

 Novel Organometallic Functional Transformation and Catalysis (IV)

\square

§ © § § Â K n

Abstract

The reactions of enamines (ROC)HC= $\mathrm{CMe}\left(\mathrm{NH}^{\text {i Pr }}\right.$) with $\quad \eta^{3}$-allenyl/propargyl complexes $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]^{+}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ result in the formation of the pyrrole derivatives. Such reactions involve the intermediates of central-carbon-substituted η^{3}-allyl complexes $\left\{\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}[\mathrm{C}-\right.\right.$ $\left.\left.\left.(\mathrm{COR})=\mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right] \mathrm{CH}_{2}\right)\right\}^{+}$which are formed by hydroalkenylation to $\mathrm{C}_{3} \mathrm{H}_{3}$ moiety.

Keywords: $\eta 3$-allenyl/propargyl complexes, enamine.

§GRt 2-Py゙〕

The addition of an olefinic $\mathrm{C}-\mathrm{H}$ bond across an unsaturated carbon-carbon bond is highly interesting from the viewpoint of synthetic methodology [1]. The involvement of transition metal complexes in such processes is often crucial, particularly in the aspect of developing new ways for $\mathrm{C}-\mathrm{C}$ bond formation [2]. We and other groups have discovered that cationic η^{3} allenyl/propargyl complexes generally behave as good carbon electrophiles and are subjected to the addition with a wide variety of nucleophiles containing $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{N}, \mathrm{P}$, or C donor [3-7]. Meanwhile, such complexes
exhibit keen chemical selectivity. For instance, tertiary amine such as $\mathrm{Et}_{3} \mathrm{~N}$ can be added to $\left[\mathrm{Pt}_{(}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]^{+}$(3) via $\mathrm{C}-\mathrm{N}$ bond formation to give a platinacyclobutene adduct [8]. In contrast, $\mathbf{3}$ activates a phenyl C-H bond in $\mathrm{NMe}_{2} \mathrm{Ph}$ to succeed arylation, yielding an arylallyl complex [9].

We have chosen to use enamines that are known to contain both active $\mathrm{N}-\mathrm{H}$ as well as $\mathrm{C}-\mathrm{H}$ bonds to react with η^{3}-allenyl/propargyl complexes. Our studies lead to the discovery of the first examples of hydroalkenylation to metal complexes of allenyl/propargyl. The insertion of $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}$ to an enamine $\mathrm{C}-\mathrm{H}$ bond affords a skeleton of "diene" which allows to incorporate with an amino functionality to transform into the pyrrole derivatives.

§ \ddagger В В§ ÆE

The enamines $\mathrm{Me}\left(\mathrm{NH}^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{C}=\mathrm{CHR}[\mathrm{R}=$ COMe (1a), $\mathrm{CO}_{2} \mathrm{Me}$ (1b)] have been prepared respectively by the reactions of $\alpha, \gamma-$ diketone or ketoester methane with ${ }^{i} \mathrm{PrNH}_{2}$ [10]. The NMR data of $\mathbf{1 a}$ and $\mathbf{1 b}$ indicate that tautomerization of eq. 1 overwhelmingly inclines to the enamine form which is presumably stabilized by hydrogen bonding between $\mathrm{N}-\mathrm{H}$ and the keto group.

Previous studies have shown that amines and amino derivatives with active hydrogen are prone to have regioselective hydroamination to $\left[\mathrm{M}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]^{+}[\mathrm{M}$ $=\mathrm{Pd}$ (2), Pt (3)], yielding azatrimethylenemethane ($\mathrm{N}-\mathrm{TMM}$) complexes and their derivatives [11]. However, heating the mixture of $\mathbf{2}$ and $\mathbf{1 b}$ at $50 ¢ \mathrm{~J}$ was found to generate the pyrrole derivatives. Deleberate investigation shows that reactions of equimolar amounts of 2 and enamine at 25 $\$ \mathrm{~J}$ undergo unprecedented hydroalkenylation. The regioselective $\mathrm{C}-\mathrm{C}$ coupling takes place between the central carbon of the $\mathrm{C}_{3} \mathrm{H}_{3}$ and the β-olefinic carbon of the enamine, and results in the enamine-allyl complexes in the formula of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\eta^{3}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}(\mathrm{COR}) \mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right]-\mathrm{CH}_{2}\right\}^{+}[\mathrm{R}=\mathrm{Me}$ (4a), OMe (4b)] with the yields over 75%. Complexes 4a and 4b were mainly characterized by NMR techniques as well as elemental analysis. Either heating the reaction solutions of complexes $\mathbf{4 a}$ and $\mathbf{4 b}$ to $50 \$ \mathrm{~J}$, or treating them with base, the products of pyrrole derivatives $\mathbf{6 a}$ and $\mathbf{6 b}$ could be obtained, respectively (Scheme 1).

Scheme 1

The analogous reactions of $\left[\mathrm{Pt}^{\left(\mathrm{PPh}_{3}\right)_{2}}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$ (3) with 1a or 1b produced $\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}(\mathrm{COR})=\mathrm{CMe}\left(\mathrm{NH}^{i} \mathrm{Pr}\right)\right]-\right.\right.$ $\left.\left.\mathrm{CH}_{2}\right)\right\}\left(\mathrm{BF}_{4}\right)\left[\mathrm{R}=\mathrm{Me}\left(\mathbf{4} \mathbf{a}^{\mathbf{\prime}}\right)\right.$, $\left.\operatorname{OMe}\left(\mathbf{4 b} \mathbf{b}^{\prime}\right)\right]$ also in very good yields. The enamne-allyl platinum complexes could be formed alternatively from the reactions of trans-$\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CHCCH}_{2}\right)$ and enamine at $25 \$ \mathrm{~J}$ however, with longer reaction time. The single-crystal X-ray crystallography provides the authentic molecular structure for 4b'. Figure 1 shows its ORTEP drawing. The length of C2-C4 is $1.46(2) \AA$, a typical $\mathrm{C}_{s p}{ }^{2}-\mathrm{C}_{s p}{ }^{2}$ single bond. The dihedral angle between the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 2$ planes is $68(1)^{\circ}$, and $\angle \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ is $113(1)^{\circ}$, which are consistent with the η^{3}-allyl characteristic and somewhat approach that of the η^{3} trimethylenemethane species [7, 12]. It indicates that there is significant electronic delocalization in the planar $\mathrm{N}-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 10-$ O1 moiety of enamine. The distance between N and O 1 atoms is $2.52 \AA$ that is suitable for hydrogen bonding in the vicinity. However, the generated amino hydrogen points out of the enamine plane with $\angle \mathrm{O} 1-$ $\mathrm{H}-\mathrm{N}=116(7)^{\circ}[13]$.

Ring closure in $\mathbf{4 a}{ }^{\prime}$ and $\mathbf{4 b}$ ' could be accomplished by heating or treating with base as well, except that cyclization in $\mathbf{4 b}$, first generates a dihydropyrrole derivative $\mathbf{5 b}$. Upon chromatographing on a silica gel column, 5b would isomerize to the stable pyrrole product $\mathbf{6 b}$. Such a reaction is mechanistically comparable to the furan formation from an enolate-allyl complex [14].

3. Conclusion

The regioselective addition of enamine to the η^{3}-allenyl/propargyl complexes demonstrate a new type of "alkene-alkyne" coupling which affords new enamine-allyl complexes and leads to the formation of pyrrole derivatives.

Acknowledgement.

4. Experimental Section

4.1. General

Commercially available reagents were purchased and used without purification unless necessary. Solvents were dried with use of standard procedures. All reactions and other manipulation were carried out under a nitrogen atmosphere, using standard Schlenk techniques. The IR spectra were recorded on a Bio-Rad FTS-40 spectrophotometer. The NMR spectra were run on either a Bruker AC-200 or ACE-300 spectrometer. For the ${ }^{31} \mathrm{P}$ NMR spectra, the spectrometer frequency at 81.015 or 121.49 MHz was employed, and the chemical shifts are given in $\mathrm{ppm}(\delta)$ relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in CDCl_{3}. Values upfield of the standard are defined as negative. The corresponding frequencies for ${ }^{13} \mathrm{C}$ NMR spectra were at 75.47 MHz , respectively. Mass spectrometric analyses were collected on a JEOL SX-102A spectrometer. Elemental analyses were done on a Perkin Elmer 2400 CHN analyzer.

4.2. Synthesis and Characterization

$\left\{\mathbf{P d}\left(\mathbf{P P h}_{3}\right)_{2}\left(\eta^{3}-\right.\right.$
$\left.\left.\mathbf{C H}_{2} \mathrm{C}\left[\mathrm{C}(\mathbf{C O M e})=\mathbf{C M e}\left(\mathrm{NH}^{\top} \mathrm{Pr}\right)\right] \mathrm{CH}_{2}\right)\right\}\left(\mathrm{BF}_{4}\right)$
(4a). The reaction of $2(300 \mathrm{mg}, 0.39 \mathrm{mmol})$ and $(\mathrm{MeOC}) \mathrm{HC}=\mathrm{CMe}\left(\mathrm{NH}^{\mathrm{i}} \mathrm{Pr}\right)(1 \mathbf{1 a})(55 \mu \mathrm{~L}$, 0.039 mmol) was carried out in 20 mL predried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30 母 \mathrm{~J}$ After stirring for 90 min , the solution was concentrated to 2 mL . Adding 20 mL of dried $\mathrm{Et}_{2} \mathrm{O}$ gave yellow solid product. Recrystallization resulted in $\mathbf{4 a}$ in 76% isolated yield (260 mg). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 23.8 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.21,1.24(3 \mathrm{H}, 3 \mathrm{H}, \mathrm{s}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.00\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{br}, \mathrm{H}_{\text {anti }}\right), 3.69(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.12\left(2 \mathrm{H}, \mathrm{br}, \mathrm{H}_{\text {syn }}\right), 7.02-7.73$ $\left(30 \mathrm{H}\right.$, m, phenyl H), $12.6\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=2.2\right.$
$\mathrm{Hz}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right) \delta$ 18.4, $23.7\left(\underline{\mathrm{CH}}_{3}\right), 30.5\left(\underline{\mathrm{CH}}_{2}\right), 46.2\left(\mathrm{COCH}_{3}\right)$, 80.1 (t with virtual coupling, $J_{\mathrm{CP}}=15.4 \mathrm{~Hz}$, C_{t}), $104.2\left(\mathrm{C}_{\gamma}\right), 129-134$ (phosphino phenyl C), $146.1 \quad\left(\mathrm{C}_{\mathrm{c}}\right), \quad 165.0 \quad(\mathrm{NC}=\mathrm{C}), \quad 193.7$ (COMe). MS (FAB, m/z): $810\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. Anal. Calcd for $\mathrm{PdC}_{47} \mathrm{H}_{48} \mathrm{NOP}_{2} \mathrm{BF}_{4}$: C, 62.86; H, 5.38; N, 1.56. Found : C, 62.30; H, 5.04; N, 1.25.
$\left\{\mathbf{P d}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathbf{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CMe}-\right.\right.\right.$ $\left.\left.\left.\left(\mathbf{N H}^{i} \mathbf{P r}\right)\right] \mathrm{CH}_{2}\right)\right\}\left(\mathbf{P F}_{6}\right)(\mathbf{4 b})$. Refer to 4 a for the procedure. The reaction of $2(100 \mathrm{mg}$, $0.12 \mathrm{mmol})$ and $\mathbf{1 b}(20 \mathrm{mg}, 0.15 \mathrm{mmol})$ gave yellow solid product in 76% isolated yield (90 mg). $\quad \mathrm{IR}\left(\mathrm{KBr}\right.$ pallet) $\mathrm{v}_{\mathrm{CO}} 1638 \mathrm{~cm}^{-1}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 24.53 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.15\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=\right.$ $\left.6.4 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.04\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.14(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.68\left(5 \mathrm{H}, \mathrm{m}, \mathrm{br}, \mathrm{CH}_{2}\right.$ (allyl), $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.82-7.64(30 \mathrm{H}, \mathrm{m}$, phenyl H$)$, $10.09\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 17.7\left(\mathrm{CH}_{3}\right), 23.5(\mathrm{~s}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 45.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 50.9\left(\mathrm{OCH}_{3}\right)$, $78.5\left(\mathrm{t}, J_{\mathrm{CP}}=15.7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 91.2(\mathrm{MeC}=\mathrm{C})$, 128.7, 128.9, 130.1, 130.7, 131.1, 133.7 (phosphino phenyl C), $141.5\left(\mathrm{C}_{\mathrm{c}}\right), 164.0$ $(\mathrm{MeC}=\mathrm{C}), 168.8\left(\underline{\mathrm{CO}}_{2} \mathrm{Me}\right) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{m} / \mathrm{z})$: $826\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$. Anal. Calcd for $\mathrm{PdC}_{47} \mathrm{H}_{48}{ }^{-}$ $\mathrm{NO}_{2} \mathrm{P}_{3} \mathrm{~F}_{6} \mathrm{CH}_{2} \mathrm{CH}_{2}: \mathrm{C}, 55.43 ; \mathrm{H}, 4.75$; N , 1.35. Found : C, 54.01; H, 4.63; N, 1.11.
$\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathbf{C}[\mathbf{C}(\mathbf{C O M e})=\mathbf{C M e}-\right.\right.$ $\left.\left.\left.\left(\mathbf{N H}^{i} \mathbf{P r}\right)\right] \mathrm{CH}_{2}\right)\right\}\left(\mathbf{P F}_{6}\right)\left(\mathbf{4 a}{ }^{\mathbf{a}}\right)$. The reaction of 3 ($240 \mathrm{mg}, 0.28 \mathrm{mmol}$) and equimolar amounts of $\mathbf{1 a}$ produced $\mathbf{4 a}$ ' in 82% (220 $\mathrm{mg}) . \quad{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 18.1$ $\left(J_{\mathrm{PPt}}=3828 \mathrm{~Hz},\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 2.00\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13$, $2.15\left(3 \mathrm{H}, 3 \mathrm{H}, \mathrm{s}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.33\left(2 \mathrm{H}, \mathrm{br}, \mathrm{H}_{\mathrm{syn}}\right)$, $3.45\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HP}}=8 \mathrm{~Hz}, J_{\mathrm{HPt}}=40.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{ant}}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.03-7.76(30 \mathrm{H}, \mathrm{m}$, phenyl H), $12.5\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, \mathrm{NH}\right)$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 15.2,23.4$
$\left({\underset{\mathrm{CH}}{3}}^{)}, 30.6\left(\mathrm{C}_{2}\right), 45.4\left(\mathrm{COCH}_{3}\right), 69.6(\mathrm{~d}\right.$, $\left.J_{\mathrm{CP}}=34 \mathrm{~Hz}, J_{\mathrm{CPt}}=105 \mathrm{~Hz}, \mathrm{C}_{\mathrm{t}}\right), 103.7\left(J_{\mathrm{CPt}}=\right.$ $30 \mathrm{~Hz}, \mathrm{C}_{\gamma}$), 128.0-133.9 (phosphino phenyl C), $143.5\left(\mathrm{t}, J_{\mathrm{CP}}=4 \mathrm{~Hz}, J_{\mathrm{CPt}}=20.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{c}}\right)$, 165.1 ($\mathrm{NC}=\mathrm{C}$), 192.4 ($\underline{C O M e) . ~ M S ~(F A B, ~}$ $\mathrm{m} / \mathrm{z})$: $899\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$. Anal. Calcd for $\mathrm{PtC}_{47} \mathrm{H}_{48} \mathrm{NOP}_{2} \mathrm{BF}_{4}: \mathrm{C}, 57.20 ; \mathrm{H}, 4.90$; N , 1.42. Found : C, 56.78; H, 4.04; N, 1.20.
$\left\{\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{C}\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CMe}-\right.\right.\right.$ ($\left.\left.\left.\left.\mathbf{N H}^{\mathbf{i}} \mathbf{P r}\right)\right] \mathbf{C H}_{2}\right)\right\}\left(\mathbf{B F}_{4}\right)\left(\mathbf{4 b}^{\prime}\right)$. Complex $\mathbf{3}$ was first prepared from trans $-\mathrm{Pt}(\mathrm{Br})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{3}-\right.$ $\left.\mathrm{CHCCH}_{2}\right)(300 \mathrm{mg}, 0.36 \mathrm{mmol})$ and AgBF_{4} $(69 \mathrm{mg}, 0.36 \mathrm{mmol})$ in situ. The reaction of $\mathbf{3}$ and $\mathbf{1 b}$ (0.36 mmol) basically followed the procedure as used for the preparation of $\mathbf{4 a}$ produced $\mathbf{4 b}$, in 77% isolated yields (272 mg). Colorless single crystals were obtained by recrysatallization from $\mathrm{CH}_{2} \mathrm{CH}_{2} /$ benzene. IR (KBr pallet) $v_{\mathrm{Co}} 1634$ $\mathrm{cm}^{-1} \mathrm{~V}_{\mathrm{C}=\mathrm{c}} 1580 \mathrm{~cm}^{-1} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 19.6\left(J_{\mathrm{PPt}}=3845 \mathrm{~Hz},\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.24\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.3\right.$ $\left.\mathrm{Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.20\left(3 \mathrm{H}, J_{\mathrm{HPt}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $3.10\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, J_{\mathrm{HPt}}=42 \mathrm{~Hz}, \mathrm{H}_{\mathrm{anti}}\right)$, $3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.63\left(2 \mathrm{H}, \mathrm{br}, \mathrm{H}_{\mathrm{syn}}\right), 3.77$ $\left(1 \mathrm{H}\right.$, dhep, $\left.J_{\mathrm{HH}}=6.3,8.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.0-$ $7.6\left(30 \mathrm{H}, \mathrm{m}\right.$, phenyl H), $10.4\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=\right.$ $8.0 \mathrm{~Hz}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $15.1\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 45.4\left(\mathrm{dd}, J_{\text {CP }}\right.$ $\left.=5.8,14.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 50.9\left(\mathrm{OCH}_{3}\right)$, $67.6\left(\mathrm{~d}, J_{\mathrm{CP}}=32 \mathrm{~Hz}, J_{\mathrm{CPt}}=100 \mathrm{~Hz}, \mathrm{C}_{\mathrm{f}}\right), 91.6$ $\left(J_{\text {CPt }}=27 \mathrm{~Hz}, \quad \mathrm{MeC}=\underline{\mathrm{C}}\right), \quad 128.4$-133.4 (phosphino phenyl C), $140.6\left(\mathrm{t}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{CPt}}=18.4 \mathrm{~Hz}, \mathrm{C}\right), 165.0\left(J_{\mathrm{CPt}}=19.0 \mathrm{~Hz}\right.$, $\mathrm{MeC}=\mathrm{C}), 169.1\left(J_{\mathrm{CPt}_{\mathrm{t}}}=11 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{Me}\right)$. Anal. Calcd for $\mathrm{PtC}_{47} \mathrm{H}_{48} \mathrm{NO}_{2} \mathrm{P}_{2} \mathrm{BF}_{4}$: C, 56.29; H, 4.83; N, 1.40. Found : C, 55.74; H, 4.91; N, 1.12.

3-carboxymethyl-2-methyl-4-methylene-\mathbf{N}-isopropyldihydropyrrole (5b). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}\right) \delta 1.13\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.01\left(1 \mathrm{H}, \mathrm{m}, J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, \mathrm{CH}\right), 4.18(2 \mathrm{H}, \mathrm{t}$,
$\left.J_{\text {HH }}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.52,5.10(1 \mathrm{H}, 1 \mathrm{H}, \mathrm{dt}$, $\left.J_{\mathrm{HH}}=1.5,3.4 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$.

3-acetyl-2,4-dimethyl-N-isopropyldihydropyrrole (6a). A solution that contained $4 \mathrm{a}(30 \mathrm{mg})$ in 2 mL of chloroform was heated at $50 \$ \mathrm{~J}$ for 24 h . The solution was then chromatographed on alumina and eluted with $\mathrm{Et}_{2} \mathrm{O}$. Compound 6a was obtained in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 1.34$ $\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.38,2.47$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.28\left(1 \mathrm{H}, \mathrm{m}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.38(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$.

3-carboxymethyl-2,4-dimethyl-N-

isopropylpyrrole (6b). H NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta 1.34\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.76$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.27\left(1 \mathrm{H}, \mathrm{m}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right), 6.38(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{~Hz})$ 11.1, 12.8, 23.2, 46.6, 50.3, 114.0, 120.4, 128.4, 132.0, 166.9; HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$194.1181, found 194.1180.

4.3. X-ray crystallographic Analysis.

basis of an experimental ψ rotation curve. The refinement procedure was by a fullmatrix least-squares method including all the non-hydrogenic atoms anisotropically. Hydrogen atoms were fixed at the ideal geometry and the $\mathrm{C}-\mathrm{H}$ distance of $1.0 \AA$; their isotopic thermal parameters were fixed to the values of the attached carbon atoms at the convergence of the isotropic refinement. Atomic scattering factors were taken from ref 15. Computing programs are from the NRCC SDP VAX package [16]. Crystallographic data, selected bond parameters of $\mathbf{4 b}$, are collected in Tables 2 and 3. UK on request, quoting the deposition number 135924.

Acknowledgments We thank the National Science Council, Taiwan, ROC for the financial support.

References

[1] J. March, "Advanced Organic Chemistry, Reactions, Mechanisms, and Structure" John Wiley \& Sons, Inc. 4th Ed., 1992.
[2] C. P. Casey, C. S. Yi, J. Am. Chem. Soc. 114 (1992) 6597.
[3] T.-M. Huang, J.-T. Chen, G.-H. Lee, Y. Wang, J. Am. Chem. Soc. 115 (1993) 1170.
[4] V. Plantevin, P. W. Blosser, J. C. Gallucci, A. Wojcicki, Organometallics 13 (1994) 3651.
[5] T.-M. Huang, Huang, R.-H. Hsu, C.-S. Yang, J.-T. Chen, G.-H. Lee, Y. Wang, Organometallics 13 (1994) 3657.
[6] F.-Y. Tsai, R.-H. Hsu, J.-T. Chen, G.-H. Lee, Y. Wang, J. Organomet. Chem. 520 (1996) 85.
[7] J.-T. Chen, Coord. Chem. Rev. 190-192 (1999) 1143 and references therein.
[8] J.-T. Chen, Y.-C. Cheng, Y.-K. Chen, T.-M. Huang, C.-I. Yu, G.-H. Lee, Y. Wang, Organometallic 17 (1998) 2953.
[9] J.-T. Chen, R.-H. Hsu, A.-J. Chen, J. Am. Chem. Soc. 120 (1998) 3243.
[10] J. L. Chiara, A Gómez-Sánchez in "The Chemistry of enamines", (Ed. Z. Rappoport), John Wiley \& Sons, 1994, pp353-358.
[11] N-TMM represents the azatrimethylenemethane complexes $\mathrm{M}\left[\mathrm{CH}_{2} \mathrm{C}(\mathrm{NR}) \mathrm{CH}_{2}\right]$. A.-J. Chen, C.-C. Su, F.-Y. Tsai, J.-J. Lee, T.-M. Huang, C.-S. Yang, J.-T. Chen, G.-H. Lee, Y. Wang, J. Organomet. Chem. 569 (1998) 39 and references therein.
[12] A. Wojcicki, New J. Chem. 21 (1997) 733.
[13] The single crystals of $\mathbf{4 b}$ ' were obtained by recrystallizing in the $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ solution. Crystal data: Orthorhombic $P 2{ }_{12} 1_{121} a=11.100$ (5) $\AA b=17.764(4) \AA, c=21.951(4) \AA, V$ $=4328(2) \AA^{3}$, Mo K_{α} radiation $\lambda=$ $0.7107 \AA, Z=4, \mu=3.398 \mathrm{~mm}^{-1}$, 5490 total reflections, 3032 observed reflections ($I>2.0 \sigma(I)$), $R=0.044$, $R_{W}=0.036$.
[14] K. Ohe, H. Matsuda, T. Moromoto, S. Ogoshi, N. Chatani, S. Murai, J. Am. Chem. Soc. 116 (1994) 4125.
[15] International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. IV.
[16] NRC VAX: E. J. Gabe, Y. LePage, J.-P. Charland, F. L. Lee, P. S. White, J. Appl. Crystallogr. 22 (1989) 384.

