游離,為大氣壓力下游離質譜 法之其中一種,為近年來廣為使用的軟 性游離法之一,尤其搭配上液相層析儀 或毛細管電泳法與質譜的連線,更可針 對微量分析物進行管柱上的前濃縮及分 離雜質,方法應用上非常廣泛。毛細電 泳的高解析度與須樣品量少更成為與質 譜連線分析生化樣品的利器。相對於較 高流速的電灑法而言,微量電灑法是近 年才興起的技術,利用特製鍍金的毛細 管電灑探針和穩定的背壓以持續傳送探 針內之樣品,只需要不到 1 µ1的分析 物,便能以 20~40 nl/min的流速完全持續 地電灑離子化分析物,而且靈敏度不輸 一般之電灑法。除了所需樣品少外,對 於不同之溶液組成、pH值和緩衝鹽類濃 度更具有廣大範圍的適應度,很適合搭 配質譜儀作為微量生物分子之偵測方

法。

本實驗室先以微量電灑法測試蜂毒中的 成份,發現除了melittin外,還發現醣蛋 白磷脂 部份不同的醣形式,引起我們 對於不同年齡、蜂種或蜂隻之間PLA醣 形式含量分佈的興趣,因此嘗試以簡單 省時之採樣新方法,對於單隻毒蜂取得 毒素樣品,利用毛細電泳配合質譜連線 來進行PLA不同醣形式之定性與定量分 析,此時質譜可以針對特性子離子做定 量上之應用,可以使得訊雜比升高而增 加定量靈敏度。

三、結果與討論

Part A: 薄膜送樣結合樣品前濃縮 / 快速氣相層析質譜儀之研究

薄膜送樣結合樣品前濃縮 / 快速 氣相層析質譜儀分析系統是以蠕動幫 浦將三鹵甲烷樣品溶液以連續流動的 方式將其載入薄膜送樣系統中,其流速 為 1.2 ml/min, 並於樣品流的管路上加 上內標準溶液添加管路,內標準溶液係 以針筒式幫浦推送,藉由一個工型接頭 與樣品流管路連接,以連續注入到樣品 流溶液中, 並藉由一段3公尺長的混合 管路(mixing coil, Teflon tubing 0.030 in. ID × 0.062 in. OD × 3 m) 使樣品溶液與 內標準溶液能充分混合,而後流入薄膜 送樣裝置中的管狀矽膠薄膜內側。利用 冷凍聚焦裝置為薄膜送樣裝置及快速 氣相層析質譜儀的界面,並以載流氣體 將穿透薄膜的待測物在送到冷凍聚焦 裝置中濃縮聚焦。冷凍濃縮聚焦時,捕 集管的溫度為-165 ,濃縮結束後,捕 集管迅速加熱到 200 將待測物脫附注 入分離管柱分離測定。所使用的分離條 件為 0.25 mm DB-5 MS 分離管柱及 50 恆溫。

分析結果發現會有來自樣品中穿 透薄膜的水分子的干擾,經過實驗研究 後,我們發現不論是使用水分控制裝置 或利用吸附劑來除水,都會增加分析的 時間,而且也會影響的分析的靈敏度。 幸運的是,我們也發現到有兩種方法可 以在不增加分析時間的情況下克服這 個問題,一是利用控制注入溫度;另一 則是控制層析溫度。實驗結果顯示將注 入溫度控制在0 時,不但可以克服水 分子干擾,增加靈敏度,而且可以控制 水分子由捕集管釋出的時間。至於控制 層析溫度則是利用改變層析溫度,以使 三鹵甲烷的滯留時間避開水分子出現 的滯留時間。經比較這兩種解決方式後 發現,控制注入溫度不但在降低水分子 干擾上有較好的效果,其適用範圍也較 廣。

實驗以控制注入溫度的方式繼續 進行,圖一為本分析系統測定 10 ppb 三鹵甲烷及 2 ppb 甲苯(內標準物)所得 的層析圖。研究顯示本分析系統分析三 鹵甲烷標準溶液時,連續5次測試的結 果,其相對標準偏差在未使用內標準物 時,介於1.22%與5.01%之間,而使 用內標準物時則介於 1.75 % 與 5.03 % 之間,顯示本分析系統不論是否使用內 標準物,均具有良好的再現性。另外, 本研究中對偵測極限的探討係以一系 列不同濃度三鹵甲烷的標準溶液來進 行, 偵測極限係採用訊號 / 雜訊為 3 之 定義。分析結果三鹵甲烷的偵測極限分 別為,三氯甲烷2ppt、二氯一溴甲烷4 ppt、一氯二溴甲烷 4 ppt 以及三溴甲烷 8 ppt, 顯示本分析系統具有在極短的時 間內分析極低濃度三鹵甲烷樣品的能 力,而其偵測極限則約較傳統的薄膜送 樣系統降低了 10~100 倍。

本分析系統在經過一連串的相關 研究測試後,我們將其實際應用到飲用 水的即時分析,真實樣品係取自實驗室 自來水。首先我們配製一系列濃度分別 是空白、1.0、2.5、5.0、7.5、10.0、15.0 及 20.0 ppb 的三鹵甲烷標準溶液,每一 濃度連續測定三次以求其平均值,結果 顯示每個濃度重複三次分析所得的相 對標準偏差介於 0.45%與 5.40%之間 ,而三鹵甲烷校正曲線所得的線性係 數也都在 0.994 以上。然後將實驗室的 自來水由水龍頭經過水管直接導入薄 膜送樣系統進行線上及時分析,其分析 條件與校正曲線相同,並將所得結果代 入校正曲線求得濃度,結果顯示在這段 間內三鹵甲烷各化合物的平均濃度分 別為三氯甲烷 3.8 ppb、二氯一溴甲烷 3.7 ppb、一氯二溴甲烷 2.1 ppb 以及三 溴甲烷 0.6 ppb,將這結果與先前有關 台灣自來水中三鹵甲烷的研究資料相 比較,應該都是在合理範圍內,證明本 分析系統具有相當高的實用性。

Part B: 毛細電泳-電灑游離離子化質 譜法於單隻昆蟲毒素偵測之 應用。

磷脂 A₂(PLA)約佔蜜蜂毒液乾 燥後的百分之十二到十四左右, PLA 是 蜜蜂毒液中主要的蛋白質之一,具有引 起人體過敏的特性,屬於鹼性的醣蛋 白,PLA總共含有134個氨基酸,分子 量約15.7 kDa,只含有一個位於Asn13 的醣化位置。我們建立一套對於蜂毒中 醣蛋白(PLA)分析的前處理方法,來改 善需量多、費時及多步驟的傳統蜂毒分 析之缺點,並利用毛細電泳質譜分析醣 蛋白中不同醣形式(glycoforms)的含量 差異。

本實驗建立 Polybrene 塗佈毛細電 泳(CE)管柱配合酸性緩衝液作為磷脂

 A_2 的電泳分離條件,添加 β -環糊精 對於完整 PLA 不同醣形式的分離可得 最佳結果,於毛細電泳質譜(CE-MS)實 驗中,β-環糊精的存在強烈抑制其他物 種的電灑游離。於未添加B-環糊精的電 泳條件中,我們利用胰蛋白 將 PLA 來增加不同醣形式的分 水解成醣 離解析度,水解程度不一導致的醣 群造成分析上的困難,利用篩離分子量 為 3000 的過濾離心管可將醣 群與 群的雙硫鍵還 其他 群分離,醣 原後可得單獨醣 與其他 群.此 時不同醣形式的醣 分子量為 1~3 kDa,於未添加 β -環糊精的電泳條件下 可以將醣 與其他 群分離開來 並且解析部份的醣形式。毛細電泳質譜 可以清楚監測到 8 種不同醣形式的醣

,利用選擇離子偵測的模式下來定 量估計不同醣形式的含量比例,可以得 到變異係數~1%的結果。

我們將進一步嘗試針對不同種類或年 齡之單蜂,進行成蜂與幼蜂或不同蜂 種醣蛋白間不同醣形式含量差異之分 析,對於了解蜂毒之形成過程與差異 有相當的助益。

四、計畫成果自評

- Part A: 薄膜送樣結合樣品前濃縮 / 快 速氣相層析質譜儀之研究
- 成功連結了薄膜送樣/樣品前濃 縮/快速氣相層析/質譜儀技 術,保存了薄膜送樣質譜技術即 時分析的優點,並增加了系統的 快速分離能力。
- 克服了來自穿透薄膜水分子的干 擾,確保的分析結果的正確性。
- 利用樣品前濃縮技術有效提升了 系統的靈敏度,其偵測極限約較 傳統薄膜送樣質譜技術降低 10~100倍。
- 證明本分析系統確實可以應用 在實際水樣的分析。
- Part B: 毛細電泳-電灑游離離子化 質譜法於單隻昆蟲毒素偵測 之應用。
- 利用微量電灑游離/離子阱質譜儀對 於單蜂蜂毒成份之定性與定量。
- 以毛細管電泳/離子阱質譜連線對於 蜂毒進行分離、濃縮,達成對其定性 與定量。

五、參考文獻

Part A:

- T.Kotiaho, F.R.Lauritsen,
 T.K.Choudhury, R.G.Cooks and
 G.T.Taso, *Anal. Chem.*, 63(1991) 875A.
- 2. S.Bauer, *Trend in Analytical Chemistry*, 14(**1995**)202.
- 3. L.B.Westover, J.C.Tou and J.H.Mark, *Anal. Chem.*, 46(**1974**)568.
- 4. M.E.Bier and R.G.Cooks, *Anal. Chem.*, 59(**1987**)597.
- G.J.Tasi, G.D.Austin, M.J.Syu, G.T.Tsao, M.J.Hayward, T.Kotiaho and R.G.Cooks, *Anal. Chem.*, 63 (9191)2460.
- S.Bauer and D.Solyom, *Anal. Chem.*, 66(**1994**)4422.
- 7. F.R.Lauritsen and S.Gylling, *Anal. Chem.*, 67(**1995**)1418.
- L.E.Slivon, M.R.Bauer, J.S.Ho and W.L.Budde, *Anal. Chem.*, 63 (1991)1335.
- P.J.Savickas, M.A.LaPack and J.C.Tou, *Anal. Chem.*, 61(1989)2332.
- 10. M.A.LaPack, J.C.Tou and C.G.Enke, *Anal. Chem.*, 62(**1990**)1265.
- 11. J.C.Tou, D.C.Rulf and P.T.DeLassus, *Anal. Chem.*, 62(**1990**)592.
- 12. M.A.LaPack, J.C.Tou and C.G.Enke, *Anal. Chem.*, 63(1991)1631.
- M.E.Cisper, C.G.Gill, L.E.Townsend and P.H.Hemberger, *Anal. Chem.*, 67(1995)1413.
- L.Dejarem, S.J.Bauer, R.G.Cooks, F.Lauritsen, T.Kotiaho and T.Graf, *Rapid Commun. Mass Spectrom.*,

7(1993)935.

- 15. P.S.H.Wong and R.g.Cooks, *Anal. Chim. Acta*, 310(**1995**)387.
- C.S.Creaser and J.W.Stygall, *Analytical Proceedings Including Analytical Communications*, 32(1995)7.
- R.C.Johnson, N.Srinivasan, R.G.Cooks and D.Schell, *Rapid Commun. Mass Spectrom.*, 11(1997)363.
- S.M.Gordon, P.J.Callahan, D.V.Kenny and J.D.Pleil, *Rapid Commun. Mass Spectrom.*, 10(**1996**)1038.
- 19. G.Matz and F.Lennemann, *J.Chromatogr.,A*, 750(**1996**)141.
- 20. M.A.Mendes, R.S.Pimpim, T.Kotiaho and M.N.Eberlin, *Anal. Chem.*, 68(**1996**)3502.

Part B:

- 1.Yamashita, M. and Fenn, J. B. (**1984**) *J. Phys. Chem.* 88, 4451-4471.
- 2.Scott, A. M., Gary, J. V. B. and Gary, L. G. (**1991**) *Anal. Chem.* 63, 375.
- 3.Udseth, H. R., Barinaga, C. J. and Smith, R. D. (1988) *Anal. Chem.* 60, 1948.
- 4.Wilm, M. S., Mann, M. (**1996**) *Anal. Chem.* 66, 1-8.
- 5.Karas, M. and Hillenkamp, F. (**1988**) *Anal. Chem.* 60, 2299.
- 6.Ho, C. L. and Ko, J. L. (**1988**) *Biochim, Biophys. Acta.* 963, 414-422.
- Nakajima, T. (1986) Pharmacological biochemistry of vespid venom. London, Academic Press. 309-327.
- 8.Ho, C. L. and Hwang, L. L. (**1991**) *Toxicon.* 29, 1033-1042.
- 9.Ho, C. L. and Hwang, L. L. (1991)

Biochem. J. 274, 453-456.

- 10.Ho, C. L., Hwang, L. L. and Chen, C. T. (**1993**) *Toxicon.* 29, 1033-1042.
- 11.Korner, R., Wilm, M., Morand, K., Schubert, M. and Mann, M. (1996) J. Am. Soc. Mass Spectrom. 7, 150-156.
- 12.Kaufmann, R., Spengler, B. and Lutzenkirchen, F. (1993) *Rapid. Commun. Mass Spectrom.* 7, 902.
- 13.Cordero, M. M., Cornish, T. J. and Cotter, R. J. (1994) *J. Am. Soc. Mass. Spectrom.* 23, 205.
- 14.Stacey, C. C., Kruppa, G. H., Watson, C. H., Wronka, J. and Laukien, F. H. (1994) *Rapid. Commun. Mass Spectrom.* 8, 513.

圖一、 本分析系統測定三鹵甲烷及甲苯(內標準物)所得的層析圖

PLA Glycoforms

1	$Man\alpha 1-6 Man\beta 1-4GkNAc\beta 1-4GkNAc$
2-1	Manα1-6 Manβ1-4GlcNAcβ1-4GlcNAc
2-2	$Man\alpha 1-6 Man\beta 1-4GlcNAc\beta 1-4GlcNAc$ Fuc $\alpha 1-3$
3-1	$\frac{Man\alpha 1-6}{Man\alpha 1-3}Man\beta 1-4GkNAc\beta 1-4GkNAc}$
3-2	$Man\alpha 1-3 - Man\alpha 1-6 Man\beta 1-4 GlcNAc\beta 1-4 GlcNAc$
4	$Man\alpha 1-6$ $Man\beta 1-4GlcNAc\beta 1-4GlcNAc$ $Fuc\alpha 1-3$
5-1	$ \begin{array}{c} \text{Fuc}\alpha1-6\\ \text{Man}\alpha1-6\\ \text{Man}\beta1-4\text{GlcNAc}\beta1-4\text{GlcNAc}\\ \text{Man}\alpha1-3 \end{array} $
5-2	$\begin{array}{c} Man\alpha 1-6 \\ Man\alpha 1-3 \end{array} Man\beta 1-4 GlcNAc\beta 1-4 GlcNAc \\ Fuc\alpha 1-3 \\ Fuc\alpha 1-3 \end{array}$
6	$\frac{Man\alpha 1-3}{Man\alpha 1-6} Man\beta 1-4GlcNAc\beta 1-4GlcNAc} Man\alpha 1-3$
7	$ \begin{array}{ccc} $
8	$Man\alpha 1-6 Man\beta 1-4GkNAc\beta 1-4GkNAc$ $GalNAc\beta 1-4GkNAc\beta 1-2Man\alpha 1-3$ $Fuc\alpha 1-3$
9-1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
9-2	$Man\alpha 1-6 Man\beta 1-4GlcNAc\beta 1-4GlcNAc$ $GalNAc\beta 1-4GlcNAc\beta 1-2Man\alpha 1-3 Fuc\alpha 1-3$ $Fuc\alpha 1-3$
10	$\begin{array}{c} Fuc\alpha 1-6 \\ Man\alpha 1-6 \\ Man\beta 1-4GlcNAc\beta 1-4GlcNAc \\ GalNAc\beta 1-4GlcNAc\beta 1-2Man\alpha 1-3 \\ Fuc\alpha 1-3 \\ \end{array}$

Separation of the glycoforms of intact PLA by CE-UV

Sample concentration: 2 mg/ml Capillary: polybrene coating fused silica (1.1m/1m, 50 μ m I.D.) Applied potential: -15 KV Buffer: 50 mM ammonium acetate-10 mM β -CD (pH 6.7) Detection: 205 nm

CE-UV analysis of intact PLA and it's tryptic peptides

Sample concentration: 2 mg/ml
Capillary: polybrene coating fused silica (1.1m/0.9m, 50 μm I.D.)
Applied potential: -20 KV
Buffer: 0.5 % Formic acid
Detection: 205 nm
Digestion: enzyme/PLA=1/30, 37 6hr.
(a) intact PLA
(b) Tryptic digests of PLA
(c) Blank, digestion without PLA

Nanospray of PLA tryptic peptides without reduction of disulfide bond

The results of nanospray of tryptic peptides without reduction of disulfide bond

Spray voltage: 1 KV sample: 1 ~l (a or b)-(X)---glycopeptides, X-glycan

Digests of PLA were filtrated with M.W. cut-off 3000 microcentrifugal filter before reduction of disulfide. Sample concentration: 2 mg/ml Capillary: polybrene coating fused silica (1.1m/0.9m, 50 µm I.D.) Applied potential: -20 KV Buffer: 0.5 % Formic acid Detection: 205 nm

Digestion and reduction: enzyme/PLA=1/30, 37 6hr. After digesting, add excess DTTto reduct the disulfide bonds.

(a) Reductive digests of PLA

(b) Blank, reductive digests without PLA

CE-ESMS-SIM analysis of reductive ultrafiltration-digests of PLA